
Natural Language Processing for Urdu TTS System

Hasan Kabir, Syed Raza Shahid, Abdul Mannan Saleem and Sarmad Hussain
Centre for Research in Urdu Language Processing

National University of Computer and Emerging Sciences, Lahore,
Emails: hasankabir@hotmail.com, theraza777@yahoo.com, amannansaleem@yahoo.com,

sarmad.hussain@nu.edu.pk

Abstract: Natural Language Processing (NLP) provides
the foundation for every text-to-speech system. NLP caters
all the issues related to the language. NLP for Urdu Text-
to-Speech System is a part of research project being done
at CRULP, NUCES, Lahore. Its objective is to generate
phonetic stream from plain Urdu text for the production of
natural and intelligible speech. To carry out this
transformation from text to speech, the NLP performs a
series of steps. These steps are tokenization of input text,
generation of phonemic stream, syllabification of words
present in text, primary stress assignment on words,
application of phonological rules and resyllabification of
words. This paper focuses on all these processes from the
perspective of Urdu.

Keywords: Natural Language Processing, NLP, Stress,
Syllabification, TTS, Urdu Phonology.

1 INTRODUCTION

A Text-to-Speech (TTS) synthesis system transforms
plain text into intelligible speech. This transformation
process can be divided into two major sub-processes
namely High-level synthesis and Low-level synthesis.
High-Level synthesis deals with the text analysis that
changes the text into an intermediary narrow phonetic
representation, whereas the Low-Level synthesis converts
it into the acoustic signal for the purpose of speech
production, as shown in Figure 1.

Low Level
Synthesis

High Level
Synthesis

Text
Normalizin
g Module

Phonological
Processing

Module

Narrow
Phonetic
Stream

Phonetic
Processing

Module

Speech
Processing

Module
Text Speech

Figure 1: Text-to-Speech System

Low-level speech synthesis process can be carried out

through three different techniques namely Articulatory,
Concatenative and Formant based synthesis. Articulatory
speech synthesis attempts to model the human speech
production system directly [4]. Concatenative synthesis
smoothly joins the small units of speech together to
generate intelligible and natural sound [2]. Formant
synthesis is based on the source-filter theory of speech
production. Formant based synthesis technique undertakes
the assumption that the formants transfer function can
simulate the formant frequencies and formant amplitude.
As mentioned above that the High-Level synthesis process
transforms natural language text into an intermediary
phonetic representation. This transformation is carried out
by NLP component. The NLP component is capable of
producing a normalized orthographic transcription of the
natural language text, together with the syntactic and

morphological information [7]. No matter what Low-Level
synthesis processes are followed, the NLP component
remains common. Therefore it is necessary for all kind of
synthesis techniques. This paper focuses on NLP (i.e. High
level synthesis) and discusses all of its modules in detail.

2 NLP ARCHITECTURE

The NLP component is divided into two major
modules shown in Figure 2; Pre-processor and
Phonological Processor.

Phonological
processorPre-processorInput Text Phonetic

Stream

Figure 2: High Level NLP Architecture

Pre-processor organizes the input sentences into

manageable lists of words. It identifies numerals, dates,
times, abbreviations, acronyms and special symbols and
converts them into phonemic stream. Pre-processor
constitutes the following modules.

1. Number-to-Text Converter
2. Date-to-Text Converter
3. Time-to-Text Converter
4. Special Symbol to Text Converter
5. Grapheme to Phoneme Converter

Phonological Processor takes phonemic stream as input

and marks syllable boundaries, stress, and rhythm and
ultimately generates phonetic stream after applying
phonological rules. Phonological Processor constitutes the
following modules.

1. Syllable Marker
2. Stress Marker
3. Intonation Marker
4. Phonological Rule Processor

The example provided in the Table 1 depicts the

functionality of the NLP. Input column shows the input
stream and the output column is the output of the
corresponding component. Urdu text is provided as input
which contains the date which gets transformed into plain
Urdu text by Date-to-Text converter. It is then passed to
Grapheme to Phoneme converter which generates the
stream of phonemes. Syllable Marker then marks syllable
boundaries and passes the resultant stream to the Stress
Marker which assigns primary stress. Finally,
phonological rules convert this phonemic stream into
phonetic stream. This process is schematized in Figure 3.

Table 1: Example describing the NLP Functionality
Input Output NLP

Functionality
مان کی تاریخ �ع

 ١٠-١١-١٩٨٠پیدائیش
��-

 نومبر دسمان کی تاریخ پیدائیش �ع
-�� انیس سو اسی

Date to Text
Converter

مان کی تاریخ �ع
 نومبر دسپیدائیش

 -�� س سو اسیانی

ʔʊsmɑn ki t̪ɑrix pæd̪ɑʔɪʃ

d̪əs nəvəmbər ʔʊnnis sɔ

ʔəssi hæ

Grapheme to
Phoneme
Converter

ʔʊsmɑn ki t̪ɑrix

pæd̪ɑʔɪʃ d̪əs

nəvəmbər

ʔʊnnis sɔ ʔəssi

hæ

ʔʊs.mɑn ki t̪ɑ.rix pæ.d̪ɑ.ʔɪʃ

d̪əs nə.vəm.bər ʔʊn.nis sɔ

ʔəs.si hæ

Syllable Marker

ʔʊs.mɑn ki t̪ɑ.rix

pæ.d̪ɑ.ʔɪʃ d̪əs

nə.vəm.bər

ʔʊn.nis sɔ

ʔəs.si hæ

ʔʊs.’mɑn ‘ki t̪ɑ.’rix

pæ.’d̪ɑ.ʔɪʃ ‘d̪əs nə.’vəm.bər

ʔʊn.’nis ‘sɔ ‘ʔəs.si ‘hæ

Stress Marker

ʔʊs.’mɑn ‘ki

t̪ɑ.’rix pæ.’d̪ɑ.ʔɪʃ

‘d̪əs

nə.’vəm.bər

ʔʊn.’nis ‘sɔ

‘ʔəs.si ‘hæ

ʊs.’mɑn ‘ki t̪ɑ.’rix pæ.’d̪ɑ.ɪʃ

‘d̪əs nə.’vəm.bər ʊn.’nis ‘sɔ

‘əs.si ‘hæ

Phonological Rule
Processor

Special Symbol
to Text Converter

Time to Text
Converter

Number to Text
Converter

Date to Text
Converter

Preprocessor

Pre-processor

Urdu Text in
Unicode

Grapheme
to

Phoneme
Converter

Diacritic
Parser

Normalized
Urdu Text Lexicon

Text with
Diacriics

Phonological Processor

Syllable
Marker

Stress
Marker

Phonologi
cal Rule

Processor

Normalized Stream
of Phonemes

Stream of
phonemes with

syllable
markers

Stream of
phonemes with
stress markers

Intonation
Marker

Narrow Phonetic
Text Stream of

phonemes with
intonation markers

Synthesized
Speech

Low Level Synthesis

Figure 3: NLP Architecture

3 PRE-PROCESSING MODULE

Preprocessing Module contains several modules which
are language dependent. Text Normalization is one parts

of the Pre-processing module, which comprises of various
phases that include Text Segmentation and abbreviations,
date/time, symbols and numerals handling.

Digits and numerals must be expanded into full words.

For example in Urdu, numeral 1990 would be expanded as
aik hazar no saw naway and year 1990 would be expanded
as unis saw naway. Fractions and dates are also
problematic. 16/5 can be expanded as solah-paanch or
solah may (if date); [4].

Special characters and symbols (i.e. ‘%’, ‘&’, ‘/’, ‘-’,

‘+’, etc) are also converted to text. For example, 5.50
rupay must be expanded as paanch rupay pachaas paisay.
The expression 1-2 may be expanded as aik nafi do or aik
say do.

To cater all these problems, we have defined different

algorithms for the numerals, date, time, currency and are
using direct mapping for the special symbols stated above.
The details of these algorithms are given in the following
sections.

3.1 Number to Text Converter

The Number to Text Converter is devised to convert
the real numbers into their equivalent literal text string in
Urdu. This component uses the rules and conventions
present in Urdu that govern the conversion process of a
number into its equivalent string literal form, e.g. if the
input number in the number form is ١٢٣٤٥٦٧ء٤٥٦ then
the output number in the string literal form will be بار�لاک �

� چار پانچ چ � اعشاری ��زار پانچ سو سرس �چونتیس . This
component is further divided into two sub modules that are
actually responsible to carry out this conversion process.

3.1.1 Number-to-Lexeme Converter

This sub-module takes a number as an input and
converts it into stream of lexemes. This stream of lexemes
is generated according to the rules and conventions used in
Urdu to determine what number coefficient should be
attached with each unit (i.e. � زار، لاک�سو ، etc), e.g. if the
input number is ١٢٣٤٥٦٧٨٩ء٥٦٧٨٤ then this will be
converted into a stream like [٧ ,٦ ,٥ ,ء ,٨٩ ,٧ ,٥٦ ,٣٤ ,١٢,
٤ ,٨].

3.1.2 Lexemes-to-Literal String Converter

This sub-module takes a stream of lexemes, generated
in the previous step, where each lexeme corresponds to the
number coefficient, and converts that stream into its
equivalent standard literal form of number in Urdu, e.g. if
the input stream of lexeme is [٧ ,٦ ,٥ ,ء ,٨٩ ,٧ ,٥٦ ,٣٤ ,١٢
] then the literal string output will be � چونتیس لاک � کرو �بار

 This conversion . سات � پانچ چ �زار سات سو نواسی اعشاری �پن �چ
is based on the Push-Down Automaton given in Figure 4.
Before starting automaton a variable isFraction is set to
true if the input number has a fractional part and set it to
false otherwise. Secondly, the automaton starts by taking
input from right side of the number e.g. if the number is

١٢٣٤ء٥٦ then input of automaton starts from ٦ and move
towards left.

S9

S8

S7

S6

S5

S4

S3

S2S1

0-99/Push(0-99)

(.)/Push(.)

0-99/Push(0-99)

0-99/Push(Saw)
 Push(0-99)

0-99/Push(Hazar)
Push(0-99)

0-99/Push(L:akh)
Push(0-99)

0-99/Push(Karror)
Push(0-99)

0-99/Push(Arab)
Push(0-99)

0-99/Push(Kharab)
Push(0-99)

S0

notFractional

isFractional

Start

Figure 4: Automaton for Number to Literal String Converter

An example of this conversion process is given in
Table 2.

Table 2: Examples of Number to Text Conversion

Input Number Lexemes Output String
١٢٣٤٥٦ء١٢٣ زار چار سو � تئیس �ایک لاک ٣ ,٢ ,١ ,ء ,٥٦ ,٤ ,٢٣ ,١

 ایک دو تین� اعشاریپن�چ

3.2 Date to Text Converter

This component is used by the Pre-processor to convert
the date in the number format into its equivalent literal
string in Urdu. This component uses the rules and
conventions present in Urdu that govern the conversion
process, e.g. if the input date is ١٥-۱۱-۱٩٨٠ or ١٥/۱۱/
۱٩٨٠ then this will be converted into پند�ر�نومبر انیس سو
 and if the input date is ۲۰-۱۲-۲۰۰۲ or ۲۰/۱۲/۲۰۰۲ اسی
then this will be converted into بیس دسمبردو�زار دو . This
component is also divided into two sub-modules that are
actually responsible to carry out this conversion process.

3.2.1 Date-to-Lexeme Converter

This module takes the date, in numeral format, as an
input, and converts it into stream of lexemes. This stream
of lexemes contains the day, month and year in number
format and also contains the extra characters used in the
written numeral form of date, e.g. if the input date is ٥-۱۱-
۱٩٨٠ or ٥/۱۱/۱٩٨٠ then the output stream of lexemes will
be [٥, -, ۱۱, -, ۱٨٠ ,٩] or [٥, /, ۱۱, /, ۱٨٠ ,٩] respectively
and if the input date is ٢٠٠١-١-١٥ or ١٥/١/٢٠٠١ then the
output stream of lexemes will be [٠١ ,٠ ,٢ ,- ,١ ,- ,١٥] or [
٠١ ,٠ ,٢ ,/ ,١ ,/ ,١٥] respectively.

3.2.2 Lexemes-to-Literal String Converter

This sub-module of Date to Text Converter takes a
stream of lexemes generated in the previous step and
converts that stream into a standard literal form of Date in
Urdu, e.g. if the input stream of lexeme is [٥, -, ۱۱, -, ۱٩,
٨٠] or [٥, /, ۱۱, /, ۱٨٠ ,٩] then the literal string output
will be پانچ نومبر انیس سو اسی. This conversion is based on
the Push-Down Automaton given in Figure 5. In the
automaton ‘L’ represents the null transition i.e., there is no
output in this transition.

S0

S5
S1 S3 S7

S6S4S2

1-31/1-31

‘/’ or ’-’ / L

1-12/Month
Name ‘/’ or ’-’ / L

10-99/10-99
(Saw)

0-9/0-9
(Hazar)

0/L

0-99/0-99

Start

Figure 5: Automaton for Date to Literal String Converter

A complete example of this conversion process is show
in Table 3.

Table 3: Examples of Date to Text Conversion

Input Date Lexemes Output String
١٩٨٠-٦-٩

٨٠-٦-٩

٩/٦/١٩٨٠

٩/٦/٨٠

٨٠ ,١٩ ,- ,٦,- ,٩

٨٠ ,- ,٦ ,- ,٩

٨٠ ,١٩ ,/ ,٦ ,/ ,٩

٨٠ ,/ ,٦ ,/ ,٩

سینو جون انیس سو ا

3.3 Time to Text Converter

This component is used by the Pre-processor to convert
the time in the number format into its equivalent literal
string in Urdu. This component uses the rules and
conventions present in Urdu that govern the conversion
process of the time in number format into its equivalent
string literal form, e.g. if the input time is ٠٥:١١ then it will
be converted into گیار�پانچ من بج کر � . This component is
also divided into two sub-modules that are actually
responsible to carry out this conversion.

3.3.1 Time-to-Lexeme Converter

This sub-module takes the time, in numeral format, as
an input and converts it into a stream of lexemes. This
stream of lexemes contains the hours and minutes in
number format and also contains the extra character used
in the written numeral form of time, e.g. if the input time
is ١:٥٥ then the output stream of lexemes will be [٥٥ ,: ,١
].

3.3.2 Lexeme-to-Literal String Converter

This sub-module of Time to Text Converter takes a
stream of lexemes, which contains the hours, minutes and
extra character, and converts that stream into a standard
literal form of time in Urdu, e.g. if the input stream of
lexeme is [٥٥ ,: ,١] then the literal string output will be ایک
�بج کر پچپن من . This conversion is based on the Push-Down

Automaton given in Figure 6.

S0

S3 S4

S2S1

00/L

Start 1-12/1-12 (:)

1-59/Baj Kar (1-59) Minute

Figure 6: Automaton for Time to Literal String Conversion

3.4 Special Symbol Handler
Special symbols (-, +, ء, /, *, %, #, >, <, =, @, �) are

handled through direct mappings. For example (- is
mapped to ء ,نفی is mapped to اعشاری� , > is mapped to

ا�ب�س , and � is mapped to الل� etc.). Other Urdu Zabta
Takhti (UZT) characters are not available in Unicode 3.0.
Few are present in Unicode 3.2 but Office XP does not
support it at the moment.

4 GRAPHEME TO PHONEME CONVERTER
The procedure for converting Urdu text into the stream

of Phonemes is presented in the form of an automaton in
Figure 7. The presented automaton was tested successfully
on many words of Urdu language. The tested words were
supposed to have all the diacritics correctly marked on
them. The Phonemic conversion process is extremely
useful for building speech synthesizer for Urdu language.

Figure 7: Grapheme to Phoneme Automaton

Since the automaton is represented in the form of a
Mealey machine, so there is a corresponding output
associated with each input in transition from one state to
another. Circles in the Figure 7 represent states. Each
intermediate state remembers all the previous inputs.
Table 4 shows the list of diacritics used in the automaton.
English letters are used to denote the diacritics; Urdu
examples with their IPA transcription are also mentioned.
The letters in the bold format under IPA column have the
corresponding diacritic mentioned in Diacritics column.

Table 4: List of Urdu diacritics with example

Convention
Used

Urdu
Diacritics

Name Examples IPA

z َ Zaber َََنگر rəng
r ِ Zer بچ�نا bɪʧʰnɑ
p ُ Paish سکون sʊkun
j ۫ Jezem /

Sukun
 vɑldæn والدین

m آ Alifmeda آم ʔɑm
s ّ Shed بتّی bet̪ti̪
d ً Do-Zaber ًتقریبا t̪əkribən
k ٰ Kari-Zaber زکو�ت zəkɑt̪
n Null for

vowels
 ko کو

v Void for
consonants

�و� hõ

Pc Phonemic
Conversion

 s س

The automaton is built for only one syllable. It

executes for each syllable from the start label and
concatenates the output of each syllable thus produces the
phonemic conversion of the whole word.

There are three characters in Urdu language that are

responsible for representing the vowels in the word. These
are ‘و‘ ,’ا’, and ‘ى’ and can act as supporting characters for
vowel insertion process or can act as consonants. If any
one of the above mentioned characters has a null ‘n’ label,
then it acts as a character for vowel. And they came as
consonants and they have sounds like /ʔ, v, j/ respectively.
There exist one special character ‘آ’ in Urdu language,
which is a consonant /ʔ/ plus a vowel /ɑ/.

The consonants in Urdu language must have a

diacritic, except one case. For that particular case, label
void ‘v’ is used, which means that no diacritic is assigned
to the consonant. In Urdu script, writers usually do not
write words with diacritics. For example, ‘بیل’ (ox) and ‘
 have same characters, but they can be (ivy) ’بیل
distinguished from each other by using different diacritics.
The ‘بیل’ (ox) has “znj” and ‘بیل’ (ivy) has “vnj”.

Grapheme to phoneme converter also processes other
diacritics of Urdu script. The diacritic do-zaber ‘’ً comes at
the word final position above the character ‘ا’, and
produces the phonemes /�n/. The diacritic khari-zaber ‘
� ’ appears with the consonants and produces the sound
/ɑ/. The diacritic shed ‘ ّ’ appears with the consonant, and
geminates it.

The nasalized vowels exist at the word final position

indicated by character ‘�’ which always appears at the
word final position.

Table 5 shows the method to read the transitions from

the automaton in Figure 7 by considering the word “ نا�بچ ”,
which has diacritics as “rjvn”.

Table 5: Executing Automaton on Urdu word

State no. Read Urdu
Character

Read
Diacritic

Output

0 - - -
 b - ب 1
 r b ب 2
�بچ 3 r bɪʧʰ
�بچ 6 r bɪʧʰ
ن�بچ 2 rj bɪʧʰn
ن�بچ 2 rjv bɪʧʰn
نا�بچ 14 rjv bɪʧʰn
22 Ø rjvn bɪʧʰnɑ
21 End State rjvn bɪʧʰnɑ

First character ‘ب’ is read during the transition from

state 1 to state 2 and change into the phoneme /b/. Till now
the only phoneme /b/ is present in the output string.
Diacritic ‘r’ is read during the transition from state 2 to
state 3, but no change appears in the output string till next
character is read. Next character ‘ �چ ’ is read during the
transition from state 3 to state 6 and concatenates /ɪʧʰ/ into

the output string /bɪʧʰ/. Diacritic ‘j’ is read during the
transition from state 2 to state 2, which do not play a role
to insert any vowel into the output string but reads next
character ‘ن’, which adds ‘n’ into the output string /bɪʧʰn/.
Diacritic ‘v’ is read during the transition from state 2 to
state 14, but no change appears into the output string
/bɪʧʰn/. Finally Next character ‘ا’ is read during the
transition from state 14 to state 22 without changing the
output string /bɪʧʰn/. Phoneme /ɑ/ is finally added into the

output string /bɪʧʰnɑ/, and the execution of automaton
comes to an end at state 21.

5 SYLLABLE MARKER
Urdu follows a very simple rule for syllabification.

Syllable templates at phonemic level include CV, CVC,
CVCC, CVV, CVVC and CVVCC[5]. Firstly, it is clear
from these templates that Urdu does not allow vowels at
syllable initial position. Secondly, Urdu also does not
allow two consonants in onset. The process of putting
syllable boundaries on a word includes first finding the
vowel and then marking the syllable boundary right before
the first consonant in its onset. However, for initial
syllable, syllable boundary is not required.

The syllable identification algorithm is given in

Exhibit 1 and its pseudo code in Exhibit 2.
Step 1: Start from right side of the phonemic string
Step 2: Find vowel in the phonemic stream
Step 3: Mark syllable boundary right before the first
consonant in the onset.
Step 4: Absorb remaining consonants in the coda of
relevant syllable.
Step 5: Syllable boundary is not required for the first
syllable in the word as its beginning itself indicates the
syllable start.

Exhibit 1: Syllabification Algorithm

6 STRESS MARKER

According to [5] which uses moraic theory[1], Urdu
language only divides syllables into two groups for stress
assignment purposes, mono-moraic and multi-moraic
syllables. In addition, the final mora in the final syllable is
considered extrametrical i.e. its weight is not counted in
the syllable weight. Thus, bi-moraic (heavy) syllable
becomes mono-moraic and tri-moraic (super-heavy)
syllable becomes bi-moraic in word-final position.

Algorithm in Exhibit 2 given by [5] is used for stress

assignment.
Step 1: Start from right side of the syllabified phonemic
string
Step 2: Assign single mora to each consonant in Coda
Step 3: Assign single mora to Short Vowels
Step 4: Assign two moras to Long Vowels & Diphthongs
Step 5: Truncate the extrametrical mora from the word’s
final syllable
Step 6: Count moras in syllables
Step 7: Assign primary stress to first syllable found having
moras greater than equal to 2 from right side.

Exhibit 2: Stress Assignment Algorithm [5]

7 PHONOLOGICAL RULE PROCESSOR

Various phonological rules have been devised by
analyzing Urdu text which is listed below. These rules are
applied to convert phonemes to phones. An important
point to be noted here is that the following rules are
devised by analyzing the data collected from Urdu dialect
of people in Punjab.

1. Glottal Stop does not exist in Urdu at phonetic level.
This rule states that glottal stop gets deleted whenever it is
encountered. On existence of glottal stop, this rule is fired.

 For example,
Phonemic Stream Phonetic Stream
ʔɑʤ ɑʤ

2. Whenever, /n/ comes before a bilabial stop, it is
converted into bilabial nasal /m/.

[alveolar] [bilabial]

[stop][stop]
[nasal]

Phonemic Stream Phonetic Stream
�nbɑr �mbɑr

3. This rule states that velar stop gets deleted whenever it
follows a vowel and the vowel becomes nasal and the
nasal becomes velar.

v

[nasal] [velar]

[stop]n

Phonemic Stream Phonetic Stream
bɑnk bɑ ̃ n̡

4. /h/ gets deleted whenever it comes at word final position
and is preceded by a long vowel.

#

[h]V

Phonemic Stream Phonetic Stream
xɑnkɑh xɑnkɑ

5. h gets deleted and short vowel becomes long vowel
whenever h comes at word final position and is followed
by a short vowel.

h

#

V

Phonemic Stream Phonetic Stream
ro.z�h ro.zɑ

6. Whenever gemination occurs among aspirated
consonants, the aspiration of the first consonant is deleted.

C

[+aspirated]

Phonemic Stream Phonetic Stream
�ʧʰ.ʧʰɑ �ʧ.ʧʰɑ

7. Whenever two aspirated consonants come in start of
adjacent syllables and both of them belong to the same
place, then the aspiration of the second consonant
disappears.

CV(C).C

+Aspirated

Place

Phonemic Stream Phonetic Stream
bʰɑ.bʰi bʰɑ.bi

8 RESYLLABIFICATION

Resyllabification does take place in Urdu after the
application of phonological rules. Since, phonological
rules change the syllable structure by deleting or
modifying phonemes, syllable structure sometimes
become illegal. Resyllabification converts syllables into
legal syllable structures. Application of phonological rules
in different sequence changes a word differently. One
important thing to note here is that syllable templates
inventory at phonetic level is much richer than syllable
templates inventory at phonemic level. Syllable templates
inventory at phonetic level include CV, CVC, CVCC,
CVV, CVVC, CVVCC, VV, VVC, VC and VCC [3].

Resyllabification process is under investigation these

days and no concrete rules have been devised yet.

However, to explain Resyllabification an example has
been given below.

Phonemic
Stream

Phonological Rule
Fired

Resyllabification

bʰɑ.ʔi -> bʰɑ.i ʔ -> Ø bʰɑi

In the example above, bʰɑ.ʔi becomes bʰɑ.i when the

rule ʔ -> Ø was applied. Consequently, CVV.VV
transformed into CVV. This rule is currently being
investigated in more detail.

9 INTONATION MARKER

Intonation defines the rhythm of a language while
pronouncing the sentences of different grammatical
categories. Intonation conveys meanings that apply to
phrases or utterances as a whole, such as question, surprise
etc.

Intonation can be handled and analyzed by controlling

the pitch of the speech. The stylization technique is being
used for the intonational analysis of Urdu. The analysis of
Urdu revealed that a Low-High-Low (LHL)
pattern/contour of pitch applies to declarative sentences of
Urdu. The intonational analysis of Interrogative and other
sentences is currently in progress. This component will
take the intonational tones and align them with the
phonetic stream. It is still under development.

10 DISCUSSION AND CONCLUSION
This paper has briefly discussed the various steps

required to convert input normalized text into a phonetic
stream with syllable, stress and intonation marked. This
phonetic stream can be converted to speech through a low
level synthesis process using articulatory, concatenative or
formant synthesis techniques. As have been seen, Urdu
has its own specific requirements especially for vowel
specification, and all the phonological processes including
syllabification, stress assignment, intonation assignment
and phonological rules application. The algorithms
discussed are still under investigation and still may not
cater to all possibilities. For example, the syllable
templates for diphthongs are still not determines. As an
example it is still not clear whether /ƅʰɑі/ when reduced to
a single syllable (see section 8) has CVVV or CVVVV
template. Acoustic analysis is still underway to determine
it. Similarly phonological rule inventory given is by no
means complete. More rules will eventually be added as
they are discovered. The NLP component does not cater to
syntactic or morphological analysis. This may be required
for the intonation assignment. However the word
pronunciation in Urdu is very regular and vowels are
predictable if diacritics are known. In addition
morphological information (e.g. POS) does not change
stress (or pronunciation in general). Therefore the detailed
Morpho-syntactic analysis may not be required.

Still much more research needs to be done to
thoroughly test and extend the algorithms proposed.

11 REFERENCES
[1] John A. Goldsmith. Autosegmental and Metrical

Phonology; Basil Blackwell Ltd., UK, page 179,
1990.

[2] J. M. Pickett. The Acoustics of Speech

Communication, Allyn And Bacon, London, pages 7-
10, 1998.

[3] Noman Nazar. “Syllable Templates in Urdu

Language”. Akbhar-e-Urdu, National Language
Authority, Islamabad, page 198, April-May 2002.

[4] Sami Lemmetty. “Review of Speech Synthesis

Technology”, Helsinki University of Technology,
Master Thesis, 1999.

[5] Sarmad Hussain. “Phonetic correlates of lexical stress
in Urdu”; Unpublished Ph.D. dissertation, North
Western University, IL, USA, 1997.

[6] Thierry Dutoit. Introduction to Text-To-Speech

Synthesis; Kluwer Academic Publishers, NY. 1997.

[7] Thierry Dutoit. A Short Introduction to Text-To-
Speech Synthesis, 1996.

[8] G. Fant. Acoustic Theory of Speech Production.

The Hague: Mounton. 1960.

[9] H. Dennis Klatt. Software for a cascade/parallel
formant synthesizer. Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1979.

	INTRODUCTION
	NLP ARCHITECTURE
	PRE-PROCESSING MODULE
	Number to Text Converter
	Number-to-Lexeme Converter
	Lexemes-to-Literal String Converter

	Date to Text Converter
	Date-to-Lexeme Converter
	Lexemes-to-Literal String Converter

	Time to Text Converter
	Time-to-Lexeme Converter
	Lexeme-to-Literal String Converter

	Special Symbol Handler

	GRAPHEME TO PHONEME CONVERTER
	SYLLABLE MARKER
	STRESS MARKER
	PHONOLOGICAL RULE PROCESSOR
	RESYLLABIFICATION
	INTONATION MARKER
	DISCUSSION AND CONCLUSION
	REFERENCES

