
Arabic Script Internationalized Domain Names

Sarmad Hussain, Nayyara Karamat, Arfan Mansoor
Center for Research in Urdu Language Processing

National University of Computer and Emerging Sciences, Lahore Pakistan

1. Introduction
With the increasing support of standards like
Unicode, Common Locale Data Repository,
ISO 639 and others, and development of
internationalized architectures for
applications, it is now possible to deploy
contents in local languages on the Internet.
However, it is still not possible to access
them without knowledge of Latin script
because the Domain Name System (DNS) is
based on a subset of 7-bit ASCII standard
(specifically the letters, digits and hyphen,
LDH). Thus, it is not easily possible to
encode non-ASCII languages, which would
require the 16-bit or 8-bit encoding like
Unicode.

An earlier attempt was made to enable
domain names in other languages, referred
to as Internationalized Domain Names (or
IDNs). This proposal, called
Internationalized Domain Names in
Applications (IDNA) is an accumulation of
RFCs 3454 [2], 3490 [3], 3491 [4], and 3492
[5], and is also referred to as IDNA2003.
IDNA2003 adds a layer between the DNS
and the client, which takes the domain name
in a local language as input, normalizes it
through the nameprep process [4], and
converts this non-ASCII string to an ASCII
Compatible Encoding (ACE) known as
Punycode [5]. An algorithm toASCII() is
described in [3] for this conversion. The
reverse of the algorithm toUnicode()
converts the Punycode back to Unicode,
where required. The DNS continues to
receive input in ASCII, and thus there are no
changes in DNS infrastructure [1].

IDNA2003 has had some issues and was
thus re-evaluated by IAB for potential
problems and recommendations were given
for improvement [6]. Many issues were
identified, e.g. the dependence of standard
on a particular version of Unicode (i.e.
Unicode 3.2) even though currently Unicode
5.2 is applicable. On the basis of these
recommendations a formal revision of IDNA

protocol is being developed, called
IDNA200X [7]. In this revision, a process is
defined on the basis of characters properties
in the Unicode standard, which makes it
version independent, and thus operable with
current and future versions of Unicode.

Though IDNA200X defines a protocol for all
characters in Unicode, and thus for Arabic
script as well, it still stops short of
addressing many issues which are particular
to these scripts, still requiring additional
details for actual implementation. This
paper looks at the IDNA200X
recommendations in the context of Arabic
script, identifies potential issues or
limitations of IDNA200X in this context, and
describes additional measures which need
to be taken to ensure a cohesive, secure
and user-friendly experience for the potential
users of Arabic script IDNs. The paper also
proposes and architecture to resolve these
issues. This model can be extended to any
other script, which is used for multiple
languages, e.g. Cyrillic and Devanagari, etc.

2. IDNA200X for Arabic Script:

Description and Issues
IDNA 200X uses an algorithm based on
character properties defined by the Unicode
standard and generates one of the four
values for each of the encoded character:
PVALID, DISALLOWED, CONTEXTJ and
CONTEXTO characters. PVALID characters
(short for Protocol Valid) are the characters
which are allowed in the IDNs.
DISALLOWED characters cannot be used in
the IDNs. CONTEXTJ/CONTEXTO
characters can be used in IDNS but with
additional context rules.

Appendix A gives the status of Arabic
characters, as generated through this
algorithm. As can be seen from this list, the
algorithm gives a very generic solution,
allowing most characters and marks.
However, it does not allow punctuation

marks and other similar characters. It
assigns some of the other symbols
contextual status. As this analysis is based
on an algorithm, it still is not sufficient for
defining a complete solution. The following
classes of issues still need to be explicitly
addressed for IDNA200X for Arabic script:

 Many of the PVALID/CONTEXT

characters will not be used by any of the
language using Arabic script due to the
nature of the character. In addition,
different set of characters are used by
different languages.

 Some DISALLOWED characters are
needed for IDNs.

 Some characters have confusably
similar glyph shaping, but all these are
PVALID.

 There are also some characters which
exist in their composed and
decomposed form. Both versions are
PVALID.

 Arabic script is cursive and if words are
written without spaces between them,
their legibility is not possible. However,
space is not an allowed character in the
DNS within the LDH scheme.

 DNS uses the dot “.” as the label
separator, but some languages using
Arabic script use alternated separators,
also encoded in the Unicode. These
separators are not allowed.

These issues are discussed in more detail
below.

2.1. Algorithmically Generated

Status of Different Characters
There is already discussion on the status of
various characters by Arabic Script IDNs
Working Group (ASWIG, archives available
at http://lists.irnic.ir/mailman/listinfo/idna-
arabicscript). Based on the discussion
between the members of ASIWG, the
following changes are required.

 Change the following characters
from CONTEXTO to DISALLOWED:

o Punctuation and associated
marks and thus will not be
used in IDNs: 0600-0603

o Quranic marks and thus will
not be used in IDNs: 06DD

 Change the following from PVALID

to DISALLOWED:

o Stylistic or Quranic marks
and thus will not be used in
IDNs: 0615, 0640, 06D6-
06DC, 06DF-06E8, 06EA-
06ED, FE73

 Change from DISALLOWED to

PVALID:

o Glyphs representing words
required for Sindhi: 06FD,
06FE

2.2. Confusable characters
As the Arabic script is cursive, it has context
sensitive shaping. Each letter can take up
to four logical shapes: initial, medial, final
and isolated. There are many characters in
the Arabic block of the Unicode standard
which are visually similar in one of more of
these contexts. This visual similarity arises
for various reasons, not in the scope of
current discussion. Presence of such
characters can be a major source of
confusion and can thus be a potential
source of spoofing. These confusable
characters can be further divided into three
categories.

2.2.1. Characters with same shape,

not distinct in any language
There are some characters which have
exactly the same shape and will be
confusable for any language using these
characters. For example the codes U+0649
 have same isolated (ی) and U+06CC (ى)
shape, whereas U+0643 (ك) and U+06A9
 ,have same initial and medial forms (ک)
even though they have different isolated
forms. A complete list is given in Table 1
below.

http://lists.irnic.ir/mailman/listinfo/idna-arabicscript
http://lists.irnic.ir/mailman/listinfo/idna-arabicscript

Table 1: Confusable Characters in Arabic Script1

Characters Unicode Forms (order from

Left to right: Isolated,
Initial, Medial, Final)

Remarks

 i) U+0643 ك،ک
ii) U+06A9 i) اك ,ك لكل ,, ,,,, ك ٹ

ii) اک ,,ک لکل ,, کٹ ,, ,,

Initial and medial
forms are same

 i) U+0647 ه ، ہ ، ە
ii) U+06C1
iii) U+06D5

i) مه ,ه اهم ,, هلل ,
ii) مہ ,ہ اہم , ہلل ,
iii) هن ,ە

Isolated forms of all
these are same, and
U+0647 and
U+06D5 have same
final forms

 i) U+0647 ھ ،ه
ii) U+06BE i) مه ,ه اهم ,, هلل ,

ii) مھ ,ھ اھم , ھلل ,

Initial forms are
same

 i) U+06CC ي ، ی
ii) U+064A i) عی ,ی لیم , ییل ,

ii) عي ,ي ليم , يل ,

Initial and medial
forms are same

ى ، ی i) U+06CC
ii) U+0649 i) عی ,ی لیم , ییل ,

ii) ى ,ى

Isolated and final
forms are same

 i) U+06A7 ڧ ، ف
ii) U+0641 i) رڧ ,ڧ رڧک ,, ڧ ,

ii) ف رف , رفک , ف ,,

Initial and medial
forms are same

 i) U+0629 ة ، ۃ
ii) U+06C3

i) ة
ii) ة

Isolated forms of
both these are same

ٹڻ ، i) U+06BB
ii) U+0679 i) اٹ ,ڻ نٹ , ڻ ,

ii) اٹ , ٹ نٹم , ٹ ,

Initial and medial
forms are same

ث ، ڽ i) U+06BD
ii) U+062B i) اڽ ,ڽ اڽم , ڽ ,

ii) اث ,ث اثم , ث ,

Initial and medial
forms are same

٠, ۰ i) U+0660
ii) U+06F0

i) ٠
ii) ۰

Both have same
shape

١، ۱ i) U+0661
ii) U+06F1

i) ١
ii) ۱

Both have same
shape

٢ ، ۲ i) U+0662
ii) U+06F2

i) ٢
ii) ۲

Both have same
shape

٣, ۳ i) U+0663
ii) U+06F3

i) ٣
ii) ۳

Both have same
shape

1 Some characters are not fully supported by the font used and thus not showing the shape variation

٥, ۵ i) U+0665
ii) U+06F5

i) ٥
ii) ۵

Both have same
shape

٧, ۷ i) U+0667
ii) U+06F7

i) ٧
ii) ۷

Both have same
shape

٨, ۸ i) U+0668
ii) U+06F8

i) ٨
ii) ۸

Both have same
shape

٩, ۹ i) U+0669
ii) U+06F9

i) ٩
ii) ۹

Both have same
shape

2.2.2. Characters with similar shape,

distinct in some languages
There are some characters which are used
only in some particular languages and their
shape can be confusable for users of other
languages who do not recognize the
character. For example, U+06A9 (ک) and

U+06AA (ڪ) may be distinct letters of

Sindhi but they are confusing for Arabic
speakers. Similarly, for Urdu speakers,
U+064A (ي) may seem similar to
U+06CC(ی), though they are considered
different characters in Pashto.

Table 2: Confusable Characters in Arabic Script2

Characters Unicode Forms Remarks

 i) U+06A9 ڪ، ك،ک
ii) U+0643
iii) U+06AA

i) اک ,,ک لکل ,, کٹ ,, ,,
ii) اك ,ك لكل ,, ,,,, ك ٹ
iii) لڪل ,ڪ ,ڪ ڪٹ ,

U+06A9 and U+06AA
look shape variants in
Urdu and Arabic, but
for Sindhi these are
separate characters

ى ، ی ، i) U+06CC ي ، ۍ
ii) U+0649
iii) U+06CD
iv) U+064A

i) عی ,ی لیم , ییل ,
ii) ى ,ى
iii) ۍ
iv) عي ,ي ليم , يل ,

U+06CC has similar
shape to U+0649 in
Urdu and U+06CD.
However they are
they are considered
different in Pashto.

أ ، i) U+0623 ٲ
ii)U+0672

i) أ
ii) ٲ

U+0623 of Arabic and
U+0672 of Balochi
and Kashmiri, both
have similar shapes

ٳ ، إ i) U+0625
ii) U+0673

i) إ
ii) ٳ

U+0623 of Arabic and
U+0672 of Baluchi
and Kashmiri, both
have similar shapes

2 This list may be further expanded based on different languages.

2.2.3. Characters with different
shape, confusable within
some language

Some characters have different shapes, but
still are confusable for a language. It is
because these shapes are considered
variant shapes of the same character
instead of two different characters in that
language. For example U+06D2 (ے) and
U+064A (ي) are confusable for Arabic
speakers even though their shapes are not
similar or same in any context. This list has
to be developed for each language.

2.3. Characters with Composed and

Decomposed Forms
Unicode encodes some characters, which
have a mark with them, in two forms: (i)
composed single form is assigned a
Unicode, e.g. U+0622 (آ), and (ii) the parts
of the same letter are also encoded,
assigned distinct codes U+0627 (ا) and
U+0653 (ٓ) and can be composed to form
the same character. Thus, the same letter
can be formed in two ways in an IDN,
causing potential phising problems. These
multiple representations of same characters
are to be normalized in the IDN process,
before punycode is generated. However,
there are also some cases which are not
defined through the Unicode process and
will need to be explicitly addressed. The
normalizations required are shown in Table
3 below.

Table 3: Normalization for Arabic Script

Composed Form Decomposed Form
U+0622 (آ) U+0627 (ا) + U+0653
U+0623 (أ) U+0627 (ا) + U+0654
U+0624 (ؤ) U+0648 (و) + U+0653
U+0625 (إ) U+0627 (ا) + U+0655
U+0626 (ئ) U+064A (ي) + U+0654
U+0675 (ٵ) U+0627 (ا) + U+0674
U+0676 (ٶ) U+0648 (و) + U+0674
U+0677 (ٶ) U+06C7 (و) + U+0674
U+0678 (ٸ) U+064A (ي) +U+0674
U+06C0 (ۀ) U+06D5 (ە) + U+0654
U+06C2 (ۂ) U+06C1 (ہ) + U+0654

U+06D3 (ۓ) U+06D2 (ے) + U+0654
U+0681 (ځ) U+062D (ح) + U+0654 ()ٔ

2.4. Requirement of Space between

Words for Readability
Arabic script is cursive in nature with context
dependent shaping. The users normally
require a space character between words to
get correct shaping of characters and thus to
make the words readable. Without space,
the words will not be readable or may be
confused with other words. However, space
is not allowed in LDH scheme for the DNS.
Thus, it cannot be processed as part of the
punycode generation process. Thus,
alternate ZERO WIDTH NON JOINER
(ZWNJ, U+200C) could be employed to
have correct shape of many words.
However, ZWNJ is not a visible character
and thus cannot be freely allowed as it may
not be detected after non-joining characters
(which do not join with next character).
Thus, ZWNJ in allowed in IDN200X with
CONTEXTJ status, which require context
rules to determine valid use of ZWNJ. If
ZWNJ is used without proper context rule, it
may not be visible to user and create
security issues.

2.5. Multiple Label Separators
DNS servers only recognize U+002E
commonly called period or full stop as
delimiter between different levels of the
address, e.g. www.crulp.org. However many
languages do not use a dot and have their
own separators, for example Urdu uses a
hyphen-like mark (U+06D4) to mark
boundaries. Thus, requirement of dot to
separate labels also causes issues in writing
IDNs for such languages.

3. Proposed IDN Solution for

Arabic Script
The discussion above indicates that the
problems with IDNs need to be addressed at
four distinct levels: Protocol Layer, Script
Layer, Language Layer and Application
Layer, as shown in Figure 1.

Internationalized domain names

Interface Layer

Protocol Layer

Language Layer Script Layer

 Unicode Characters

Figure 1: Filtering Layers for Arabic

Script Domain Name

When characters are being investigated as
being valid part of the IDNs for Arabic script,
all characters to be processed must be valid
in the protocol (PVALID). This is determined
through this lowest level filter, being referred
to as the Protocol Layer, or the IDN200X
standard. This layer addresses the basic
inclusion or exclusion of characters within
Arabic script. At this level, the decision has
to be as liberal as possible for letters and
digits (if LDH principle is extended across
scripts), but needs to be strict for
punctuation and other symbols which are
not needed to typically write the languages.
The deviations from the current protocol
decisions in Appendix A are listed in Section
2.1 above. As these changes are
exceptions to the algorithmically generated
solution, they need to be part of an
exception list to override regular behavior
within this layer.

The protocol layer still allows confusable
characters, as discussed. This confusability
is at two levels: the characters are
sometimes confusable at script level having
exactly same shape in certain contexts, or
they are confusable for some particular
language even if they do not have exactly
the same shape. This has been discussed
in more detail in Section 2.2. Thus, though
the DNS allows these characters through
the protocol, the registries have to decide
how to limit confusable characters
depending on how many languages they
want to support. For generic top level
domains (gTLDs), which would perhaps
support multiple languages, script level

decision has to be implemented. For
country code top level domains (ccTLDs),
which would support a more limited set of
languages, language based decisions need
to be taken. Thus, different filters (or tables)
need to be developed for further limiting the
set of characters allowed by the protocol,
through a Script Layer or a Language Layer
to avoid confusable characters to eventually
prevent phishing and thus make the Arabic
IDNs secure.

In addition to limiting characters to
unambiguously meet the needs of language,
a further layer needs to be added to enable
the use IDNs in a user-friendly manner.
This layer would also hide the limitations or
the complications of IDNs caused by
character encoding issues not already
addressed. This Interface Layer would
address the normalization related issues
discussed in Section 2.3, enable use of
space (or ZWNJ) discussed in Section 2.4
and allow other separators discussed in
Section 2.5. This layer will take more
“natural” input from the user’s perspective,
and map it onto a more protocol-sensitive
form.

These layers need to be deployed at
multiple points, including the application,
registry and the DNS.

There is a trade-off between domain name
space and its security. Developing
language filters (for language and script
layers) will limit the amount of domain
names available in different languages and
Arabic script. However, this limitation will
also ensure that the Arabic domains provide
a secure space for its users. If domain
filters are not provided, phishing can
possible occur. Also, as pointed out by
ASWIG (archives available at
http://lists.irnic.ir/mailman/listinfo/idna-
arabicscript), limiting domain name space
also gives the user an impression of broken
internet if registries register just the
requested domain name and block the other
confusable names. This may be controlled
by bundling multiple possibilities of the
domain names. However, such policies are
to be eventually devised by the registries, as
they influence the pricing models.

http://lists.irnic.ir/mailman/listinfo/idna-arabicscript
http://lists.irnic.ir/mailman/listinfo/idna-arabicscript

4. Conclusions
This is an initial effort for defining a possible
and secure solution for implementing Arabic
script IDNs based on the protocol revisions
being undertaken. The paper defines an
overall framework, however language and
script tables still need to be defined for
various contexts. The script table is already
being developed by ASWIG, an international
committee of volunteers. However,
language tables need to be defined by the
language communities and the territories
implementing the language-based IDNs.
Efforts in that context are already underway
for many languages and countries, e.g. for
Arabic script domain names within the
Arabic speaking countries, Persian for Iran,
and Pakistani languages for Pakistan. Much
more work needs to be done to finalize
these tables for eventual deployment of
IDNs. Work also needs to be done to
incorporate the requirements at the Interface
layer within end-user applications, e.g. the
web browsers. However, the
recommendations for different languages
need to be finalized before application
developers can implement them.

Much more work needs to be done to
provide user-friendly and secure IDNs.

5. References
[1] D. Butt, “Internationalized Domain
Names,” http://www.apdip.net/apdipenote
/9.pdf, APDIP.net, 2006.

[2] P. Hoffman, and M. Blanchet,
“Preparation of Internationalized Strings
("stringprep")” http://www.rfc-editor.org/rfc/
rfc3454.txt, 2002.
[3] P. Faltstrom, P. Hoffman, and A.
Costello, “Internationalizing Domain Names
in Applications (IDNA),” http://www.rfc-
editor.org/rfc/rfc3490.txt, 2003.
[4] P. Hoffman,M. B. Viagenie, "Nameprep:
A Stringprep Profile for Internationalized
Domain Names (IDN)” http://www.rfc-
editor.org/rfc/rfc3491.txt, 2003.
[5] A. Costello, “Punycode: A Bootstring
encoding of Unicode for Internationalized
Domain Names in Applications (IDNA),”
http://www.rfc-editor.org/rfc/rfc3492.txt,
2003.
[6] J. Klensin, P. Faltstrom, “Review and
Recommendations for Internationalized
Domain Names (IDNs)”,
http://www.ietf.org/rfc/rfc4690.txt, 2006.

[7] IDNABIS discussions available at
http://stupid.domain.name/idnabis/.
 [8] Hussain, Sarmad Durrani, Nadir , “Urdu
Domain Names”, IEEE Multitopic
Conference INMIC '06, 2006.
[9] P. Faltstrom, Ed., “The Unicode
Codepoints and IDNA: draft-faltstrom-
idnabis-tables-05.txt”, available through
http://stupid.domain.name/idnabis/. Feb.
2008.

Appendix A: Decision for Arabic
Script Block in Unicode (0600-06FF,
0750-077F) [9]

0600..0603 ; CONTEXTO
0604..060A ; UNASSIGNED
060B..060F ; DISALLOWED
0610..0615 ; PVALID
0616..061A ; UNASSIGNED
061B ; DISALLOWED
061C..061D ; UNASSIGNED
061E..061F ; DISALLOWED
0620 ; UNASSIGNED
0621..063A ; PVALID
063B..063F ; UNASSIGNED
0640..065E ; PVALID

065F ; UNASSIGNED
0660..0669 ; PVALID
066A..066D ; DISALLOWED
066E..0674 ; PVALID
0675..0678 ; DISALLOWED
0679..06D3 ; PVALID
06D4 ; DISALLOWED
06D5..06DC ; PVALID
06DD ; CONTEXTO
06DE ; DISALLOWED
06DF..06E8 ; PVALID
06E9 ; DISALLOWED

06EA..06FC ; PVALID
06FD..06FE ; DISALLOWED
06FF ; PVALID

0750..076D ; PVALID
076E..077F ; UNASSIGNED

http://www.apdip.net/apdipenote
http://www.rfc-editor.org/rfc/
http://www.ietf.org/rfc/rfc4690.txt
http://stupid.domain.name/idnabis/
http://stupid.domain.name/ietf/draft-faltstrom-idnabis-tables-05.txt
http://stupid.domain.name/ietf/draft-faltstrom-idnabis-tables-05.txt
http://stupid.domain.name/idnabis/

	[7] IDNABIS discussions available at http://stupid.domain.n

