
Proceedings of the Conference on Language & Technology 2009 

 
Semi-Automatic Lexical Functional Grammar Development 

 
 

Umer Khalid, Nayyara Karamat, Shahid Iqbal and Sarmad Hussain 
Center for Research in Urdu Language Processing,  

National University of Computer and Emerging Sciences, Lahore, Pakistan 
{umer.khalid, nayyara.karamat, shahid.iqbal, sarmad.hussain}@nu.edu.pk 

 
 

Abstract 
 
We are presenting a semi-automatic Lexical 

Functional Grammar (LFG) development system. The 
context free grammar (CFG) is extracted 
automatically from the given parse tree and then the f-
description is added to it using manually developed 
meta rules to form LFG. Regular expressions are used 
to define generic meta rules. This annotation system 
may be used potentially in any LFG parsing model for 
Machine Translation System. 
 
1. Introduction 
 

In this paper we are discussing a semi-automatic 
approach for developing Lexical Functional Grammar 
(LFG) [1, 6, 9] for English. The grammar is being 
used in an LFG based English to Urdu machine 
translation system. 

In the traditional approach a manually developed 
grammar of the language is used in the parser. 
Grammar development for any language requires time 
and effort involving linguistic expertise [2]. F-
description annotation adds more complexity to 
grammar development in case of lexical functional 
grammar. Furthermore, as the grammar rules increase, 
to improve the coverage of the language, 
computational effort for parsing increases affecting the 
efficiency of the system.  

To overcome these issues faced with earlier 
system, a hybrid approach is developed by combining 
automatic grammar extraction and semi automatic 
annotation of CFG to build equivalent LFG. In this 
paper, we describe the annotation system used for 
semi automatic annotation of CFG to convert it to 
LFG. 

Section 2 describes the related research. In 
Section 3 architecture of the system and syntax of the 
rules used in the system are described. Section 4 
presents the experimental results and Section 5 
discusses different issues faced during the system 

development and finally Section 6 concludes the 
paper. 
 
2. Literature review 
 

Lexical Functional Grammar (LFG) is a 
unification-based linguistic formalism which is 
suitable for computational purposes. LFG uses 
different structures for representing different levels of 
linguistic information in a sentence, for example, 
constituent structure (c-structure) and functional 
structure (f-structure) [10]. Context free grammar 
(CFG) is used to represent c-structure, whereas 
additional annotation called f-description is used to 
represent f-structure.  

A treebank can be used to automatically extract 
the CFG grammar of a language [12]. This CFG can 
be annotated with f-description to obtain LFG. As 
reported by Sadler et al [14] it is shown in the previous 
work [1, 11, 13] that for configurational languages like 
English it is possible to define high level 
correspondence rules between c-structure and f-
structure. 

Van Genabith et al. [15, 16, 17] suggested a 
technique of creating F-structure annotated corpus by 
first extracting CFG rules from a tree bank, manually 
annotating these rule with f-descriptions and then 
reparsing the treebank corpus with the annotated 
grammar creating f-structures for the whole treebank. 
This idea was further enhanced by Sadler et al. [14], 
Frank [7] and Frank et al [8] by proposing automatic 
techniques for the annotation of CFG rules. 

Sadler et al. [14] proposed a technique to 
automate the annotation process using the meta rules 
based on regular expressions. This is a semi-automatic 
technique in which manually developed meta rules are 
used to automatically annotate the CFG rules with f-
descriptions. The rule format followed is stated below. 
(1)  Rule Format Proposed by Sadler et al [14] 
          Lhs > Rhs @ Anno 

Lhs and Rhs are regular expressions which are to 
be matched with the grammar rule to apply the 

 8



Proceedings of the Conference on Language & Technology 2009 

@Anno f-description on it. These meta rules capture 
linguistic generalizations and multiple meta rules can 
be applied on a grammar rule to completely annotate 
it. 93.38 % precision and 91.58 % recall is reported for 
Sadler et al.’s [14] approach. 

In a companion paper, Frank [7] discusses a 
different automatic annotation approach which is 
correspondence based in contrast with Sadler’s rule 
based approach. Direct correspondence rules are 
applied to the tree structure instead of phrase structure 
rules which generate f-structure without doing 
reparsing which is required in Sadler’s approach.   

Cahill et al. [2, 3, 4] present an algorithmic 
approach for annotation. Cahill et al. [2] discusses two 
parsing architectures using this approach, pipeline 
model and integrated model. In pipeline model, 
Probabilistic Context Free Grammar (PCFG) is 
extracted from the treebank and is used to parse the 
sentence. The most probable parse tree is, then, 
annotated with f-descriptions to form LFG 
representation. These f-descriptions are then solved 
using a constraint solver to generate an f-structure. In 
this approach, only sentence specific CFG rules are 
annotated. In contrast, in integrated model, the whole 
treebank is first annotated with f-descriptions and an 
annotated probabilistic grammar A-PCFG is extracted 
from it. This A-PCFG can then be used to parse text 
and generate f-structures along with CFG trees (c-
structure). 
 
3. Annotation system 
 

The annotation system uses regular expression 
technique proposed by Sadler et al. [14] for 
annotation. Pipeline model suggested by Cahill et al. 
[2] is followed in parsing. Probabilistic model of 
Collins [5] is used to generate most probable parse 
tree.  

 
 

 
Architecture of our annotation system can be divided 
into four components, namely grammar extractor, rule 
selector, rule resolver and LFG generator. Figure 1 
shows the components. 

Grammar Extractor is used to extract CFG 
grammar from the tree generated by Collins [5] parser. 
Appropriate meta rules are selected for each grammar 
rule using Rule Selector module. One grammar rule 
may be annotated using a combination of appropriate 
rules. This combination is determined by Rule 
Resolver. Once meta rules for all the grammar rules 
are decided, LFG Generator annotates the grammar 
rules with f-descriptions according to meta rules and 
outputs LFG against the tree. A sample tree and its 
corresponding generated grammar is given in 
Appendix A. Section 3.1 describes syntax for meta 
rules used in the system. Then Section 3.2, Section 
3.3, Section 3.4 and Section 3.5 describe the 
components of the system. 
  
3.1. Meta rules 
 

Structure followed for meta rules is largely same 
as in Sadler et al [14]. One difference in the main 
structure is that annotation (Anno) part is subdivided 
into two parts. The new structure is given below. 
 
(2) Rule Format of our system 
 
           Lhs  Rhs @ Anno1 (@ Anno2) 
 

@Anno1 is same as that of Sadler’s technique but 
the @Anno2 is added to define f-descriptions which 
does not involve variable at their right hand side. This 
part is optional.  

Regular expression operators Kleene star * 
(without argument), optional (…), and disjunction | are 
allowed at Rhs of the meta rules.                                             Parse Tre

Symbols in Lhs and Rhs consist of two parts 
separated by ‘:’, e.g. NP:n1. First part is the CFG 
symbol which should be present in the CFG rule 
whereas second part denotes a variable to which an f-
structure will be associated.  

e 

Syntax of annotation rules is given in Appendix 
B. Following are some sample meta rules. 
 
(3)  VP:vp >   *   MD:m1   *    [VP-A:v1|VP:v1]    *  
                         @[vp:^===m1,vp:^===v1].  
 
(4)  S:s > * NP-A:n1 * VP:v1 *  

@ [v1:SUBJ===n1,s:^===v1]  
@ [v1:^CLAUSE_TYPE=DECLARATIVE] . 

 
(5)  NPB:npb  >  *    (JJ:j1)      NN:n1      * 

Corresponding LFG 

Annotation System 
 Grammar Extractor  

Rule Selector Meta 
Rules 

Rule Resolver  

LFG Generator 

Figure 1: Architecture of annotation 
system 

 9



Proceedings of the Conference on Language & Technology 2009 

                     @ [npb:^===n1, n1:ADJUNCT ADJ===j1].  
 
(6)  NPB:npb  >  *  JJ:j1   [NN:n1 |  NNS:n1]   * 
            @   [npb:^===n1, n1:ADJUNCT ADJ===j1].  
 
(7) PP:pp >   ?   S-A:s1    @ [pp:^COMP===s1]. 
 

Meta rules are developed by manually observing 
the parse trees of Penn Treebank II. First 100 parse 
trees were analyzed to develop 225 meta rules.  

One meta rule can be applied multiple times on a 
grammar rule. Multiple rules may be applied in 
combination to annotate a single grammar rule. There 
is a possibility of multiple valid meta rules or rule 
combinations which can be applied on a grammar rule. 
In such cases, Rule Resolver module explained in 
Section 3.4 chooses one of the valid combinations. 
Currently, it arbitrarily picks one of the valid options.  

It was observed that for some Treebank phrases, 
there can be similar meta rules. For example following 
rule is equally applicable to NP, NP-A and NPB.  
 
(8) NP, NP-A, NPB:np > * PP:p1 * @ [np:^ 
ADJUNCT PREP$===p1] . 
 

In such cases, all the possible Lhs symbols of 
grammar rules are written at Lhs of meta rule in the 
form of comma separated list. This way, rule writer 
need not duplicate these rules for each phrase. During 
processing, these rules are expanded to individual 
rules. 
 
3.2. Grammar extractor 
 

The Grammar Extraction module takes the 
normalized output of the of Collins parser [5] and 
extracts the context free grammar rules from the parse 
tree. Following is the example of a parse tree and the 
extracted grammar for the sentence “he ate apples with 
me. 
  
(9)  Output of Collin’s Parser 
 
  (S~ate~2~2  
                  (NP-A~he~1~1  
                            (NPB~he~1~1 he/PRP ) )  
                   (VP~ate~3~1  
                              ate/VBD  
                              (NP-A~apples~1~1  
                                            (NPB~apples~1~1         
                                                       apples/NNS ) )   
                               (PP~with~2~1  
                                             with/IN  
                                             (NP-A~me~1~1  
                                             (NPB~me~1~1  
                                                               me/PRP ) ) ) ) )  

(10) Derived CFG Rules 
 
1)        S    NP-A     VP 
2)        NP-A    NPB 
3)        NPB    prp 
4)        VP    vbd    NP-A     PP 
5)        NP-A    NPB 
6)        NPB    nns 
7)        PP    in    NP-A 
8)        NP-A    NPB 
9)        NPB    prp 
 

In the above grammar, there are multiple rules for 
same non-terminal. This causes extra processing 
during tree analysis for f-structure generation due to 
possible ambiguity. This problem is solved by 
appending a unique number to each non-terminal as 
shown in (11).  
 
(11) Unambiguous CFG Rules 
 
1)        S0    NP-A-1     VP-2 
2)        NP-A-1    NPB-3 
3)        NPB-3    prp 
4)        VP-2    vbd    NP-A-4     PP-5 
5)        NP-A-4    NPB-6 
6)        NPB-6    nns 
7)        PP-5    in    NP-A-7 
8)        NP-A-7    NPB-8 
9)        NPB-8    prp 
 
 
3.3. Rule selector 
 

Rule selector chooses applicable meta rules for 
each grammar rule extracted from the tree on the basis 
of valid regular expression matching of Rhs. The 
generic process for rule selection is as follows.  
 
For each CFG rule 
 
     For each meta rule whose LHS = CFG rule’s LHS 
 
           If (meta rule’s RHS matches CFG rule’s RHS) 
 

   Add meta rule in the list attached with  
   CFG rule 

 
While attaching the meta rule with the CFG rule, 

it aligns the f-descriptions provided by meta rule with 
their respective non-terminals of CFG rule. 

The worst case time for annotating ‘g’ grammar 
rules with ‘n’ meta rules is O (g*n*w) where ‘w’ is 
maximum number of symbols in the CFG rules which 
is about four symbols on average. 
 
3.4. Rule resolver 

 10



Proceedings of the Conference on Language & Technology 2009 

 
Once meta rules are selected for each CFG rule, it 

is quite possible that more than one meta rules are 
selected for a single CFG rule. Therefore, we need to 
find the most suitable set of f-descriptions to annotate 
the corresponding CFG rule. The idea is to merge the 
non-clashing f-descriptions to completely annotate the 
grammar rule. The clash is determined on the basis 
that only one meta rule can add f-description to 
particular non-terminal of Rhs. When two or more 
meta rules are being combined, they are contributing 
to different non-terminals of the rule. If two meta rules 
contain the f-description for the same non-terminal, it 
should be the same to merge these two rules.  

The following example describes the above 
mentioned solution. 

Assume an abstract grammar rule is: 
S →  WP  XP  YP ZP 
 

Suppose that there are four meta rules a, b, c and 
d which match with CFG rule given above. The capital 
letters signify the f-descriptions which the respective 
rule attaches with the particular non-terminal.  
 
S →  WP  XP  YP ZP 
(a) A B 
(b)  C D E 
(c) A C  E 
(d) A  D E 
 

Meta rule ‘a’ annotates first two symbols of the 
CFG rule (WP, XP). Rule ‘b’ annotates second, third 
and fourth symbol. Meta rule ‘c’ covers first, second 
and fourth symbol. Lastly, meta rule ‘d’ covers first, 
third and fourth symbol of the CFG rule. 

Rule ‘a’ can only be merged with rule ‘d’ as it 
clashes with rules ‘b’ and ‘c’ second non-terminal. 
Rule ‘a’ and ‘d’ combined can annotate the rule as 
follows.  
 
S →  WP  XP  YP ZP 
1)             A            B            D           E 
 

Another possible combination is rule ‘b’ and ‘c’ 
with the following result.  
 
S →  WP  XP  YP ZP 
2)             A            C            D           E 
 

A group of meta rules which provides maximum 
coverage (annotates maximum terminals / non-
terminals) is selected. In case there exist more than 
one meta rules providing maximum coverage (as in 
example above) any of the meta rule combination is 

selected arbitrarily to annotate the CFG rule at this 
time. 
 
3.5. LFG generator 
 

LFG generator outputs the formal LFG syntax 
based on the rules resolved by rule resolver that can be 
parsed using an LFG parser to generate f-structure. 

LFG parser requires completely annotated rules to 
build f-structure whereas it is possible in the 
annotation process mentioned in sections above that 
there are still some symbols left unannotated in the 
CFG rules. Such symbols are annotated as ADJUNCT 
taking the assumption that there is more chance for an 
unknown new element to be an ADJUNCT. Similar 
approach is followed as by Cahill et al [4].  
 
4. Experimental results 
 

In this section, we discuss the results for 
automatically applying the meta rules on CFG. 
 
4.1 Test data 
 

Total 103 test sentences were selected from the 
news websites (BBC, CNN and THENEWS) with 
average length of 20 words. Total of 363 CFG rules 
were used in the analysis of these sentences according 
to Collin’s [5] parser analysis. Among these rules 333 
were non singletons (having multiple symbols at Rhs) 
and 30 were singletons (having single symbol at Rhs) 
 
4.2 Meta rules and annotation evaluation 
 

Only non-singleton rules are taken into 
consideration during evaluation because singletons are 
always annotated as root (↑ = ↓) and there is no chance 
of incorrect annotation in them. The grammar rules are 
manually inspected for correctness and it was 
observed that among 333 unique non singletons 21 
were annotated incorrect which gives correct rule 
percentage of 93.69%.  
 

Correct annotation 312 
Incorrect annotation 21 
% Correct 93.69% 

 
It is noted that correctly annotated rules are far 

more frequent than incorrectly annotated rules. All the 
incorrect rules only occurred once in test sentences 
whereas frequency of correct rules was about five on 
the average. Total of 1485 instances of non singleton 
rules were annotated in which only 21 were found 

 11



Proceedings of the Conference on Language & Technology 2009 

erroneous. This way the system makes correct 
annotation 98.58% of the times. 
 
 
 

Correct rule instances 1485 
Incorrect rule instances 21 
% Correct 98.58% 

 
This paper has reported precision as the total 

number of correct annotations given the total 
annotations our system made. Sadler has reported 
93.38% precision of the system. The precision this 
paper reports is 93.69, which appears almost equal to 
that of Sadler. 
 
5. Discussion 
 

Pipeline model proposed by Cahill et al. [2] is 
used by the system because it took less development 
time and effort. An already existing PCFG model 
developed by Collins [5] was used for the first phase 
of CFG parsing and then annotation was done on the 
most probable tree generated by the model. The meta 
rules developed for the system are equally applicable 
to the integrated model of Cahill et al. [2] so the 
system can be modified to use an integrated model in 
future. 

Reason for 7 wrong annotations was incorrect 
parse tree generated by the parser. Such incorrect 
grammar rules were not handled in the meta rules. 
Such rules can be added to the system if they do not 
clash with already existing correct rules. For example, 
the phrase “Armed with knowledge” is expected to be 
parsed as in (12). 
 
(12) Correct parse of “Armed with knowledge” 
(NPB Armed/VBN  
     (PP-A  with/IN  
          (NP-A  
              (NPB knowledge/NN) ) ) ) 
 

But the parser parsed it the following way 
creating wrong CFG rule which was not handled in 
meta rules. 
 
(13) Incorrect parse of “Armed with knowledge” 
(PP Armed/VBN  
     (PP-A  with/IN  
          (NP-A  
              (NPB knowledge/NN) ) ) ) 
 

There were 12 meta rules which were found 
missing during testing that caused wrong annotation. 

Such rules will be added to the system in the next 
enhancement for increasing the accuracy of the 
system. There is a chance of occurrence of more such 
rules as the data observed to develop meta rules is 
very limited.  

One problem encountered is incorrect 
identification of SUBJ/OBJ in case of wh sentences.  
 
(14)               “what is your name” 
(TOP   
    (SBARQ   
        (WHNP  what/WP )  
        (SQ   
              (VP  is/VBZ  
                  (NP-A  
                       (NPB  your/PRPS name/NN ) ) ) ) ) ) 
 
 
(15)                    “what is he doing” 
(TOP   
    (SBARQ   
         (WHNP  what/WP )  
         (SQ   

is/VBZ  
             (NP   
                    (NPB  he/PRP ) )  
             (VP  doing/VBG ) ) ) ) 
 

In sentence (14) “what” is the subject of the 
sentence whereas in (15) “what” is acting as object of 
the sentence. But we can not detect it correctly 
because of the use of the same CFG rule “SBARQ   
WHNP   SQ” in both sentences. 

Currently, in case of multiple applicable meta 
rules, one set of rules with maximum coverage is 
selected arbitrarily. Such a selection may result in 
wrong analysis in some cases. Some probabilistic 
model can be added to the system for more accurate 
selection of rules. Only one occurrence of such wrong 
selection is observed during testing among 21 wrong 
annotations. 

The system is using a subset of regular expression 
operators. Kleene star ‘*’ with argument, positive 
Kleene ‘+’, optionality ‘?’ and complement ‘~’ are the 
operators which are not used in rule writing.  

Comparing with Cahill [2], long distance 
dependencies of traces are not intentionally used. 
Traces and wh-movements are traced in the lower 
hierarchies of the tree which is not yet handled in this 
paper. The paper follows most of the Sadler’s work 
which is not exactly meant to cover the traces of 
movements in depth of tree. However, Frank [7] has 
somehow presented the idea to resolve these depth 
dependencies. 

 12



Proceedings of the Conference on Language & Technology 2009 

6. Conclusion 
 

In this paper, we have discussed an automatic 
LFG development methodology. A set of meta rules is 
developed by manually inspecting the trees of Penn 
Treebank. These meta rules are applied automatically 
on CFG rules to annotate with f-description. Results 
are very encouraging which proves that a small set of 
meta rules can be developed to annotate a complex 
CFG with f-structure information. The system is 
presently being further matured by further testing and 
addition of meta-rules and is being integrated within 
the existing MT system. 
 
7. References 
 
[1] J. Bresnan, Lexical Functional Syntax. Blackwells 
Publishers, Oxford, 2001. 
 
[2] A. Cahill, McCarthy M., van Genabith J. and Way A. , 
“Parsing with PCFGs and Automatic F-Structure 
Annotation”, in proceedings of the Seventh International 
Conference on LFG, pp.76-95,CSLI Publications, Stanford, 
CA., 2002a.  
 
[3] A. Cahill, McCarthy M., van Genabith J. and Way A., 
“Automatic Annotation of the Penn-Treebank with LFG F-
Structure Information”, in Proceedings of the LREC 
Workshop on Linguistic Knowledge Acquisition and 
Representation: Bootstrapping Annotated Language Data, 
pages 8-15, Las Palmas, Canary Islands, Spain., 2002b. 
 
[4] A. Cahill, McCarthy M., van Genabith J. and Way A., 
“Evaluating Automatic F-Structure Annotation for the Penn 
II Treebank”, in Proceedings of the Treebanks and 
Linguistic Theories (TLT’02) Workshop, Sozopol. Bulgaria, 
2002b. 
 
[5] M. Collins, Head-Driven Statistical Models for Natural 
Language Parsing. PhD Dissertation, University of 
Pennsylvania, 1999. 
 
[6] M. Dalrymple , Lexical Functional Grammar. San 
Diego, Calif. London, Academic Press, 2001. 
 
[7] A. Frank , “Automatic F-Structure Annotation of 
Treebank Trees” in M. Butt and T.H. King editors, 
proceedings of the LFG00 Conference, University of 
California at Berkeley, CSLI Online Publications, Stanford, 
2000. 
 
[8] A.  Frank., Sadler L., van Genabith J. and Way A. , 
“From Treebank Resources to LFG F-Structures” in 
(ed.)Anne Abeille, Treebanks: Building and Using 
Syntactically Annotated Corpora, pp:367-389, Kluwer 
Academic Publishers, The Netherlands, 2002. 
 
[9] R. Kaplan, Bresnan J. , “Lexical Functional Grammar: a 
formal system for grammatical representation”  in Bresnan, 

J. editor 1982, The Mental representation of Grammatical 
Relations, MIT Press, Cambridge Mass. , 1982, pp: 173-281. 
 
[10] R. Kaplan M., Netter K., Wedekind J. & Zaenen, A. , 
“Translation by structural correspondences”, in Proceedings 
of the 4th Conference of the European Chapter of the 
Association for Computational Linguistics, UMIST, 
Manchester, 10-12 April 1989, pp. 272-281 ,Association for 
Computational Linguistics, New Brunswick, NJ, , 1989. 
 
[11] T. H. King, , Configuring Topic and Focus in Russian. 
Stanford: CSLI Publications, 1995. 
 
[12] A. Kinyon, Prolo Carlos A. , “A classification of 
grammar development strategies”, in proceedings of 
COLING-02 on Grammar engineering and evaluation, p.1-
7, , 2002. 
 
[13] P. Kroeger, , Phrase Structure and Grammatical 
Relations in Tagalog. Stanford: CSLI, 1995. 
 
[14] L. Sadler, Genabith J. and Way A. , “Automatic F-
Structure Annotation from the AP Treebank”, in proceeding 
of the Fifth International Conference on Lexical-Functional 
Grammar, The University of California at Berkeley, CSLI 
Publications, Stanford, CA, 2000. 
 
[15] J. van Genabith,  Sadler L., and Way A. , “Data-Driven 
Compilation of LFG Semantic Forms” in EACL’99 
Workshop on Linguistically Interpreted Corpora (LINC-99), 
pp: 69-76, Bergen, Norway, June 12th, 1999a. 
 
[16] J. van Genabith, , Sadler L., and Way A. , “Structure 
Preserving CF-PSG Compaction, LFG and Treebanks” in 
Proceedings ATALA Workshop - Treebanks, Journ´ees 
ATALA, Corpus annot´es pour la syntaxe, pp: 107-114 , 
Universite Paris 7, France, 18-19 Juin 1999, , 1999b 
 
[17] J. van Genabith, , Way A., and Sadler L. , “Semi-
Automatic Generation of F-Structures from Tree Banks” in 
M. Butt and T. King (Eds.), Proceedings of the LFG99 
Conference, Manchester University, 19-21 July, CSLI 
Online Publications, Stanford, CA, 1999c. 
 
Appendix A: Sample Tree and 
Corresponding LFG Generated by the System 
 
“He said the tests confirmed Tehran had missiles with 
a limited range of up to 2,000km” 
 
Input Parse Tree: 
 
 (TOP~said~1~1  
    (S~said~2~2  
      (NP-A~He~1~1  
        (NPB~He~1~1 He/PRP ) )  
      (VP~said~2~1 said/VBD  
        (SBAR-A~confirmed~1~1  
          (S-A~confirmed~2~2  

 13



Proceedings of the Conference on Language & Technology 2009 

            (NP-A~tests~1~1  
              (NPB~tests~2~2 the/DT tests/NNS ) )  
            (VP~confirmed~2~1 confirmed/VBD  
              (SBAR-A~had~1~1  
                (S-A~had~2~2  
                  (NP-A~Tehran~1~1  
                    (NPB~Tehran~1~1 Tehran/NNP ) )  
                  (VP~had~3~1 had/VBD  
                    (NP-A~missiles~1~1  
                      (NPB~missiles~1~1 missiles/NNS ) )  
                    (PP~with~2~1 with/IN  
                      (NP-A~range~2~1  
                        (NPB~range~3~3 a/DT limited/VBN 
range/NN )  
                        (PP~of~2~1 of/IN  
                          (PP-A~up~2~1 up/IN  
                            (PP-A~to~2~1 to/TO  
                              (NP-A~000km~2~1  
                                (NPB~000km~2~2 2/CD 
000km/CD ) ) ) ) ) ) ) ) ) ) ) ) 
 
LFG generated: 
 
NPB_556 ->  cd:!$^  ; cd:!$^  ; . 
NP_A_541 ->  NPB_556:^ = ! ; PRN_589:!$^ 
ADJUNCT PRN ; . 
PP_A_517 ->  to:^ = ! ; NP_A_541:^ OBJ = ! ; . 
PP_A_496 ->  in:^ = !; PP_A_517:^ OBJ = ! ; . 
PP_475 ->  in:^ = ! ; PP_A_496:^ ADJUNCT PREP = 
! ; . 
NPB_430 ->  dt:!$^ SPEC DET ; vbn:!$^ ADJUNCT 
PARTICIPLE ; nn:^ = ! ; . 
NP_A_415 ->  NPB_430:^ = ! ; PP_475:!$^ 
ADJUNCT PREP ; . 
PP_389 ->  in:^ = ! ; NP_A_415:^ OBJ = ! ; . 
NPB_357 ->  nns:^ = ! ; . 
NP_A_339 ->  NPB_357:^ = ! ; . 
VP_310 ->  vbd:^ = ! ; NP_A_339:^ OBJ = ! ; 
PP_389:!$^ ADJUNCT PREP ; . 
NPB_281 ->  nnp:^ = ! ; . 
NP_A_265 ->  NPB_281:^ = ! ; . 
S_A_248 ->  NP_A_265:^ SUBJ = ! ; VP_310:^ = ! , 
^CLAUSE_TYPE=DECLARATIVE ; . 
SBAR_A_235 ->  S_A_248:^ = ! ; . 
VP_203 ->  vbd:^ = ! ; SBAR_A_235:!$^ COMP ; . 
NPB_160 ->  dt:!$^ SPEC DET ; nns:^ = ! ; . 
NP_A_145 ->  NPB_160:^ = ! ; . 
S_A_129 ->  NP_A_145:^ SUBJ = ! ; VP_203:^ = ! , 
^CLAUSE_TYPE=DECLARATIVE ; . 
SBAR_A_110 ->  S_A_129:^ = ! ; . 
VP_77 ->  vbd:^ = ! ; SBAR_A_110:!$^ COMP ; . 
NPB_51 ->  prp:^ = ! ; . 
NP_A_39 ->  NPB_51:^ = ! ; . 
S_26 ->  NP_A_39:^ SUBJ = ! ; VP_77:^ = ! , 
^CLAUSE_TYPE=DECLARATIVE ; . 

S' ->  S_26:^ = ! ; . 
 
Appendix B  
 
Syntax of Annotation Rules 
 
Lhs  Rhs ‘@’ Anno1 ( ‘@’ Anno2) 
 
Lhs -> Symbols ’:’ f_var 
Symbols -> CFGSymbol | Symbols ’,’ CFGSymbol 
 
Rhs -> ’*’ | ’(’ Rhs ’)’ | RhsStatement 
 
Rhs -> Rhs Rhs 
 
Rhs ->  ’[’ RhsStatement ’|’ RhsStatementsRec ’]’ 
 
RhsStatementsRec -> RhsStatement '|' 
RhsStatementsRec  
 
RhsStatement -> CFGSymbol ’:’ f_var 
 
Anno1 -> Anno1 ‘,’ LFGAnnotation   
LFGAnnotation  -> f_var ‘:’ LFGRelation ‘===’ f_var 
 
Anno2 -> f_var ‘:’ LFGAttribute ‘===’ Value 
Anno2 -> Anno2 ‘,’ f_var ‘:’ LFGAttribute ‘===’ 
Value 
 

 14


