

URDU LOCALIZATION OF OPEN SOURCE SOFTWARE

Huda Sarfraz, Sarmad Hussain, Mahwish Bano, Asad Mustafa and Rahila Parveen
Center for Language Engineering, Al-Khawarizmi Institute of Computer Science, University of Engineering and

Technology, Lahore, Pakistan

firstname.lastname@kics.edu.pk

ABSTRACT

This paper presents the process used to localize a set of open source software

applications for Urdu speakers in Pakistan. The software applications were

selected for use by rural area secondary school students and included

OpenOffice.org (an office suite), SeaMonkey, (an Internet suite), and Psi (an

instant messenger). This paper presents a survey of Urdu localization for open

source software, describes the localization process used for the three software

applications listed and discusses issues and challenges that came up during the

localization process. The paper concludes with a note work to be done in the future

in this area.

Keywords: open source, software, localization, Urdu, OpenOffice.org,

SeaMonkey, Psi.

1 INTRODUCTION

 Software localization is a process through which

a software application is customized for a specific

language-region pair, referred to as a locale [1]. This

involves translation of the graphical user interface

(GUI) text, adjustment of the GUI layout and

customizing definitions of multiple elements, for

example, date and time formats, spell checkers etc.,

such that it fulfills the needs and requirements of a

particular language region pair, for example Urdu-

Pakistan (ur-PK) or French-Canada (fr-CA) [2]. The

Urdu-Pakistan (ur-PK) language region pair would

indicate a customization tailored for Urdu speakers

in the Pakistan region only. This customization

would be significantly different from the

customization required by Urdu speakers in the India

region. Similarly, the customization for French

speakers in Canada would be different than that for

French speakers in France.

 Software internationalization is a process that is

complementary to the localization process. It is the

process through which a software application is

designed such that it can be conveniently customized

for other languages [3].

 Localized open source software has the potential

to make a significant impact on the accessibility of

information and communication technology for users

who are not literate in English. Localization is

becoming an increasingly important aspect of open

source software for the global community. Many

commonly used open source software applications

are available for users in multiple locales. Mozilla

Firefox for example, is available in over 60 locales.

Commercial software is also on par, with Microsoft

Office 2010 available in over 40 languages.

 Information is a fundamental right in this digital

age. It is therefore imperative for language

communities to take advantage of the flexibility

available through open source software and make

customized versions suitable for their own use.

 In this context, this paper first presents a brief

survey of currently available Urdu-Pakistan versions

of open source software. After that, the complete

process used to localize three open source software

applications, 1) an office suite, 2) an Internet suite

and 3) an instant messaging client, will be presented.

Notable issues that were encountered during the

process will be discussed. The paper will conclude

with a note on future directions to be pursued in the

context of Urdu localization of open source software.

2 BACKGROUND

 Internationalized software applications, as

mentioned earlier, allow for convenient localization

into multiple locales. Internationalization implies

that the portion of the software that needs to be

adjusted for different locales is available separately

for localizers, who can update this portion

conveniently as per their requirements without

having to get into the technicalities of the software

itself. The bulk of this portion is made up of GUI and

help content strings which are to be translated. Apart

from the strings that are to be translated, other

constituents of the software also need to be set as per

the requirements of the locale being localized. One

example is spellcheckers, which are inherently

language specific, for software applications that

involve some form of word processing. The

following categorization is used in [4] and [5] for

factors that are critical to localization: information

content, page layout, navigation and performance.

 Three major localization technologies are widely

used within the open source software community

currently. These are briefly described in the

following subsections.

2.1 GNU gettext based internationalization

 GNU gettext is the GNU internationalization and

localization library used for developing multilingual

software. It enables the production of a file that

contains all translatable strings from the source code

of a software application. These can then be

translated for different locales and used to compile

localized versions of the application.

2.2 XUL based internationalization

 XUL (XML User Interface Language) is a

technology developed by Mozilla. It provides

support for localization, user interface layout and

appearance customization. Like GNU gettext, it

enables the isolation of translatable strings from

source code.

2.3 Qt based internationalization

 Qt is a cross-platform application and user

interface framework which is well known for

facilitating the development of applications across

multiple platforms. It also enables convenient

development of localized versions of applications as

well, by isolating translatable strings from the source

code.

 The localization procedure for any software

application is therefore dependent on the technology

that has been used for developing the

internationalized application.

3 LITERATURE SURVEY

 A brief survey of commonly used open source

software shows that none have been localized for

Urdu, with the exception of Ubuntu and

OpenOffice.org, which has an unofficial release

available through the work that is presented in this

paper. A summary of the survey is shown in Table 1.

Unofficial ur-IN (Urdu for India region) versions of

OpenOffice.org 2.0.3, Firefox 1.0.6 and Thunderbird

1.0.7 exist for the ur-IN locale, but these have not

been noted in Table 1, which only accounts for ur-

PK localizations.

 Apart from popular open source software shown

in Table 1, Urdu versions of SeaMonkey and Psi,

two relatively low profile software applications, are

available. The Urdu localization process for these

two applications, along with OpenOffice.org is

presented in this paper.

 In addition, sometimes Urdu versions of

specialized software are also available. For example,

Poedit, a localization tool, has an Urdu version

available for use.

Table 1: Open source software localization status for

Urdu.

Software Description No. of

Locales

Urdu (ur-PK)

Localization

Firefox

3.6.12

Web

browser

66 Locale owner

exists but no

work done.

Thunderbird

3.1.6

Email client 49 Locale owner

exists but no

work done.

OpenOffice.

org 3.1

Office suite 19 Unofficial

release

available.

Pidgin 2.7.4 Instant

messenger

16 No work done

VLC Media

Player 1.1.4

Media

player

48 No work done

7zip 4.65 Archive

manipulator

13 No work done

GIMP

2.6.11

Image

Editor

13 No work done

Audacity

1.2

Audio editor 26 No work done

Ubuntu

10.10

Operating

system

28 Active

localization

team, work in

progress.

 In addition to these Urdu-Pakistan localizations,

some open source software applications are also

localized for Urdu-India, including outdated versions

of OpenOffice.org, Firefox and Thunderbird.

 As mentioned earlier, localized versions are also

available for a lot of commercial software as well.

Microsoft Office 2010 is currently available in over

40 languages. The fact that many popular web

services are also available in multiple languages

further illustrates the significance of localization of

software. Facebook currently provides access in

about 70 different languages. Gmail services are

available in over 50 languages, including Urdu.

4 MATERIALS

 A survey was conducted to collect resources that

would help in the localization process. These

included dictionaries, terminology glossaries and

previous localization work done for Urdu. Some of

the major resources used during the localization

process are presented in detail next.

4.1 NLA glossary

 This is a computer terminology glossary based

on the “Electronic Dictionary of Localization of

Computer Applications (English - Urdu)”, by the

National Language Authority Islamabad, Pakistan.

This is the main glossary that was referred to during

the translation process as it represents the

recommended standard for Pakistan. It has also been

used by Microsoft for Urdu localization of its

software products, so using it also ensured a uniform

terminology for users across applications. Additional

entries were made to this glossary during the

translation process, as described ahead.

4.2 Localized software in Urdu

 The following Urdu language versions of

software were found during the survey.

1. Mozilla Suite 1.5 ur-PK

2. Firefox 1.0.6 ur-IN

3. Thunderbird 1.0.7 ur-IN

4. OpenOffice.org 2.0.3 ur-IN

 Translations from these were extracted and used

as reference glossaries during the translation process.

The ur-PK translation was more useful as compared

to the ur-IN translations because the ur-IN locale

used translations of a slightly different style than the

one adopted for the ur-PK localization. One example

was the level of respect used when referring to the

user.

4.3 Online technical terminology translations

(English to Urdu)

 Two significant English to Urdu technical

technology translations were available online. The

first was the Urdu Word Bank

(http://l10n.urduweb.org/dictionary/), which has user

generated translations of technical terms. Users can

look up translations for technical terminology, edit

existing translations, add new translations, or put up

requests for translations. The second was an Urdu

technical terms glossary

(http://www.qern.org/it/dict/urdu/dict_main.cgi)

which also allows users to enter their own

translations, but it is not as active as the first one.

4.4 Dictionaries

 All major English to Urdu translation

dictionaries were also been consulted in the process,

e.g. Qaumi English-Urdu Dictionary published by

the National Language Authority of Pakistan.

4.5 Miscellaneous

 Other than the resources listed above, frequently

consulted resources included: 1) WordNet

(http://wordnet.princeton.edu/), an English lexical

database; this is helpful when there is confusion

about the sense or part-of-speech of a word being

translated, 2) specialized terminology translations

compiled by the National Language Authority

Pakistan (e.g., mathematical terms, scientific terms

etc.), and 3) various other online dictionaries and

online documentation for the applications being

localized.

5 TOOLS AND METHODS

 The objective of the work presented in this paper

was to develop Urdu versions of some common

types of software to be used by rural area school

students in Pakistan. In particular, Urdu-Pakistan

versions of the following software applications were

needed.

5. A web browser

6. An email client

7. An instant messaging client

8. A word processor

9. A graphics editor

10. A webpage development tool

 The process used to develop localized versions

of the required software types is summarized in

Figure 1 and will be presented in this section.

 It should be noted again at this point that

localization is a process where translation of GUI

strings and help content makes up the bulk of the

work to be done. Due to this, any localization team

should ideally include a balance of both technical

and language experts. The work presented here was

completed by a team of three technical experts and

three language experts.

OSS
selection

String
extraction

Localization
registration

Localization
tools

selection Translation
review

Translation
incorporation

Translation

Testing and
QA

Translation
resources

compilation

Translation
resources

Build and
release

Figure 1: Localization process.

5.1 Selection of software

 The first step of the process was the selection of

software to be localized. To select specific software

applications, four points were taken into

consideration.

5.1.1 Localization support

 The first and foremost criterion for selection was

that the application must be internationalized. As

discussed earlier, internationalized development

facilitates an efficient and convenient localization

process by separating all the application elements

that need to be customized for a locale.

5.1.2 Encoding support

 The application selected had to support the

character set encoding required by Urdu. It was also

necessary for the application to provide proper

bidirectional text support. This is because Urdu is a

bidirectional language, written mainly from right-to-

left, but also includes portions of text that are written

from left-to-right, e.g., numbers.

5.1.3 Cross-platform support

 Software that was supported across multiple

platforms was preferred, because its localized

version would then be available to a wider user base.

5.1.4 Active community

 Software that had an associated active

community was preferred. An active community

ensures that technical assistance will be available

when needed. It also a good indicator that

development of the software will continue in the

future, which in turn means greater potential of use

and maintenance of the localized version that is

developed.

 Based on these criteria, and also taking the

usability of the software applications into account,

two software suites, OpenOffice.org

(www.openoffice.org) and SeaMonkey

(www.seamonkey-project.org), and a simple instant

messenger, Psi (http://psi-im.org), were selected.

OpenOffice.org contains a full suite of office

applications including a word processor and a vector

based graphics editor. SeaMonkey is a complete

Internet suite available from the Mozilla Foundation.

It includes a web browser, an email client, and a

simple webpage development tool. This suite was

given preference over popular individual applications

like Firefox and Thunderbird because an integrated

suite was considered more usable for the user base

being targeted, and the localization effort was also

considerably decreased for a single suite as opposed

to multiple separate applications.

 All selected software was internationalized and

had Unicode (UTF-8) and bidirectional language

support which was required for Urdu. All three were

available for multiple platforms. Finally, all three

also had active communities, which ensured that the

localization effort would be supported for some time.

5.2 Selection of localization tools

 Localization tool selection was done on two

levels. Firstly, tools were selected for each

application being localized, in order to manage its

localization file formats and to create localized

builds.

 Secondly, in order to keep translations across

applications consistent and to keep the translation

interface uniform for translators, a tool was selected

purely to aid linguists in translation. These are

described in the following subsections.

5.2.1 Qt Linguist

 Psi is a Qt based application and Qt Linguist was

used to obtain the strings which had to be translated

for it and create its installable Urdu language pack.

5.2.2 Mozilla Translator

 Similarly, for SeaMonkey, Mozilla Translator

was used to obtain the strings which had to be

translated for it and create its installable Urdu

language pack.

5.2.3 OmegaT

 OmegaT is an open source, cross-platform

computer aided translation (CAT) tool. The use of

such tools to enhance translator productivity is

stressed upon in [6]. OmegaT, in a similar manner to

other CAT tools, facilitates the translation process by

maintaining a translation memory of previous

translations. Translation memory can be defined as

source and target language pair obtained from a

previously completed translation. This is made

available to translators to aid in future similar

translations.

 OmegaT is a versatile tool and one of its key

features is that it can handle the translation of

multiple file formats including plain text, HTML and

OpenDocument formats. Due to this feature, it

played a role at both levels in the localization process.

Firstly, it provided a uniform translation interface for

translators. Files from both Mozilla Translator and

Qt Linguist could be transformed and handled in it.

Secondly, it could handle OpenOffice.org files (PO

format) natively, without any transformation. So

these were translated directly in OmegaT, and then

used for building the Urdu installer for

OpenOffice.org

 Another key feature of OmegaT is the support of

terminology glossaries, which also aid in keeping

translations consistent. A core terminology glossary

was used during the localization process through

OmegaT.

 OmegaT maintains translation memories in

TMX (Translation Memory eXchange) format which

is an XML standard for the exchange of translation

memory between different CAT applications.

OmegaT is a single user application but allows for

manual sharing of translation memory between

multiple projects. So, during the localization process,

translators had access to translation memories of

each others’ projects, which were updated manually,

at least on a daily basis. As a result, all translators

had access to all the translation memory that was

developed over the course of time. This helped

especially in keeping the translations consistent

across the application set, which would not have

been easily possible if an individual tool had been

used for each application.

 OmegaT also provides Unicode (UTF-8) support

and bidirectional support for right-to-left languages

so it was very convenient to use for English to Urdu

translations.

 Figure 2 shows a sample OmegaT project for

English to Urdu translation. One source file from the

project has been opened for translation, and a string

“Minimum font size” has been selected (in the main

window on the left). As soon as a string is selected,

matches from the translation memories and

glossaries are displayed in the windows on the right.

Figure 2: Sample OmegaT project.

 The bottom window on the right shows matches

from the glossary, along with the name of the

glossary where the match was found.

 The top window titled “Fuzzy Matches” shows

similar translations from translation memories. The

“Fuzzy Matches” window shows five matches. The

translation memory files in this case have been

named after the translators they were obtained from,

and this name can be seen at the end of each match

along with the match percentage.

5.3 Localization registration

 When planning an open source software

localization, it is best to contact the software

community and coordinate with them, so that

localization efforts aren’t duplicated and so it can be

released through the community as an official build.

This is usually done through a registration procedure,

which varies for different software.

 Urdu-Pakistan (ur-PK) localization teams were

officially registered for SeaMonkey and Psi. The ur-

PK locale for OpenOffice.org was already registered

to a community member, so an effort was made to

collaborate with the existing team.

5.4 String extraction

 The next step of the process was the extraction

of strings to be translated from each application such

that they could be translated using OmegaT. Strings

were extracted and divided into batches for

management purposes. Each batch contained about

600-700 words. The number of strings in each batch

varied according to the number of words per string.

One translator completed the translation of four

batches in about a week on average. Strings to be

translated come from three sources in the

application: 1) the GUI, 2) the application help, and

3) any other application documentation.

5.5 Translation

 Translation “consists of studying the lexicon,

grammatical structure, communication situation and

cultural context of the source language text,

analyzing it in order to determine its meaning, and

then reconstructing this same meaning using the

lexicon and grammatical structure which are

appropriate in the receptor language” [7].

 To facilitate this process, each translator had an

OmegaT project for translation and each subsequent

file to be translated was added to the project. Each

project contained a core glossary, reference

glossaries and also the translation memory of all the

linguists in the team (updated on a daily basis or as

required).

 For translation purposes each word in a string

was first classified as either a functional or a content

word. All nouns, verbs, adjectives and adverbs are

content words; words that fall into any other

category, e.g., prepositions, conjunctions etc. are

functional words. For each string to be translated,

the translation of functional words was left to the

discretion of each individual linguist, but translations

of content words were taken from the core glossary

only (which was developed with the mutual consent

of translators and developers).

 For example, in the following strings, the

content words are in bold: “Failed to remove this

account.”; “Filters associated with this folder will

be updated.”; “Horizontal scrolling”; “New

languages can be configured using the Languages

Panel.”

 Keeping the above rule in mind, the translators

would proceed with the translation in four stages as

described in the following sections, and shown in

Figure 3.

Initial
translation

Glossary
extension

New
terminology

lookup

Translation
completion

Core
glossary

Translation
resources

c

Figure 2: Translation process.

5.5.1 Initial translation

 At the beginning of each week, translators were

given a set of four translation batches. Translators

would initially go through these, translating those

strings for which all content words have appropriate

entries in the core glossary. The NLA glossary,

described earlier was used as the core glossary, and

was extended through the process being described

here. Strings which had a content word which was

not included in the core glossary were skipped and

the missing word was entered into a list of new terms.

5.5.2 New terminology lookup

 After the translation stage, translators looked up

appropriate translations for the new terms.

Translators had access to the translation resources

described earlier during this step, and developers are

also consulted when the context of a term could not

be determined.

5.5.3 Glossary extension

After the compilation of new terminology lists, a

team meeting was held including both translators and

developers. During the meeting, new translations

were finalized and added to the core glossary. Issues

could be raised from both linguistic and technical

perspectives. From the linguistic perspective, more

appropriate translations were sometimes suggested,

and from the technical perspective, incorrect senses

and parts-of-speech for words used during translation

were sometimes identified.

5.5.4 Translation completion

 The translators would then use the updated

glossary to complete the set of translations for the

week.

 This process was repeated on a weekly basis.

5.6 Translation review and incorporation

 Translations were reviewed and finalized by

developers and incorporated into the applications,

using the application specific tools.

 Control and accelerator keys were also assigned

during this phase. Control and accelerator keys are

shortcut keys for menus and menu items indicated to

the user by underlining a character in a menu or

menu item. For example the “File” menu in most

applications has the “F” underlined, and it can be

accessed by pressing Alt+F. In this case, “F” is the

accelerator key. An example of a control key is

Ctrl+S for the “Save” item (in the “File” menu),

where the “S” is underlined. Control and accelerator

keys both need to be set appropriately according to

the translations.

 Most translation errors detected during this

phase were caused due to misinterpretation of the

source string. This misinterpretation was usually

caused by one of the following reasons. Firstly due

to limited exposure to software in general, translators

were not familiar with some types of sentence

structures used in software GUIs. Secondly because

the linguists had not used the software being

localized, they could not understand concepts

specific to the software (e.g., the notion of tabbed

browsing), and might translate them inappropriately.

5.7 Quality assurance

 A quality assurance process was used to ensure

that the final localized product was free of errors.

Some of the individual applications had their own

quality assurance procedures as well which were

followed where needed, but an overall quality

assurance process was devised as well.

 After translation incorporation, some

preliminary tests were conducted by developers to

identify commonly occurring errors, e.g.,

placeholders in strings not being displayed as

expected. An example of this is shown in Figures 4,

where the source string to be translated is “The web

site %S does not support encryption for the page you

are viewing.”. Here “%S” is a placeholder, and may

be misplaced during translation, as shown in Figure 4.

The string inserted for the placeholder

“www.google.com.pk” is appearing at an incorrect

position. Errors of this type can occur due to

linguistic (lack of knowledge about the nature of the

placeholder may cause incorrect placement) or

technical reasons, specifically, due to insufficient

bidirectional support – only in the case of left-to-

right languages - the placeholder in the translated

string may appear in a different position in the

localization tools and in a different position within

the application being localized.

Figure 4: Misplacement of placeholder in translated

string.

 Another common error was the use of Urdu

translation strings that were too long as compared to

their English counterparts and did not fit in their

designated position in the GUI. This would either

cause some GUI components to expand and cause

problems in the overall application, or it would cause

the text to appear in truncated form. This had to be

solved by developing an alternate, shorter translation.

 Interim versions of the localized applications

were also frequently deployed within the team for

user testing.

5.8 Release

 After translation and quality assurance was

completed for Psi and SeaMonkey, Urdu language

packs were released as per the process and release

schedule for the software. An unofficial localized

build was released for OpenOffice.org because the

registered ur-PK localization team was inactive.

6 RESULTS AND DISCUSSIONS

 As a result of the process described in this paper,

localized versions of the selected software

applications were released.

 A total of around 10,000 strings were translated

for the SeaMonkey suite, and installable Urdu

language packs were released in collaboration with

the SeaMonkey team for versions 1.1.5 through

1.1.19. Release 1.1.19 is available at

www.seamonkey-project.org/releases/1.1.19.

 A total of about 26,000 strings were translated

for OpenOffice.org. Figure 5 shows the Urdu version

of OpenOffice.org Writer. The unofficial ur-PK

installer, corresponding to OpenOffice.org 2.4.0 is

available at

http://panl10n.net/english/Outputs%20Phase%202/C

Cs/Pakistan/Software/2008/OpenOffice.org(unofficia

l).zip.

Figure 5: OpenOffice.org Writer in Urdu.

 A total of around 2000 strings were translated

for the instant messenger, Psi. The language pack for

the current version, 0.14, released in collaboration

with the Psi team is available at http://psi-

im.org/download/lang/ur_PK.

 The localized software was deployed in 10 rural

area secondary schools as part of Project Dareecha,

more details for which can be found at

www.crulp.org/dareecha/.

 Translation was a critical part of the localization

process. Inappropriate translations would have

rendered the localized software unusable, so a

meticulously planned translation process was used to

ensure high quality translations, as described in

earlier. This section covers some translation selection

issues, and describes a problem specific to Urdu

translation, in order to illustrate the types of

problems that are encountered during localization.

6.1 Translation selection

 When available, technical terms were translated

as per the NLA glossary described in 5.3.1. This is

the nationally recommended standard, also in use by

Microsoft. The advantage of using it as the core

reference was that users would be seeing the same,

familiar, terminology if they switched from

proprietary to open source software.

 If a terminology translation could not be found

within the core glossary, a translation was coined

using the conventions followed by the NLA glossary.

If there was a conflict, preference was given to the

simplest option. Because all new terminology was

coined through a collaborative process including

both developers and translators, it was ensured that

translations were both linguistically and technically

appropriate.

 There were a few cases where the NLA

recommended terminology was inappropriate and

therefore not followed. An example is the English

word “Beep”. The translation recommended by the

NLA in this case is “ There is no equivalent .”يںپ

word for “Beep” in Urdu and it seems to be

translated using the concept of onomatopoeia where

a word itself suggests the sound that it describes [4].

During the localization of Psi, the following string

had to be translated: “Beep twice”. If the NLA

recommendation had been followed, it would have

had to be translated as either “ يںکر يںدو دفعہ پ ” or

“ يںکر يںپ يںپ ” , both of which would have been

equally awkward. A decision was therefore made to

not use the NLA recommendation and simply

transliterate the word in Urdu script instead.

6.2 No capitalization in Urdu

 When a button is being referred to in an English

string, the capitalization of the first letter and the

syntax makes it clear that a button is being referred

to. For example, in the text from SeaMonkey “Click

Finish to create new profile,” it is clear that “Finish”

refers to a button due to capitalization. However,

Urdu does not have capitalization so there is not easy

way to identify the button in the translated text. The

decision to make the translation unambiguous was to

use single quotes to indicate a button name. So the

sentence given above was translated as shown below,

with the translation of Finish enclosed in single

quotes.

۔يںکر کلک' يںکر يلتکم' يےپروفائل بنانے کے ل ینئ

7 FUTURE EXTENSIONS

 This paper presented the process used to localize

three open source software applications for Urdu-

Pakistan. These particular three applications were

aimed for use by rural area school children, where

they would aid in eliminating the language barrier in

information and communication technology access.

The survey presented at the start of the paper showed

that there are still numerous software applications

that can be localized to serve the same purpose.

Therefore efforts like this must be extended and

improved, as they play a crucial role in enabling

information and communication technology access

for the average citizen of Pakistan, who is not literate

in English.

8 ACKNOWLEDGEMENT

 This work was carried out at the Center for

Research in Urdu Language Processing

(www.crulp.org), National University of Computer

and Emerging Sciences, Lahore (www.nu.edu.pk),

and was funded the PAN Localization Project

(www.panl10n.net). Software specific technical

support was provided by the user and development

communities of OpenOffice.org

(www.openoffice.org), SeaMonkey

(www.seamonkey-project.org), Psi (http://psi-

im.org/) and OmegaT (www.omegat.org) open

source projects.

9 REFERENCES

[1] A. Souphavanh and T. Karoonboonyanan, Free/OpenS

Source Software: Localisation, Elsevier and UNDP, India,

2005.

[2] M.P. Pustakalaya, Guide to Localization of Open

Source Software, Center for Research in Urdu Language

Processing and the International Development Research

Center.

[3] S. Hussain and R. Mohan, “Localization in Asia

Pacific”, in Digital Review of Asia Pacific 2007-2008,

Orbicom and the International Development Research

Center 2008.

[4] S.A. Becker and F.E. Mottay, A Global Perspective on

Website Usability, IEEE Software, Vol. 18, No. 1, Jan/Feb

2001, pp. 54-61.

[5] R.W. Collins, Software Localization for Internet

Software: Issues and Methods, IEEE Software, Vol. 19,

No. 2, Mar/Apr 2002, pp. 74-80.

[6] L. Bowker, Computer Aided Translation Technology:

A Practical Introduction, University of Ottawa Press, 2002.

[7] M.L. Larson, Meaning-Based Translation: A Guide to

Cross-Language Equivalence, University Press of

America, 1998.

[8] F. Katamba, Morphology, Palgrave Macmillan, 1993.

