

ENHANCING CONTEXTUAL SUBSTITUTION
SUPPORT IN PANGO USING OPENTYPE

MS Thesis for the Degree of

Submitted in Partial Fulfillment
of the Requirements for the

Degree of

Master of Science (Computer Science)

at the

National University of Computer & Emerging Sciences

By

Aamir Wali

September 2004

 Approved:

 Dr. Fakhar Lodhi

Head of the Department of Computer Science

 I

Supervisory Committee

Advisor: ___________________________________

Mr. Shafiq ur Rehman

Associate Professor

Department of Computer Science

NUCES Lahore

Co –Advisor ___________________________________

Dr. Sarmad Hussain

Associate Professor

Department of Computer Science

NUCES Lahore

 II

Vita

Mr. Aamir Wali was born in Lahore, Pakistan on September 04, 1979. He received
a Bachelor of Science in Computer Science from National University of Computer
and Emerging Sciences, Lahore in 2003. His area of interest includes script
processing in general and Font development and Typography in particular.

 III

Abstract

This thesis proposes better support for context sensitive substitution in Linux. The

support is made available through Pango. Pango utilizes the OpenType formulism. The

incorporation of contextual substitution support in Pango was directed towards two

dimensions. The first dimension focused towards the completeness or on the physical

expansion of substitution support in Pango library. This includes the inclusion and fixing

of the OpenType tables that actually provide contextual substitution. The other dimension

is performance. It was observed that the OpenType rule processing algorithm was very

inefficient. A more efficient mechanism for processing the lookups on the input string is

proposed. The results showed that the processing time with the new algorithm was

reduced to 20% of the original time.

 IV

Acknowledgements

I am very thankful to Mr. Shafiq-ur-Rehman for his help and guidance during the thesis.

His timely suggestions helped me in completing the thesis in the best possible manner. I

am also grateful to Dr. Sarmad Hussain for his suggestions and encouragement

throughout my graduate studies. Special Thanks to our calligrapher, Mr. Jamil-ur-

Rehman who provided insight into Nastaleeq Script and patiently listened to my long

unresolved theories.

I would like to thank all fellow graduate students who have supported and assisted me

throughout my graduate years in NUCES. Moreover, thanks to my best friend Atif who

made Linux operational on VMWare. I would also like to thank the undergraduate

students especially Noman Mushtaq and Nadir who helped me in the Linux Installation

process.

And finally, I should like to thank my parents for their full support and encouragement

during my studies.

 V

Table of Contents
SUPERVISORY COMMITTEE.. I
VITA.. III

ABSTRACT .. III

ACKNOWLEDGEMENT ... III

TABLE OF CONTENTS...V
LIST OF FIGURES...VII
LIST OF TABLES... VIII

…………………………………….PART ONE THE MAINSTREAM ...1

1. INTRODUCTION...2

2. BACKGROUND..4

2.1. TYPE 1 & TRUETYPE FONTS .. 4
2.2. UNICODE ... 5
2.3. OPENTYPE ... 7
2.4. UNISCRIBE ... 11

3. OPENTYPE SUPPORT ON THE LINUX PLATFORM..14

3.1. RENDERING ENGINES IN GNOME AND KDE .. 14
3.2. FREETYPE.. 15
3.3. PANGO... 16

4. THE ARCHITECTURE OF PANGO ...18

4.1. HIGH LEVEL ARCHITECTURE... 18
4.2. PANGO CORE COMPONENT .. 20
4.3. UNICODE SCRIPT PROCESSOR .. 20
4.4. RENDERING COMPONENT .. 21

5. ARABIC TEXT PROCESSING IN PANGO..23

5.1. PANGO CORE: ITEMIZATION & TEXTUAL BOUNDARIES RESOLUTION.. 24
5.2. PANGO UNICODE SCRIPT MODULE: UNICODE TO POSITIONAL FORM .. 24

5.2.1 Language Module .. 25
5.2.2 Shape Module... 27

…………………………………….PART TWO THE PROBLEM ..30

6. THE ALTERNATING THICK-THIN-THICK JOINS...31

6.1. USEFULNESS .. 31
6.1.1 Variation in Shape of Join to Break Monotony.. 31
6.1.2 Frequency of Usage of Raised Joins.. 32
6.1.3 Minimization of Number of Raised Joins ... 33

6.2. MODELING USING OTF TECHNOLOGY .. 33
7. THE LOOKUP PROCESSING ALGORITHM AT WORK ...38

7.1. THE ALGORITHM ... 38
7.2. EXPERIMENT: DETERMINING THE HIT AND TRIAL RATIO .. 38

7.2.1 Nature of Data ... 38
7.2.2 Methodology and Result... 39

8. THE PROBLEM STATEMENT ...40

 VI

………………………………….PART THREE THE PROPOSED SOLUTION...................................42

9. REVERSE CHAIN CONTEXTUAL SUBSTITUTION TABLE..43

9.1. INTRODUCING A REVERSE CHAIN LOOKUP.. 43
9.2. IMPLEMENTATION.. 44

9.2.1 Adding Reverse chain substitution table to GSUB table .. 44
9.2.2 Loading the Reverse chain substitution table .. 45
9.2.3 Applying Reverse chain substitution table on input string... 48

10. ENHANCEMENT IN LOOKUP PROCESSING ALGORITHM ..54

10.1. IMPLEMENTATION.. 55
10.1.1 Loading the glyph-lookup matrix ... 55
10.1.2 Applying the glyph-lookup matrix.. 56

11. DEPENDENT AND INDEPENDENT LOOKUPS ..58

11.1. DETERMINING THE ‘DEPENDENT’ AND ‘INDEPENDENT’ LOOKUPS ... 58
11.2. LOOKUP ARRANGEMENT ... 62
11.3. THE WORKING... 62

12. RESULTS...63

12.1. TIME DIFFERENCE ... 63
12.1.1 Old Method .. 63
12.1.2 The Efficient Glyph Processing Algorithm... 64
12.1.3 Further Enhancement .. 64

12.2. THE T-TEST.. 65
REFERENCES ..67

APPENDIX A: DETAILS OF T-TEST .. 77

 VII

List of Figures
Figure 1 OpenType Model.. 10
Figure 2 Text processing using Uniscribe .. 11
Figure 3 Sample text output in KDE (a) and GNOME (b) .. 14
Figure 4 High Level Architecture of Pango.. 18
Figure 5 Detailed Architecture of Pango ... 19
Figure 6 Integration of 4- rendering subsystems .. 21
Figure 7 Arabic Text Processing in Pango ... 23
Figure 8 The Unicode Script Processor .. 24

 VIII

List of Tables

Table 1 Different forms for Urdu letter bay... 7
Table 2 Binary Tags assigned to isolated, initial, medial and final forms....................... 26
Table 3 Binary Tags assigned to lookups for isolated, initial, medial and final forms ... 29
Table 4 Coverage-based Reverse Chaining Contextual Single Glyph substitution 44
Table 5 Time for original Algorithm ... 63
Table 6 Time for modified Algorithm .. 64
Table 7 Time for Dependent/Independent Lookup Algorithm... 64
Table 8 t-Test for 3-Page samples given in table 5 and Table 6...................................... 65
Table 9 t-Test for 3-Page samples given in table 6 and Table 7...................................... 66

 1

PART ONE

The Mainstream

 2

Chapter 1

1. Introduction

Urdu is the National language of Pakistan. People of Pakistan are contributing a lot in the

field of Information technology, yet the full potential is not realized. That is mainly

because most of the masses are still not using the computer and the main reason for this is

of the language. To teach English language to a huge population (140 million) is simply

not possible. On the other hand, an arrangement is required that could make possible for

the masses to use the computer in their own language.

As the need for multi-lingual support in computer system grew, the convention TrueType

technology was found to be inadequate. It utilizes a one to one correspondence between a

character and the glyph. This would definitely not work for Urdu because the writing

systems that are traditionally used for writing this language are far too complex to be

processed by the TrueType specification. Urdu language exhibits both positional

substitution i.e. a letter has four forms and contextual substitution in which a letter in one

given form may have different shapes depending on following (and/or preceding)

characters. Therefore to enable Urdu, complex script processing is required that can

handle this two-dimensional context sensitive behavior of Urdu

The recently developed OpenType technology enables advanced text layout by

embedding the complex script processing logic within the font. OpenType specification is

designed to be fully capable of supporting Urdu and in fact has already been successfully

incorporated in Windows. Meanwhile such supported has not really matured in

Macintosh or Linux/Unix although these platforms are fully capable of doing so.

Macintosh is based on its own AAT i.e. Advanced Apple Typography model quite

different from the OpenType. Linux however complies with the OpenType and can well

be extended to provide better Urdu support than it currently does.

 3

This thesis proposes a complete and efficient contextual substitution support in Linux

through Pango using OpenType. This will involve first the inclusion and fixing of the

OpenType tables that actually provide support for contextual substitution. This will then

be extended to improving the performance of the lookup processing algorithm that

processes the information in these tables (or rules) on the input string.

The succeeding chapters of this dissertation are organized as follows: Chapters 2 gives

the background of advanced text processing in Windows. Chapter 3 discusses the level of

support in Linux. Chapter 4 describes the Pango text processing library and the

application of this library on Arabic text in chapter 5. Chapter 6 and 7 discusses the some

of the problem regarding OpenType support and processing in Linux. Chapter 8 lists the

concluding research problem for this dissertation.

Chapter 8, 9 and 10 describes some of the proposed solutions to the problem. The results

are given in chapter 11. Chapter 12 concludes the document and gives some insight into

future work.

 4

Chapter 2

2. Background

The earliest font technology that existed traces back to ‘bitmap fonts’. In these fonts each

character shape was stores a bitmap consisting of series of pixels. Bitmap fonts then

created characters by arranging bits (or pixels) in specific patterns. Because there was no

good way to extrapolate between one font size and another, several bitmaps fonts had to

be developed (or purchased) for each point size. The other disadvantage of bitmap fonts

is that for large point sizes the displayed font appeared jagged. Increase in font size was

yet another drawback.

Outline fonts soon overtook Bitmap fonts. Outline fonts use (d) mathematical description

of characters that represent each character as an outline consisting of series of contours

well defined by points. These mathematical descriptions can easily be scaled up or down

to a wide range of sizes by simple multiplication by a scaling factor. Only one fonts had

to be developed (or purchased) and a wide variety of computations such as rotating,

slanting to filling can be applied.

Characters in bitmap fonts can be output to the screen or printer in the same form they are

stored. Outline fonts however must go through some additional steps. They are first

scaled, then outlined and finally converted to bitmap.

The outline font technology led to the designing of various outline-font standards. Two

such standards that are also currently available are TrueType and Type 1 font formats.

2.1. Type 1 & TrueType fonts

The Type 1 font format was developed by Adobe. Apple Computer Inc originally

designed the TrueType outline font standard. The primary difference in the two standards

 5

was the form in which the outlines were stored i.e. how they describe a letter’s shape by

means of points, which in turn define lines and curve, was different. Type 1 stores glyph

as outlines represented by third other Bezier splines while TrueType store them as

outlines indicated by second order b splines.

TrueType font was developed in 1980, six years after Type1. Apple initially code-named

it as Royal and later introduced it as TrueType. At that time, it was considered a means

of a better outline font with good hinting capabilities and a solution to some of the

technical limitations of Adobe's Type 1 format [10].

The TrueType format was designed to be efficient in storage and processing, and

extensible. It was also built to allow the use of hinting approaches already in use in the

font industry as well as the development of new hinting techniques, enabling the easy

conversion of already existing fonts to the TrueType format. This degree of flexibility in

TrueType's implementation of hinting makes it extremely powerful when designing

characters for display on the screen. Microsoft had also been looking for an outline

format to solve similar problems, and Apple agreed to license TrueType to Microsoft.

Apple included full TrueType support in its Macintosh operating system, System 7, in

May 1990. TrueType specifications were made public and Microsoft first included

TrueType in Windows 3.1, in April 1991. The fonts developed were based on TrueType

standards; hence the name TrueType fonts. Soon afterwards, Microsoft began rewriting

the TrueType rasterizer to improve its efficiency and performance and remove some bugs

(while maintaining compatibility with the earlier version). [1]

2.2. Unicode

The TrueType fonts implementing the TrueType standard were initially based on 7-bit

ASCII. This means that they did not accept any input beyond the 7-bit range (0-127).

With the idea of multi-lingual text processing this problem became apparent and a

question arose that how can letters of all languages be represented on a computer?

 6

Well, the ASCII's 7-bit character size was inadequate to handle multilingual text, so a

Consortium by the name of Unicode adopted a 16-bit architecture, which extends the

benefits of ASCII to multilingual text. Unicode characters are consistently 16 bits wide,

regardless of language, so no escape sequence or control code is required to specify any

character in any language. Unicode character encoding treats symbols, alphabetic

characters, and ideographic characters identically, so that they can be used

simultaneously and with equal facility. Computer programs that use Unicode character

encoding to represent characters but do not display or print text can (for the most part)

remain unaltered when new scripts or characters are introduced

Unicode is a 16-bit character-encoding standard that represents most of the characters

used in general text interchange throughout the world. Unlike other character encoding

standards that assign character codes to both characters and glyphs, Unicode assigns

character codes only to characters. In Unicode, each character has a distinct linguistic

function or meaning, and its character code is unambiguous. Character codes are not

assigned to glyphs or glyph variants because a glyph is simply a graphic depiction that

has no meaning apart from the character or characters that it represents. By functionally

separating characters and glyphs, Unicode simplifies text processing for software

developers and users.

Unicode solved the problem how characters belonging to all the languages are to be

stored. However, a one letter multiple shape problem remained. The TrueType font

allows a one to one correspondence between characters in a coded-character set e.g.

ASCII or Unicode and the glyph in the font that represents the character. This model does

not work well for languages that require complex script processing. For example in Urdu

a letter can have 4 different shapes. These are position dependent. Consider the following

table 1 in which letter bay indicated in gray has a different shape when it occurs in a)

initial, b) medial, c) final and d) isolated position.

 7

Zş/ ©ãş/ ©0 ب
(a) (b) (c) (d)

Table 1 Different forms for Urdu letter bay

This was solved by assigning an additional Unicode to each of initial, medial and final

form whereas isolated already had the ‘default’ Unicode. So these forms, which came to

be known as presentation forms [9], were included to provide users with a simple method

to generate them But the Nastaliq font consists of hundred of different shapes and it

would be infeasible to assign a Unicode to each of its presentation for.

So it was felt that there is no need to include any additional presentation shapes in

Unicode, in fact all the various shapes and ligatures of the Arabic script should

automatically be generated by the rendering engines of the software that implements

Unicode. Efforts were made to remove the language barrier. Different technologies were

developed and different paths adopted. The next section gives a detail description of such

efforts.

2.3. OpenType
OpenType is a font format developed and promoted jointly by Microsoft and Adobe. As

with AAT, it starts with ‘sfnt’ data structure as the basis; it uses fonts that adhere to the

basic directory-table structure introduced with TrueType. The natural solution for the

Windows platform is to consider Microsoft’s solution to the smart font rendering problem

viz. OpenType. It is a set of tables, which are added to a TrueType font to allow for glyph

substitution, glyph positioning, multiple baselines, and justification.

The OpenType font format supports international typography with five new tables:

GSUB, GPOS, BASE, JSTF, and GDEF. TrueType Open provides typographic and

linguistic information for properly positioning and substituting glyphs, operations that are

required for accurate typographic composition in many language environments. With

OpenType, a single font may support multiple scripts. To assist application and OS text

 8

processing clients, the OpenType data is organized by script, language system, and

typographic feature [7].

Script > Language System > Feature > Lookup

The GSUB and GPOS tables define glyph substitution and positioning features. GSUB

supplies five types of substitutions to support different kinds of character-to-glyph

mappings, such as many-to-one ligature glyph substitution and one-to-many ligature

decomposition. GPOS defines seven types of positioning features that provide two-

dimensional positioning data for adjusting glyph placement and for glyph attachment.

The BASE table contains baseline and minimum/maximum extent data for each script.

Script baselines can be defined in relation to one another to properly align glyphs from

different scripts. Min/max extent values can be modified for particular language systems

or features. With JSTF, text-processing clients can turn glyph substitution and positioning

features on and off to adjust line lengths and glyph spacing when justifying text. GDEF

contains assorted tables that define useful information for text processing clients, such as

ligature caret positions and lists of glyph attachment points.

So, OpenType allows advanced formatting data to be placed in additional tables. The

table of interest for the character-glyph model is the ‘GSUB’ (glyph substitution) table.

The text-processing client uses the ‘GSUB’ data to manage glyph substitution actions.

‘GSUB’ identifies the glyphs that are input to and output from each glyph substitution

action, specifies how and where the client uses glyph substitutes, and regulates the order

of glyph substitution operations. Any number of substitutions can be defined for each

script or language system represented in a font. This table is analogous to the ‘mort’ table

in AAT.

OpenType fonts can distinguish between script and language-specific character-glyph

transformations. AAT does not currently provide direct support for this. But AAT turns

out to be more ‘powerful’ than OpenType.

 9

Firstly, AAT does not require the client to do any specific processing for certain

character/glyph transformations to take place. OpenType does. That is, if a type designer

comes up with a new or custom transformation specific to his or her own font, an AAT

client would automatically provide support for it; an OpenType client (this can be both

uniscribe and the application such as word processor) would have to be specifically

revised to do so [2].

Secondly in OpenType client applications are expected to do all glyph substitution

operations irrespective of any font, for a particular script and language themselves. One

of the stated principles of OpenType is that writing system behavior should be handled in

the application rather than in the font [3]. As much as possible, the tables of the

OpenType layout define only the information that is specific to the font layout. The tables

do not try to encode information that remains constant within the conventions of a

particular language or within the typography of a particular script. Such information that

would be replicated across all fonts in a given language belongs in the text-processing

application for that language, not in the fonts [2].

Because of script specific information lying with the application and furthermore because

the OpenType client application has to specifically interact with the font in order to do

font-specific glyph substitutions, OpenType is not “fully intelligent”.

The distinction is more this: A programmer utilizing an AAT-based interface will not

need to do any of the Unicode rendering support on their own; the system will do it all.

They don’t need to do any of the reordering for the bi-directional algorithm, nor will they

need to be aware of what language or script the text is being used to represent. But

OpenType’s fundamental lack is that it only partially handles the knowledge needed to

perform smart rendering. A programmer utilizing OpenType, however, will have to

include some of that in their program. They will have to do some of the bidirectional

reordering themselves, and they will have to be aware of the language of the text so that

they can select the appropriate glyph substitutions from the ‘GSUB’ table for processing.

The OpenType model is given in figure 1 below.

 10

Figure 1 OpenType Model

An OpenType programmer has to do more work; an ATSUI programmer has less control.

Both approaches are legitimate. OpenType is more designed for use by programmers who

are writing their own text-drawing engines, such as is true for Microsoft Word. ATSUI is

aimed at programmers who want to provide correct international support and advanced

typography without writing their own text-drawing engines [11].

Microsoft’s solution to this problem is Uniscribe, a layout engine providing an API for

smart script layout and rendering.

OpenType

Map characters to glyphs

Application

Unicode text input by user

Script Specific Pre-processing, Re-
ordering and Run bidi algorithms

Alter glyphs per ‘GSUB’ table

Windows

Draw glyph

 11

2.4. Uniscribe
Uniscribe, also commonly called Unicode Script Processor (USP), is built upon

OpenType and resides in between application and OpenType. In addition to being fully

capable of processing OpenType rules, it also provides support for reordering and bi-

directional algorithmic implementation. There is a difference between OpenType rule

extractor and OpenType rule interpreter.

The former task is actually done by OpenType Layout Services provided by Microsoft.

These were specifically designed to extract information form OT tables and store it in

local data structures. How and which of these rules are to be processed or ‘fired’ and in

which order they are to be applied is done by uniscribe; This depends on the Unicode

input from the application and the rules for character processing for a script are defined in

the Unicode Standard; hence the name Unicode Script Processor. Thus it removes some

of the weaknesses inherent in OpenType. It takes up the responsibilities of providing text

layout from the application as shown in figure 2 below.

Figure 2 Text processing using Uniscribe

Uniscribe completely insulates client applications from the shaping knowledge required

for complex scripting. Once uniscribe has finished calling the OTLS, it can pass the

glyph string back to the application. The application meanwhile only needs to manage the

original backing string of Unicode text in the logical order i.e. the order in which it was

Application

Unicode text input by
user

OpenType

Map characters to glyphs

Uniscribe

Run bidi algorithms

Alter glyphs per ‘mort’
table

Script Specific Pre-
processing

Windows

Draw glyph

 12

typed. Unicode never changes this backing string. Any character reordering required by

Unicode script shaping rules occur in a separate buffer [6].

Unicode also implements the Unicode bidirectional (bidi) algorithm for mixed text

directions. This is essential for correctly re-ordering Unicode text strings containing

characters with different directional properties e.g. Arabic words with English text. It is

not limited to mixing scripts however; Arabic and Hebrew are both written (read) from

right to left but their digits are still written left to right.

However, Uniscribe has not been built in an extensible fashion, so no behaviors can be

added or changed. While Uniscribe is slated to support rendering all of Unicode, it is not

expected to provide any support for the Private Use Area. This and some other

implications of the Microsoft technologies are listed next [13]:

1. Uniscribe is the proprietary of the Microsoft. It cannot be modified, upgraded or

distributed depending on the scripting needs of a particular region of the world.

For scripts that are supported, distribution of the script knowledge of such writing

systems among the application and script processor is not uniform which should

actually be. As a result uniscribe cannot be used wholly as a script processor in

another platform.

2. The cost involved in providing script support has forced the software suppliers to

choose, based on some marketing model of benefit vs. costs, what scripts to

support. If a part of the world cannot provide sufficient purchasing power or if the

script is too complex then such scripts are usually ignored and not implemented.

3. And lastly, the Private Use Area, which must be used for yet-to-be-standardized

scripts or scripts related to standardized ones except for a character or two, are not

supported, because doing so is too costly for the small benefit.

Macintosh provides truly extensible smart rendering capabilities. ATSUI and AAT can

meet the text processing needs adequately if they were available on the Windows

platform. Unfortunately, they are not, and neither is it practical for many around the

 13

world to use Macintoshes. Secondly, it is not based on the OpenType specification and is

therefore beyond the scope of this proposal. The solution provided by Microsoft is,

however OpenType compliant. Uniscribe removes the weakness in OpenType and hence

complex script processing has reached the level of stability.

Furthermore, this provides a good typographical model, a model that can also be tried on

other platforms such a Linux. The next section examines the Linux environment and

explores the possibility of enabling (or enhancing) the OpenType support for Urdu.

 14

Chapter 3
3. OpenType support on the Linux Platform

Multi-lingual text processing is currently at its infancy in the Linux environment.

Actually, in Linux nothing is structure as in Windows or Apple. It is also not very strong

in terms of integration. As a result several font engines are available that may or may not

be used by the applications. Since there is no ‘default’ rendering engine, developers use

what they prefer. In addition, two graphical environments exist side by side in Linux,

namely GNOME and KDE. These are independent of one another. GNOME has its own

applications different from KDE. More important they have different rendering and text

processing engines and libraries.

3.1. Rendering Engines in GNOME and KDE
As already mentioned, GNOME and KDE have separate rendering and text processing

engines. GNOME relies on Pango for text layout and rendering where as KDE utilizes

the QT rendering engine. The specification of each of these is quite different although

both of these aim to provide OpenType support in Linux in their respective environments.

A small text written in three OpenType fonts showed that GNOME has a better

OpenType support than KDE as shown in figure 3 below. The font used (from top to

down) were Tahoma, Nafees Naskh and Nafees Nastaleeq

(a) (b)

Figure 3 Sample text output in KDE (a) and GNOME (b)

 15

KDE utilizes the presentation forms in Tahoma to display it correctly. Nafees fonts on the

other hand are pure OpenType fonts, have no Arabic presentation forms and yield no

output in KDE, indicating missing OpenType support. Things are slightly better in

GNOME however. Each of the letters has acquired correct positional form (i.e. initial,

medial or final form). For example letter fay, seen, tay, ain, laam and choti yay occur in

medial position and acquire the medial shape. These letters however do not acquire the

correct medial shapes in the given context indicating missing contextual substitution

support in GNOME.

In light of the above explanation and keeping in consideration past exposure, GNOME

environment was chosen over KDE for further analysis. Moving into GNOME, the two

major players were FreeType and Pango. Pango was prevalent in OpenType support and

text processing whereas FreeType the most popular font service engine available.

3.2. FreeType
FreeType is a rendering engine and a font service provider. FreeType can be used,

modified, upgraded and distributed under the terms of the FreeType project. The

FreeType team headed by Werner Lemberg and David Turner developed this library [4].

This library was designed to provide a common interface to various file formats along

with improved hinting and rendering functionality.

FreeType’s font file reader is capable of physically reading the contents of different font

files. It can also read OpenType tables and store them in a local data structure. This

information is passed on to the renderer that is involved in generating images of

corresponding input characters. This is done by first locating the glyph index of input

characters. Then the outline of glyph is generated. The application using FreeType simply

loads/ copies the outline. This is displayed on location based on the current cursor

position of the application.

Although FreeType is OpenType table ‘literate’, this degree of OpenType support is not

enough. The engine already reads OpenType files perfectly and holds all OpenType rules

 16

within itself but what it does not do is handle or process these rules. A script and rule

processing service such as uniscribe in Windows is essential for correct complex text

layout. FreeType does not support such layout functionality. And as these items were

precisely omitted from the library ‘by design’; there is no plan to provide such support.

As an alternate to this ‘missing layer’ in FreeType, a ‘Script Processing Service’ by the

name of Pango exists side by side. It is only a text layout engine and uses FreeType as a

font engine. This is discussed in more depth in the next section.

3.3. Pango

Pango is a layer one level higher than FreeType. Pango is a library for laying out and

displaying internationalized text. It handles almost every writing system in the world, and

can work on top of multiple different display systems – including traditional X fonts, or

client-side OpenType fonts. Pango is used for all text handling in the soon to be released

version 2.0 of the commonly used GTK+ widget toolkit [11].

Rendering of Urdu or Arabic text in not simple. Unlike English, it is not a matter of

picking up the correct symbol from the font and displaying them in the order in which

they occur. Had this been the case then all that is required is a font listing all the

characters in the worlds according to their Unicode. But due to the complexity of

different scripts this is not the case.

The first issue encountered in multi-lingual text processing is the direction of writing of

the language. Languages such as Arabic and Hebrew are written from right-to-left,

instead of from left-to-right, so the rendering process needs to be able to deal with that

ordering. Things get further complicated when the text in these languages can be a

mixture of both right to left text and left-to-right text e.g. numbers, which according to

the Unicode Standard are always written from left to right. A complicated reordering

process is needed that can map the actual in-memory input string to the glyph being

displayed.

 17

Urdu/Arabic also introduces some other complications. This is the context sensitivity of

these languages. In these languages the shape of each character is different depending on

whether it occurs in isolation or at the beginning, middle or the end of a word. So there

should be some mechanism that could determine the right glyph of the character

depending on its position or context within the word.

The Pango library was designed to handle these complexities. It serves as module that

holds all the knowledge about various languages and scripts, and utilizes this information

to properly layout each language. Thus providing a higher level of abstraction, where the

application (e.g. Gedit) simply presents this library with a chunk of text and all the low

level details like laying out the text, applying script specific operations on the text,

choosing glyphs and rendering it etc. is done by the library. A detailed description of

Pango architecture is presented in the next chapter.

 18

Chapter 4

4. The Architecture of Pango

The goal of the Pango project is to provide an open-source framework for the layout and

rendering of internationalized text in Linux. Pango uses Unicode for all of its encoding,

and will eventually support output in all the world's major languages. Pango was

designed to be a text layout engine. It encapsulates all the necessary knowledge about

various languages and scripts and presents the application programmer with generic

model of lines and paragraphs [11].

4.1. High Level Architecture

It consists of two major components as shown in figure 4 below. The first of these is the

PangoLayout module. This module takes in a Unicode input along with a list of

formatting attributes to apply to the different sections of the text and returns a glyph

string after applying all the necessary script and OTF operation. The attributes usually

are the font name, size, left/right aligned etc. Various properties, such as the line width,

line spacing, and indentation, can also be set on the entire layout [11]. The second

module referred to as the rendering component of Pango takes glyph images and gets

them presented on screen.

Figure 4 High Level Architecture of Pango

The PangoLayout module is responsible for the actual processing of scripts and is the

centre of focus here. The PangoLayout component can discretely be further broken down

into two elements. The first of these is the ‘Pango Core’ module. This contains core

Pango functionalities such as itemization, line breaking etc. In addition to this it is also

PangoLayout Rendering
Component

Unicode string Glyphs Glphs displayed
on output device

 19

the central processor that manages the working and functioning of the other two modules

viz. the Unicode Script processing module and a rendering system as shown in Figure 5

below.

Figure 5 Detailed Architecture of Pango

Application

Pango

PANGO CORE

UNICODE SCRIPT
PROCESSOR

Win32 GDI Xft Font Library Xlib

RENDERING BACKEND

X11 Window FreeType Xft

libpangoft2libpangox libpangoXft

Font
File

X Font
File

X Font
Server FreeType

 20

4.2. Pango Core Component

The Pango Core module’s basic task is to subdivide strings of characters into items (a

character string having all the same script and direction attributes). Then based on the

contents of each item, the text is processed. It also supports line breaking at word

boundaries, hit testing and cursor positioning. Character-to-glyph mapping is provided by

FreeType routines. The core module also manages bidirectional character reordering

using the Unicode bidirectional algorithm.

4.3. Unicode Script Processor

After the Pango core module has divided the strings of characters into items, these items

are passed over to the Unicode Script Processor. All the characters in one single item

belong to the same script, according to the definition of itemization. So, depending on

the script to which these characters belong to, the Unicode Script Processor applies the

corresponding script processing operations on each item.

In Arabic this would be to assign a type ‘base glyph’ to for example Unicode 0628

(Unicode for letter bay) and ‘mark glyph’ to say Unicode input of 064E for diacritical

mark zabr. This can further be extended to determine the positional shape of each letter

that is should acquire by assigning initial, medial final or isolated tag to each letter.

Similarly for Dzongkha this would be to do character reordering whereby characters must

be rearranged from logical (keystroke) order to visual order. It is necessary here to make

a distinction that these operations are specific to the script and are applicable to all

languages belong to the same script.

The main reason for including the text layout and script semantic algorithms within

Pango is to avoid unnecessary overhead in font files or applications. This relieves the

font developer from having to define generalized script rules within a font.

Moving into the physical internals of the Unicode Script Processor, it comprises of

separate modules for each script though these modules, also called language modules.

 21

Each language module exists as a separate entity. Each language module can be

considered as a library that is dynamically loaded when a script corresponding to that

language has to be processed. As an example the Arabic module contains code specific to

Arabic languages such as Arabic, Urdu etc. and is dynamically loaded by the ‘Pango

Core’ when Arabic text is to be processed by the main application (such as Gedit).

4.4. Rendering Component

The ’Pango Core’ module does not handle rendering, nor does the Unicode Script

Processor. The rendering component of Pango was therefore designed to do this job. The

Pango rendering component is designed to support four different systems: the X11, Xft,

FreeType and Windows subsystems. Each of these subsystems further provide support

for traditional X fonts, for client-side fonts (both X fonts and TrueType) using the Xft

library and Xrender extension [Packard], for fonts rendered locally using the FreeType

library, and for fonts in the Win32 API respectively. Also, Pango uses the Xft font library

and Xlib library to interface with the Xft and X11 subsystems respectively. The interface

to Xlib and Xft is very inconvenient. So Pango provides its own helper libraries to

interface with Xlib and Xft font library. These rendering-specific libraries i.e.

libpangox*, libpangoXft*, libpangoft* and libpangowin*, included with Pango

(contained in rendering module) can be compiled to support the four above mentioned

subsystems.

Only recently efforts were made to integrate the four libraries i.e. libpangox*,

libpangoXft*, libpangoft* and libpangowin* in to one single library. This effort was

successful and the resulting Pango architecture is given in figure 6 below:

Figure 6 Integration of 4- rendering subsystems

RENDERING BACKEND

X11 Window FreeType

Xft

 libpangoft2 libpangox libpangoXft

RENDERING BACKEND

Rendering Library

 22

At the present the Xft backend has the largest set, including modules for Arabic, Hebrew,

Thai, Korean and 7 different Indic languages. The Xft library uses FreeType as a font

engine and glib for display. It also interfaces with the Xlib, but does not require it. The

Pango rendering engine has already dropped the traditional X font support in version 1.3

(development version) [11]. Moreover the Gnome environment also uses the Xft

backend for rendering all TrueType fonts. As X fonts are not within the scope of this

thesis, any future reference to fonts will imply TrueType fonts in general

 23

Chapter 5

5. Arabic Text Processing in Pango

After discussing the architecture of Pango in depth, the discussion is extended to how

Arabic text is processed in Pango and what role the three components have. This is

shown in figure 7 below.

 Figure 7 Arabic Text Processing in Pango

Font
File

APPLICATION
(Gedit, Gnome env.)

 1

 2
 3 4

Unicode string

Request for OT tables

GSUB
TABLE

GPOS
TABLE

GDEF
TABLE Load

Tables

Read OT
tables

OT_RULESET

Ruleset

Processor:
Shape()

Pango Core

Rendering
Backend

Glyph string/
Metrics Info

Freetype

Arabic Module

 24

5.1. Pango Core: Itemization & Textual Boundaries Resolution

After the Unicode character string is passed over to Pango by some application say Gedit,

it is sent to the ‘Pango Core’ module (step 1). Here the input stream is itemized. That is a

character string having all the same script and direction attributes is separated. In case of

rich text format, these substrings are further broken down according to their format.

After itemization, comes the boundary resolution process. Textual boundaries such as

word boundaries and line breaks are determined for each item. Then the substring or

item that belongs to one script, has the same format and does not have any line/paragraph

break is passed over to the Unicode script processor (step 2). It first analyzes the item to

determine its script, which say in this case is Arabic. Based on this analysis, the string is

then forwarded to the Arabic language module contained within the Unicode Script

Processor (USP).

5.2. Pango Unicode Script Module: Unicode to Positional Form

The USP is the core Script Processing Module and contains the useful script specific

information. The high level architecture of USP is shown in figure 8 below. This string is

sent to the shape module which transforms glyph indexes to glyphs along with its metric

information. OpenType rules are also applied at this stage.

Figure 8 The Unicode Script Processor

UNICODE SCRIPT PROCESSOR

Language

Module
Shape
Module

Unicode text

Glyphs plus their
metrics structure

Tagged Unicode text

 25

5.2.1 Language Module

The language module performs some script dependent initial preprocessing on input

string. It also coverts the Unicode input to glyph output. In Arabic this would be to

assign a type ‘base glyph’ to for example Unicode 0628 (Unicode for letter bay) and

‘mark glyph’ to say Unicode input of 064E for diacritical mark zabr. It will not be wrong

to say that this would actually require a large database containing this information. This

initial processing can further be extended to determine the position of letter that is

whether it is in initial, medial final or isolated place.

For e.g. to the input string kaf, tay, alif and bay (kitab), sent by the application, initial

medial final and isolated tag would be assigned to kaf, tay, alif and bay respectively. In

short, various properties are assigned to each character in string. A brief description of

how this is done is given next.

Arabic has two different types of letters; those that can connect with both the previous

letter and next letters and those that can only connect with the previous letter. The latter

type is some time referred to as separators. In Pango terminology the former are referred

to as dual while latter is named as right, because they connect from right only, the

previous letter, considering Urdu is written is from right to left. Here is a sample code of

how the medial property is assigned to tay in word kitab (example given in previous

paragraph)

if (previous == dual) /* if previous is a non-seperator */

 if (current == dual) /* if current is a non-seperator */

 if (next == right || next == dual) /* if next is a letter of any type */

 properties[i] = medial_p; /* The current is medial */

Similarly property field of letters in initial, final and isolated position is assigned the

values initial_p, final_p and isolated_p respectively. The table 2 below shows the

assignment.

 26

The letter previous to tay should not be a separator, so the first condition simply checks

the dual feature of previous letter. Then for tay to be classified as medial and not final, a

second check is made to see that it is followed by another letter. This letter can be either

a separator or a non separator. If however tay is followed by a space or vowel mark then

tay is classified as final

Table 2 Binary Tags assigned to isolated, initial, medial and final forms

The need for such assignment becomes apparent here:

“According to OTF specifications, all rules are associated with one of the

registered feature. These features are defined to represent a particular

typographic behavior. As an example the ‘init’, ‘medi’ and ‘fina’ features

symbolizes respectively the initial, medial or final character behavior in Arabic.

Therefore all initial, medial and final rules are specifically listed under the

respective features.”

Now a letter can occur at and have a rule defined for each initial, medial, final and

isolated position. If the text processor encounters this letter in the input string then which

of these rules should be applied. This is where this ‘pre-processing’ helps. Referring back

to example of kaf, assigning initial tag to ‘kaf’ helps the text layout engine to determine

that the possible substitution rules to be applied on ‘kaf’ are to be looked for under the

‘init’ feature. Consider it the other way around, assigning initial tag to ‘kaf’, informs the

text layout engine that it should not apply the rules under the ‘medi’, ‘fina’ and ‘isol’

Property Binary

value

Isolated_p 0000 1110

medial_p 0000 1101

Final_p 0000 1011

initial_p 0000 0111

 27

feature. In short, it saves language and script information within the text stream to clearly

associate character codes with typographical behavior. Once the properties are assigned,

the text processing begins (step 3 in figure 7).

5.2.2 Shape Module

The shape module can be considered the central processing unit for Pango. It the

designed to process the Unicode text after it has been properly pre-processed by the

language module. This involves ‘searching’ the OpenType tables (that have already been

loaded in to the OT_RULESET structure of Pango through the FreeType library) to get

the rules for the corresponding input string. If a match is found the corresponding rule is

processed. Throughout this process Pango keeps track of the association between the

character codes for the original text and the glyph indices of the final text.

TrueType Level Processing

Applying the corresponding OTF rules to the tagged Unicode input string to convert it to

output glyphs is done by the shape module of the USP. This conversion is done in three

steps. The first step is exactly like how English text is processed in TrueType

environment. That is each Unicode character is mapped onto its corresponding glyph

index. These glyph indexes usually (or always) contain the isolated forms of the input

characters. The mapping of character codes to the glyph index values used in the font is

defined in the cmap table. It may contain more than one sub table, in order to support

more than one character-encoding scheme. Character codes that do not correspond to any

glyph in the font are mapped to glyph index 0. The glyph at this location must be a

special glyph representing a missing character.

OpenType Level Processing

Once all the Unicode characters have been translated to ‘default’ glyph indexes, the new

‘glyph string’ along with its properties string (tagged information) is now ready for

OpenType processing viz. the second step of shape module. The glyph string and the

properties string are collectively called PangoString in Pango. The processing is done as

 28

follows: Each lookup is applied to each letter in the string. Lookup is a very popular sub

table in the OTF formalism. A brief description is given next.

The information used to substitute and position glyphs is defined in Lookup sub tables.

Each sub table supplies one type of information, depending upon whether the lookup is

part of a GSUB or GPOS table. For instance, a GSUB lookup might specify the glyphs to

be substituted and the context in which a substitution occurs, and a GPOS lookup might

specify glyph position adjustments for kerning. More can be read from the OTF

specification at http://www.adobe.com/type/opentype/main.html.

All initial rules pertaining to all the characters in a given script are listed under one

lookup tables. Similarly all medial and final rules are specified in separate lookup tables.

Each of these lookups is associated with the ‘init’, ‘medi’ and ‘fina’ features respectively.

Also, all these lookup tables combine to form the TTO_lookuplist. The structure of

TTO_lookuplist, according to OT specification is:

struct TTO_LookupList

 {

 FT_UShort LookupCount; /* number of Lookups */

 TTO_Lookup* Lookup; /* array of Lookup records */

 };

At present, with the exception of the four (‘isol’, ‘init’, ‘medi’ and ‘fina’) features already

discussed, Pango does not support any other OT features. It therefore does not recognize

those lookups that are associated with the other features such a ‘liga’ and ‘calt’. So,

coming back to the working of the shape module, each of the lookup, recognized by

Pango, is tried on every element of the ‘glyph string’. At this point the properties string,

that has the tags for each input character is utilized to determine for which character

which lookup should be allowed.

As an example if a particular character ‘C’ has an initial_p tag, then the lookup ‘I’

associated with the ‘init’ feature is allowable for that character. That is, the rules for ‘C’

 29

are to be searched in ‘I’. If such a rule is found it is ‘fired’ and the shape of letter is

transformed from default to its initial form. The lookups associated with the ‘medi’ or

‘fina’ feature become unallowable for ‘C’ and are simply ignored. How is this

comparison made?

A third field is added to the TTO_lookuplist. This is the properties field.

 struct TTO_LookupList

 {

 FT_UShort LookupCount; /* number of Lookups */

 TTO_Lookup* Lookup; /* array of Lookup records */

 FT_UShort* Properties; /* array of flags */

 };

The `Properties' field is not defined in the TTO specification but is needed for processing

lookups. Every lookup has a property field. The table 3 below shows the assignment.

Lookup Properties

Binary value

Isolated 0000 0001

Medial 0000 0010

Final 0000 0100

Initial 0000 1000

Table 3 Binary Tags assigned to lookups for isolated, initial, medial and final forms

Now all that is required is to process Lookup [n] for glyphs that have the specific bit not

set in the `properties' field of the input string object. Finally in the third step, the shape

module translates the glyph indexes to glyph outlines. Then these outlines are

transformed to bitmaps. The glyph shapes along with the position/metric information are

passed over to the rendering module. The rendering module displays them on screen.

 30

PART TWO

The Problem

 31

Chapter 6
6. The Alternating Thick-Thin-Thick Joins

Initially Pango fully supported the four ‘isol’, ‘init’, ‘medi’ and ‘fina’ features already

discussed. Its also provide support for contextual substitution through the OpenType

Glyph Substitution Table type 7 viz. Chain Contextual Substitution. In addition to this

OpenType also specifies another table. This is Reverse Chain Contextual Single

Substitution table type 8. This table was not yet incorporated into Pango. It was however

useful in modeling the left-to-right context dependency drifts in complex script like

Nastaleeq. Implementation of this table will enable the modeling of Urdu scripts

according to its natural way of writing.

It describes single glyph substitutions in context with an ability to look back and/or look

ahead in the sequence of glyphs. The major difference between this and other lookup

types is that processing of input glyph sequence goes from end to start. This format is

restricted to only coverage based subtable format. Also only single substitution allowed

on input glyph that matched one of the glyphs in the Coverage table and has the context

according to BacktrackCoverage and LookaheadCoverage (if applicable).

6.1. Usefulness

Its usefulness can best be understood by analyzing some of the properties prevalent in the

common Urdu writing systems.

6.1.1 Variation in Shape of Join to Break Monotony

It is possible that many similar joins come together in a ligature, as in many Bay’s

connected to each other. In such a case, the similar shape of the joins renders it difficult

to make out what is written i.e. the perception of the joins becomes difficult. That is why

whenever similar cusp-like joins come together, the monotony of their shape is

intentionally broken by differing the shape of alternate joins.

 32

When two or more Bay’s (or Bay-like joins) come together, every alternate join is raised

to make it different from the surrounding ones. This helps in the perception i.e. reading of

the Nastaliq text.

The principle is illustrated below with some examples.

The raised join is shown in red circle.

6.1.2 Frequency of Usage of Raised Joins

It has been mentioned in the above section that the raised joins or raised cusps are used to

break the monotony of the similar joins when several cusps come together. The frequency

of usage of the raised and unraised joins is almost equal. Hence, a ligature can in

principle be formed in either of the two ways: raised joins coming in between unraised

ones and unraised joins coming in between raised ones. However, in practice, the first

one is preferred as discussed below.

Starting with the unraised join, every second one is raised.

Starting with the raised join, every second one is unraised.

 33

6.1.3 Minimization of Number of Raised Joins

The alternation of raised and unraised cusp-like joins is to be preferably constrained in

such a way that the number of raised cusps is minimized.

This principle is illustrated with the following examples.

When six Bay’s come together, the number of raised joins is minimized if we start with a

raised join.

Note: Same is true for Naskh script.

6.2. Modeling Using OTF Technology

Although such variation can be modeled using the GSUB Lookup type 6 viz. chaining

contextual substitution of the OpenType specification, this has certain limitations.

Consider the following word:

This has six different shapes. Starting from left to right these can be named as FinalBay,

bayMediBfBayFinal, bayMediTiny, bayMediThick, bayMediThin, bayInitThick. Let's try

to define contextual alternate (calt) rules for this word using contextual chain substitution

table. Assume initially all medial and initial bays have shape bayMedi1 and bayInit1

respectively, acquired after the application of the ‘medi’ and ‘init’ feature.

 34

6 6 6 6 6 6
FinalBay bayMedi1 bayMedi1 bayMedi1 bayMedi1 bayInit1

Lookup 1

The first lookup will transform the bay immediately before final bay.

bayMedi1 bayMediBfBayFinal

 whenever it is followed by bayFinal.

As a result we get:

6 6 6 6 6
FinalBay bayMediBfBayFinal bayMedi1 bayMedi1 bayMedi1 bayInit1

Lookup 2

The second lookup will transform the third last bay to its correct form.

bayMedi1 bayMediTiny

 whenever it is followed by bayMediBfBayFinal.

The string now looks like:

6 6 6 6
FinalBay bayMediBfBayFinalbayMediTiny bayMedi1 bayMedi1 bayInit1

 35

Lookup 3

The third lookup will transform the fourth last bay to its correct form.

bayMedi1 bayMediThick

 whenever it is followed by bayMediTiny

The string now looks like:

6 6 6 6
FinalBay bayMediBfBayFinalbayMediTinybayMediThick bayMedi1 bayInit1

Lookup 4

The fourth lookup will transform the second bay to its correct form.

bayMedi1 bayMediThin

Similarly for initial bay we can have

bayInit1 bayInitThin

 whenever it is followed by bayMediThick

The string now looks like:

6 6 6 6
FinalBay bayMediBfBayFinalbayMediTinybayMediThickbayMediThin bayInit1

Lookup 5

And finally for the initial bay we have

bayInit1 bayInitThick

Similarly for medial bay we can have

bayMedi1 bayMediThick

 whenever it is followed by bayMediThin

 36

6 6 6
FinalBay bayMediBfBayFinalbayMediTinybayMediThickbayMediThinbayInitThick

Once the lookups are defined, they are processed on the input string that contains 6 bays

after the initial, medial and final rule have been applied.

Direction of

Processing

Input string

‘in’
in[5] in[4] in[3] in[2] in[1] in[0]

Pre-calt FinalBay bayMedi1 bayMedi1 bayMedi1 bayMedi1 bayInit1

After lookup1 FinalBay bayMediBfBayFinal bayMedi1 bayMedi1 bayMedi1 bayInit1

After lookup 2 FinalBay bayMediBfBayFinal bayMediTiny bayMedi1 bayMedi1 bayInit1

After lookup 3 FinalBay bayMediBfBayFinal bayMediTiny bayMediThick bayMedi1 bayInit1

After lookup 4 FinalBay bayMediBfBayFinal bayMediTiny bayMediThick bayMediThin bayInit1

After lookup 5 FinalBay bayMediBfBayFinal bayMediTiny bayMediThick bayMediThin bayInitThick

As a result we get the desired output. Now consider the string of length 7, that contains

all bays.

Direction of

Processing

Input string

‘in’
in[6] in[5] in[4] in[3] in[2] in[1] in[0]

Pre-calt FinalBay bayMedi1 bayMedi1 bayMedi1 bayMedi1 bayMedi1 bayInit1

After

lookup1
FinalBay bayMediBfBayFinal bayMedi1 bayMedi1 bayMedi1 bayMedi1 bayInit1

After

lookup 2
FinalBay bayMediBfBayFinal bayMediTiny bayMedi1 bayMedi1 bayMedi1 bayInit1

After

lookup 3
FinalBay bayMediBfBayFinal bayMediTiny bayMediThick bayMedi1 bayMedi1 bayInit1

 37

At this stage baymedi1 at second index (in [1]) should also get transformed to bayInitThick, but this

did not happen because the context after, as given in lookup 3, for it is bayMediTiny. In this case

however it is followed by bayMedi1 so the rule does not apply. The lookup 3 there fore requires

modification. Continuing with the remaining lookups we get:

After

lookup 4
FinalBay bayMediBfBayFinal bayMediTiny bayMediThick bayMediThin bayMedi1 bayInit1

After

lookup 5
FinalBay bayMediBfBayFinal bayMediTiny bayMediThick bayMediThin bayMediThick bayInit1

Hence we get an erroneous output.

Modification of Lookup 3

Since the processing of lookups goes from start to end, the glyph at index 1 is processed

before glyph at index 3. Accordingly the lookup 3 after modifications become

bayMedi1 bayMediThick

 whenever it is followed by bayMediTiny or

 whenever it is followed by baymedi1 baymedi1 bayMediTiny

This solution leads to another problem. For the word of length 9, the lookup has to be

again modified to

bayMedi1 bayMediThick

 whenever it is followed by bayMediTiny or

 whenever it is followed by baymedi1 baymedi1 bayMediTiny or

 whenever it is followed by baymedi1 baymedi1baymedi1 baymedi1

bayMediTiny

In conclusion, the longer the word, the bigger the context. Clearly such problem could

not be addressed with the current contextual substitution support. The implementation of

the reverse chain contextual substitution was essential.

 38

Chapter 7

7. The Lookup Processing Algorithm at Work

7.1. The Algorithm

The lookup processing algorithm can best be described in the following word:

“During text processing, a client applies a lookup to each glyph in the string before

moving to the next lookup. A lookup is finished for a glyph after the client locates the

target glyph or glyph context and performs a substitution, if specified.” (OTF)

That is all lookups are applied on all the glyph. This makes the algorithm very inefficient.

Consider a situation when a glyph has absolutely no substitution rule but it is still tested

and tried on all lookups. Things get worse when a font like Nafees Nastaleeq has a huge

number of substitution lookups. A glyph is rigorously looked through over some 100

lookups and if this glyph has no substitution rule defined then one can imagine the text

processing engine wasting lot of time doing nothing.

7.2. Experiment: Determining the Hit Ratio

A small experiment was conducted to find out the hit ratio. Of the total number of times a

lookup is searched for a glyph, Hit is defined to be a situation where:

1. Glyph is searched in a lookup AND

2. A substitution rule for that glyph is listed in the lookup AND

3. The look-ahead and back-track context in lookup matches the context of the

glyph

i.e. a glyph is successfully substituted when the given lookup is applied on it.

7.2.1 Nature of Data

Data that was used for the experiment was all valid 3-character and 4-character ligatures

listed in [12]. There are about 3000 3-characters ligatures and more than 6000 4-character

ligatures. The fonts used were Nafees Nastaliq and Nafees Naskh.

 39

7.2.2 Methodology and Result

For each font and for every ligature the hit (or success) and trail were calculated. This can

be explained with a small example. Consider a ligature bay-bay-alif. After application of

the initial, medial and final lookup the resulting input string is:

Bayinit1 onenuqtabelow baymedi1 onenuqtabelow aliffina

Now each glyph in the string is tried on 104 lookups (in Nafees Nastaliq). The total

number of accesses are 102 * 5 = 510. In this ligature of all the glyphs, only bayinit1 is

substituted for another glyph. Thus of the 510 time a glyph was searched in a lookup, the

number of times a substitution took place or there was a success was only once.

For the entire data set it was observed that that the hit ratio is well below 0.50%. (For the

above data the hit percentage is 0.19% only.) This detailed analysis shows that this

algorithm has lot of overhead and can be improved.

 40

Chapter 8

8. The Problem Statement

“Enhancing Contextual Substitution Support for Urdu in Pango Using OpenType”

As have already been discussed, the OpenType Support in Linux is in a pre-mature stage.

This limited support is available through the Pango text processing library in the

GNOME environment. Also, some contextual substitution is possible but this is still not

adequate enough to properly layout Urdu (scripts). For example, it could not process the

context sensitive substitution rules essential for correct rendering of Nafees Nastaliq and

Nafees Naskh scripts

Furthermore, writing styles commonly used for Urdu language are highly context

sensitive and consequently their full realization requires a huge contextual substitution

grammar. The lookup processing algorithm, specified by OpenType specifications, is

very inefficient for large grammar set. This makes the processing of OpenType fonts that

model and implements this grammar, very slow and inconvenient for use.

This enhancement of contextual substitution support in Pango as outlined by the problem

statement will therefore focus on two dimensions. The first dimension would be the

physical expansion towards completeness of substitution support in Pango library. In the

first phase, the OpenType tables that had already been implemented by the Pango

Research Group, but were inconsistent and buggy will be fixed and patched. In addition a

new OpenType Glyph Substitution type 8 Reverse Chain table which was specifically

designed to support the left-to-right context dependency drift in scripts like Nastaliq, will

be added to total the OpenType substitution support in Linux.

 41

The other dimension is performance that is the efficiency in processing the substitution

tables. In this phase the OpenType rule processing algorithm, proved to be very

inefficient, will be improved to provide a more efficient mechanism for processing the

lookups on the input string.

 42

PART THREE

The Proposed Solution

 43

Chapter 9

9. Reverse Chain Contextual Substitution Table

Implementation of the Reverse Chain Contextual Single Substitution will enable the

modeling of Urdu scripts according to its natural way of writing. This has already been

explained in chapter 5. The solution to the missing Reverse chain table is to implement

one.

Reverse Chaining Contextual Single Substitution subtable describes single glyph

substitutions in context with an ability to look back and/or look ahead in the sequence of

glyphs. The major difference between this and other lookup types is that processing of

input glyph sequence goes from end to start. This format is restricted to only coverage

based subtable format. Also only single substitution allowed on input glyph that matched

one of the glyphs in the Coverage table and has the context according to

BacktrackCoverage and LookaheadCoverage (if applicable).

Before moving on to the design and implementation of this table let us re-look the

problem in chapter 6 and how introducing a reverse chain lookup solves the problem.

9.1. Introducing a Reverse Chain Lookup

Consider the 5 lookups specified in chapter 5. Clearly these were unable to model the

thin-thick-thin variation in Nastaleeq. Using reverse chain table however makes it

possible remove this discrepancy. Assuming the existence of all the lookup tables listed

in chapter, a small modification to lookup 3 solves the problem indefinitely.

Lookup 3 re-visited

1. Change type from contextual chain table to reverse chain table.

2. bayMedi1 bayMediThick

 whenever it is followed by bayMediTiny or

 whenever it is followed by baymedi1 baymediThick

 44

9.2. Implementation

The reverse chain lookup type 8 can be incorporated into the current glyph substitution

support in three steps. The first step is to include a reverse chain contextual substitution

table in the GSUB table which in turn requires a structure for holding the reverse chain

substitution lookup tables. The second step is to load these tables and the third step is to

apply these lookups on the input glyph string.

9.2.1 Adding Reverse chain substitution table to GSUB table

The current glyph substitution capacity of Pango extends till substitution type 6. Type 7

is the for extension table. The type 8 reverse chain table was included in GSUB table by

adding
 TTO_ReverseChainContextSubst reverse;

The reverse chain contextual substitution table as specified by OT is given in table 4

below

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table - from beginning
of Substitution table

uint16 BacktrackGlyphCount Number of glyphs in the backtracking
sequence

Offset Coverage[BacktrackGlyphCount] Array of offsets to coverage tables in
backtracking sequence, in glyph
sequence order

uint16 LookaheadGlyphCount Number of glyphs in lookahead sequence

Offset Coverage[LookaheadGlyphCount] Array of offsets to coverage tables in
lookahead sequence, in glyph sequence
order

uint16 GlyphCount Number of GlyphIDs in the Substitute
array

GlyphID Substitute[GlyphCount] Array of substitute GlyphIDs-ordered by
Coverage Index

Table 4 ReverseChainSingleSubstFormat1 subtable: Coverage-based Reverse Chaining Contextual Single
Glyph substitution .

The corresponding structure for the GSUB Lookup type 8 i.e. Reverse Chaining

Contextual Substitution format 1 table is given below. The data fields are according to

the Freetype 2 conventions. FT_UShort is redefinition of unsigned integer (2 bytes).

 45

TTO_Coverage is also a data structure for holding the coverage information contained in

the coverage table.

The subtable given above contains Coverage table for input glyph and Coverage table

arrays for lookahead and backtrack sequences, also count of output glyph indices in the

Substitute array (GlyphCount), and a list of the output glyph indices. The Substitute array

must contain the same number of glyph indices as the Coverage table. To locate the

corresponding output glyph index in the Substitute array, this format uses the Coverage

Index returned from the Coverage table.

Struct ReverseChainContextSubstFormat1
{
 FT_UShort SubstFormat,
 TTO_Coverage Coverage,
 FT_Short BacktrackGlyphCount,

TTO_Coverage* BacktrackCoverage,
FT_Short LookaheadGlyphCount,
TTO_Coverage* LookaheadCoverage,
FT_Short GlyphCount,
FT_Short* Substitute,

}

Struct ReverseChainContextSubst
{
 ReverseChainContextSubstFormat1 rccf1;
}

9.2.2 Loading the Reverse chain substitution table

Routine 1:
 FT_Error Load_ReverseChainContextSubst(

TTO_ReverseChainContextSubst* rccs,
FT_Stream stream)

 {

 FT_Error error;

 if (ACCESS_Frame(2L)) /* Read 2 bytes of data */
 return error;
 rccs->SubstFormat = GET_UShort(); /* First two bytes is the

 format of table */

 FORGET_Frame();

 switch (rccs->SubstFormat)
 {
 /* Reverse chain currently has format 1 */

case 1:
return Load_ReverseChainContextSubst1(&rccs->rccsf.rccsf1, stream);

 46

 default:
 return TTO_Err_Invalid_GSUB_SubTable_Format;
 }
 }

Routine 2:
 static FT_Error Load_ReverseChainContextSubst1(

 TTO_ReverseChainContextSubstFormat1* rccsf1,
 FT_Stream stream)

 {
 FT_Error error;
 FT_Memory memory = stream->memory;

 FT_UShort m, count;
 FT_UShort nb = 0, nl = 0;
 FT_UShort backtrack_count, lookahead_count;
 FT_ULong cur_offset, new_offset, base_offset;

 TTO_Coverage* b;
 TTO_Coverage* l;
 FT_UShort* sub;

 base_offset = FILE_Pos() - 2;

 if (ACCESS_Frame(2L))
 return error;

 new_offset = GET_UShort() + base_offset;

 FORGET_Frame();

 cur_offset = FILE_Pos();

 if (error = Load_Coverage(&rccsf1->Coverage, stream) != TT_Err_Ok)
 return error;

 /* Input coverage loaded */
 if (ACCESS_Frame(2L))
 goto Fail5;

 rccsf1->BacktrackGlyphCount = GET_UShort();
 FORGET_Frame();

 rccsf1->BacktrackCoverage = NULL;

 backtrack_count = rccsf1->BacktrackGlyphCount;

 if (ALLOC_ARRAY(rccsf1->BacktrackCoverage, backtrack_count,
 TTO_Coverage))
 return error;

 b = rccsf1->BacktrackCoverage;

 for (nb = 0; nb < backtrack_count; nb++)
 {
 if (ACCESS_Frame(2L))
 goto Fail4;

 new_offset = GET_UShort() + base_offset;

 FORGET_Frame();

 47

 cur_offset = FILE_Pos();
 if (error = Load_Coverage(&b[nb], stream) != TT_Err_Ok)
 goto Fail4;
 }

 /* Backtrack coverage loaded */

 if (ACCESS_Frame(2L))
 goto Fail4;

 rccsf1->LookaheadGlyphCount = GET_UShort();
 FORGET_Frame();

 rccsf1->LookaheadCoverage = NULL;

 lookahead_count = rccsf1->LookaheadGlyphCount;

 if (ALLOC_ARRAY(rccsf1->LookaheadCoverage, lookahead_count,
 TTO_Coverage))
 goto Fail4;

 l = rccsf1->LookaheadCoverage;

 for (nl = 0; nl < lookahead_count; nl++)
 {
 if (ACCESS_Frame(2L))
 goto Fail2;

 new_offset = GET_UShort() + base_offset;

 FORGET_Frame();

 cur_offset = FILE_Pos();
 if (error = Load_Coverage(&l[nl], stream)!= TT_Err_Ok)
 goto Fail2;
 }

 /* Lookahead coverage loaded */

 if (ACCESS_Frame(2L))
 goto Fail2;

 rccsf1->GlyphCount = GET_UShort();
 FORGET_Frame();

 rccsf1->Substitute = NULL;

 count = rccsf1->GlyphCount;

 if (ALLOC_ARRAY(rccsf1->Substitute, count,
 FT_UShort))
 goto Fail2;

 sub = rccsf1->Substitute;

 if (ACCESS_Frame(count * 2L))
 goto Fail1;

 /* Loading Substitute */

 48

 int ncount = 0;
 for(ncount = 0; ncount < count; ncount++)
 sub[ncount] = GET_UShort();

 FORGET_Frame();

 return TT_Err_Ok;

 }
It is evident from the above routines that the reverse chain table is loaded dynamically

depending on the backtrackcount, lookaheadcount and glyphcount. As a result a routine

is required that releases this memory. Such routine is given below.

Routine 3:
 static void Free_ReverseChainContext1(

TTO_ReverseChainContextSubstFormat1* rccsf1,
 FT_Memory memory)
 {
 FT_UShort n, count;
 TTO_Coverage* c;

 /* Freeing LookaheadCoverage */
 if (rccsf1->LookaheadCoverage)
 {
 count = rccsf1->LookaheadGlyphCount;
 c = rccsf1->LookaheadCoverage;

 for (n = 0; n < count; n++)
 Free_Coverage(&c[n], memory);

 FREE(c);
 }

 /* Freeing BacktrackCoverage */
 if (rccsf1->BacktrackCoverage)
 {
 count = rccsf1->BacktrackGlyphCount;
 c = rccsf1->BacktrackCoverage;
 for (n = 0; n < count; n++)
 Free_Coverage(&c[n], memory);

 FREE(c);
 }

 /* Freeing InputCoverage */
 Free_Coverage(&rccsf1->Coverage, memory);

 }

9.2.3 Applying Reverse chain substitution table on input string

Lookups that fall under the ‘calt’ feature are applied to all the glyphs in the input string,

irrespective of whether the substitution table is contextual substitution type 5, chain

 49

contextual substitution table type 6 or reverse chain contextual substitution table type 8.

The generic algorithm for processing the lookups on input is quite simple.

Starting from lookup LK = 1 to lookupcount

 Starting from element IND = 1 to length(input string)

 Apply lookup LK on INDth index of input string

Although this algorithm is applicable for all type from 1 to 6, this may not be correct

from the reverse chain substitution table type 8. In this table the processing of input glyph

string goes from end to start.

One solution is to have separate processing mechanism for this table. But as is discussed

next this algorithm suffices for substitution type 8. The algorithm takes each lookup one

at a time and applies it from start to end, but once into the routine that actually applies or

processes the reverse chain lookup, the index value is recalculated so that is the exact

reflection of the original index value. This was easily calculated using:

new_IND = length (input string) - (IND + 1);

Hence the reverse chain lookup is applied on input string from end to start although the

algorithm operates from start to end. The routine that implements the manner in which

lookups are to be applied is given next. This is followed by a function that actually

processes the reverse chain lookup on the input string.

Routine 4:
 static FT_Error Do_String_Lookup(TTO_GSUBHeader* gsub,
 FT_UShort lookup_index,
 TTO_GSUB_String* in, TTO_GSUB_String* out)
 {
 FT_Error error, retError = TTO_Err_Not_Covered;

 /* Used a mirror for in->pos in case of LookupType 8 */
 FT_UShort new_in_pos;

 FT_UShort* properties = gsub->LookupList.Properties;
 FT_UShort* p_in = in->properties;
 FT_UShort* s_in = in->string;

 int nesting_level = 0;

 50

 while (in->pos < in->length)
 {
 if (~p_in[in->pos] & properties[lookup_index])
 {
 /* 0xFFFF indicates that we don't have a context length yet */
 error = Do_Glyph_Lookup(gsub, lookup_index, in, out,
 0xFFFF, nesting_level);
 if (error)
 {
 if (error != TTO_Err_Not_Covered)
 return error;
 }
 else
 retError = error;
 }
 else
 error = TTO_Err_Not_Covered;

 if (error == TTO_Err_Not_Covered)
 {
 /* LooupType 8 works from start to end */
 if(gsub->LookupList.Lookup[lookup_index].LookupType ==

GSUB_LOOKUP_REVERSE_CHAIN)
 {
 new_in_pos = in->length - (in->pos + 1);
 if (ADD_String_ReverseOrder(in, 1, out, 1,&s_in[new_in_pos],

0xFFFF, 0xFFFF))
 return error;
 }
 else
 if (ADD_String(in, 1, out, 1, &s_in[in->pos], 0xFFFF, 0xFFFF))
 return error;
 }

 }

 return retError;
 }

Note 1: If for a particular glyph the lookup does not apply due to mismatch of any coverage, then

simply copy the current glyph into the output string. In case of reverse chaining the glyph should

be placed on the appropriate location of the output string.

Before moving onto the code, a brief description of the working of the reverse chain

lookup on one particular glyph of input string is necessary. The OTF specification:

“When a text-processing client locates a context in a string of text, it finds the lookup

data for a targeted position and makes a substitution by applying the lookup data at that

location.”

N
o
t
e
1

 51

A generic algorithm following these terms is given below.

1. If backtrack count >0

Match the backtrack coverage with the glyph sequence immediately preceding

the current glyph

If match is not made

return error

2. Match the input coverage with the current glyph sequence

If match is not made

return error

3. If lookahead count >0

Match the lookahead coverage with the glyph sequence immediately

following the current glyph

If match is not made

return error

4. Apply the substitution rule on glyph and copy the resulting glyph on the output

string.

Based on this algorithm the corresponding code is given next.

Routine 5:
static FT_Error Lookup_ReverseChainContextSubst1(

TTO_GSUBHeader* gsub,
 TTO_ReverseChainContextSubstFormat1* rccsf1,

TTO_GSUB_String* in, TTO_GSUB_String* out,
 FT_UShort flags, FT_UShort context_length,

 int nesting_level)
 {

 FT_UShort index,input_index, i, j, curr_pos, property, new_in_pos;
 FT_UShort bgc, lgc;
 FT_Error error;
 FT_UShort* s_in;

 TTO_Coverage* bc;
 TTO_Coverage* lc;
 TTO_GDEFHeader* gdef;

 gdef = gsub->gdef;

 if (CHECK_Property(gdef, in->string[in->pos], flags, &property))

 52

 return error;

 bgc = rccsf1->BacktrackGlyphCount;
 lgc = rccsf1->LookaheadGlyphCount;

 if (context_length != 0xFFFF && context_length < 1)
 return TTO_Err_Not_Covered;

 /* check whether context is too long; it is a first guess only */

 if (bgc > in->pos || in->length - in->pos + lgc > in->length)
 return TTO_Err_Not_Covered;
 if (bgc)
 {

 curr_pos = 0;

 s_in = &in->string[curr_pos];

 bc = rccsf1->BacktrackCoverage;

 /*Reverse chaining goes from start to end.
 in->pos should be in->length - (in->pos+1)*/
 new_in_pos = in->length - (in->pos + 1);

 /* For ChainingContextSubst we had
 for (i = 0, j = in->pos - 1; i < bgc; i++, j--)*/

 for (i = 0, j = new_in_pos - 1; i < bgc; i++, j--)
 {

 while (CHECK_Property(gdef, s_in[j], flags, &property))
 {

 if (error && error != TTO_Err_Not_Covered)
 return error;

 if (j > curr_pos)
 j--;
 else
 return TTO_Err_Not_Covered;
 }

 error = Coverage_Index(&bc[i], s_in[j], &index);
 if (error)
 return error;
 }
 }

 curr_pos = in->length - (in->pos+1);
 s_in = &in->string[curr_pos];
 j = 0;
 error = Coverage_Index(&rccsf1->Coverage, s_in[j], &input_index);

 if (error)
 return error;

 /* we are starting for lookahead glyphs right after the last context
 glyph */

 curr_pos += 1;
 if(curr_pos >= in->length)
 return TTO_Err_Not_Covered;

 53

 s_in = &in->string[curr_pos];
 lc = rccsf1->LookaheadCoverage;

 for (i = 0, j = 0; i < lgc; i++, j++)
 {
 while (CHECK_Property(gdef, s_in[j], flags, &property))
 {
 if (error && error != TTO_Err_Not_Covered)
 return error;

 if (curr_pos + j < in->length)
 j++;
 else
 return TTO_Err_Not_Covered;
 }
 error = Coverage_Index(&lc[i], s_in[j], &index);
 if (error)
 return error;
 }

 FT_Short val[1];
 val[0] = rccsf1->Substitute[input_index];

 ADD_String_ReverseOrder(in, 1, out, 1,val,0xFFFF,0xFFFF);
 return 0;
 }

 54

Chapter 10

10. Enhancement in Lookup Processing Algorithm

The lookup processing algorithm

“During text processing, a client applies a lookup to each glyph in the string before

moving to the next lookup. A lookup is finished for a glyph after the client locates the

target glyph or glyph context and performs a substitution, if specified.” (OTF) [1]

A detailed analysis shows that this algorithm has lot of overhead. All lookups are applied

on all the glyph. Consider a situation when a glyph has absolutely no substitution rule but

it is still tested and tried on all lookups. Data collected from applying all possible 3-

character and 4-character ligatures on two Urdu fonts Nafees Naskh and Nafees

Nastaleeq show that the percentage of successful trail of lookup is well below 0.75%.

An alternate to this mechanism was an introduction of a glyph-lookup matrix. A two-

dimensional array in which the rows are equal to number of glyphs in the font while

columns equal to number of lookups. A row j in this matrix listed all the lookups that had

the rule for the glyph j; In order to limit the size of matrix, the glyph that did not have any

contextual substitution rule had no column. But if a glyph had at least one lookup table

specifying a rule for that lookup, then a column equal to number of lookups was

dynamically allocated. If glyph j only had a rule in lookup n then the glyph-lookup matrix

[j][n] = 1 and rest of the elements in the jth row have a 0.

Before a lookup is tried or accessed for a given input, this matrix is referred. As a result

lookup is only searched if it does indeed have a rule for the current glyph. Also, although

the algorithmic complexity is still number of lookups * number of glyphs, the number of

accesses to lookups is reduced, eliminating the in-lookup search overhead.

 55

10.1. Implementation

Just like reverse chain lookup type 8, the modification to the current lookup processing

algorithm was done in three steps. The first step is to include a structure for the glyph-

lookup matrix. The second step is to load the table and the third step is the application of

this table during processing on the input glyph string.

10.1.1 Loading the glyph-lookup matrix

Routine 6:
void fill_Matrix_Ccf3(TTO_GSUBHeader* gsub,

TTO_ChainContextSubstFormat3* ccsf3,
FT_UShort lookup_index,
FT_UShort** glyph_lookup_map)

 {

 TTO_RangeRecord* rr;
 FT_UShort RCount, range,i,j, igc, glyph_index;
 TTO_Coverage* ic;

 igc = ccsf3->InputGlyphCount;
 ic = ccsf3->InputCoverage;
 for(i = 0; i < igc ; i++)
 {
 switch(ccsf3->InputCoverage[i].CoverageFormat)
 {
 case 1:
 for(RCount = 0; RCount < ic[i].cf.cf1.GlyphCount; RCount++)
 {
 glyph_index =ic[i].cf.cf1.GlyphArray[RCount];
 if(!glyph_lookup_map[glyph_index])
 {
 glyph_lookup_map[glyph_index] =

malloc(gsub->LookupList.LookupCount * sizeof(FT_UShort));
 if(!glyph_lookup_map[glyph_index])
 printf("NOT ENOUGH MEMORY\n");
 for(j = 0; j < gsub->LookupList.LookupCount; j++)
 glyph_lookup_map[glyph_index][j] = 0;
 }
 glyph_lookup_map[glyph_index][lookup_index] = 1;
 }
 break;

 case 2:
 rr = ic[i].cf.cf2.RangeRecord;
 for(RCount = 0; RCount < ic[i].cf.cf2.RangeCount; RCount++)
 {
 for(range = rr[RCount].Start; range <= rr[RCount].End; range++)
 {
 if(!glyph_lookup_map[range])
 {
 glyph_lookup_map[range] =

malloc(gsub->LookupList.LookupCount * sizeof(FT_UShort));
 for(j = 0; j < gsub->LookupList.LookupCount; j++)
 glyph_lookup_map[range][j] = 0;

 56

 }
 glyph_lookup_map[range][lookup_index] = 1;
 }
 }
 break;

 }
 }
 }

10.1.2 Applying the glyph-lookup matrix

As have already been discussed above before a lookup is tried or accessed for a given input, this
matrix is referred so that only that lookup is searched tat does indeed have a rule for the current
glyph.

Routine 4:
while (in->pos < in->length)
{
 if (~p_in[in->pos] & properties[lookup_index])
 {
 switch(gsub->LookupList.Lookup[lookup_index].LookupType){

case GSUB_LOOKUP_CHAIN:
 {
 if(glyph_lookup_map[in->string[in->pos]] &&
 glyph_lookup_map[in->string[in->pos]][lookup_index])
 error = Do_Glyph_Lookup(gsub,
 glyph_lookup_map[in->string[in->pos]]

 && glyph_lookup_map[in->string[in->pos]][lookup_index])
 * lookup_index, in, out, 0xFFFF, nesting_level);

 else
 error = TTO_Err_Not_Covered;
 break;

 }

 default:
 error = Do_Glyph_Lookup(gsub, lookup_index, in, out,
 0xFFFF, nesting_level);
 }

 if (error)
 {
 if (error != TTO_Err_Not_Covered)
 return error;
 }
 else
 retError = error;
 }
 else
 error = TTO_Err_Not_Covered;

 if (error == TTO_Err_Not_Covered)
 {
 /* LooupType 8 works from start to end */
 if(gsub->LookupList.Lookup[lookup_index].LookupType ==

GSUB_LOOKUP_REVERSE_CHAIN)
 {
 new_in_pos = in->length - (in->pos + 1);

 57

 if (ADD_String_ReverseOrder(in, 1, out, 1,&s_in[new_in_pos],
0xFFFF, 0xFFFF))

 return error;
 }
 else
 if (ADD_String(in, 1, out, 1, &s_in[in->pos], 0xFFFF, 0xFFFF))
 return error;
 }

}

 58

Chapter 11

11. Dependent and Independent Lookups

Although the algorithm stated above yields better results than the original algorithm, it

can still be improved. Looking at the original algorithm:

 Starting from lookup LK = 1 to lookupcount

 Starting from element IND = 1 to length(input string)

 Apply lookup LK on INDth index of input string

And the newly proposed algorithm

Starting from lookup LK = 1 to lookupcount

 Starting from element IND = 1 to length(input string)

If(lookup LK has a rule for element at index IND)

Apply lookup LK on INDth index of input string

The number of iterations in both these cases is still lookupcount multiply by the length of

input string. There should be some way, which there is, by which this can be reduced.

One such option is two divide the lookups into two categories. Independent and

dependent lookups. Let’s say that there is some way by which we can divide the lookups

into independent lookups that can occur independently of other lookups and no other

lookups have any impact on the output of these lookups. Then there are dependent

lookups. As the name suggests these are dependent on the output of other lookups. The

first step would therefore be the identification of dependent and independent lookups. A

small description is given next.

11.1. Determining the ‘Dependent’ and ‘Independent’ lookups

A contextual alternate lookup is usually of the configuration:

X Y

 59

 Preceded by A and/or followed by B

Where X is the outTransitionGlyph, Y is the inTransitionGlyph, A is the

precedingContext and B the followingContext.

A lookup can be further divided into four types depending on the type of the

outTransitionGlyph, precedingContext and followingContext.

• Lookup configuration 1

The outTransitionGlyph is a default glyph1 and the context also comprise of

default shapes.

• Lookup configuration 2

The outTransitionGlyph is a default glyph but the context comprise of non-default

shapes.

• Lookup configuration 3

The outTransitionGlyph is a non-default glyph(s) but the context comprise of

default shapes.

• Lookup configuration 4

The outTransitionGlyph is a non-default glyph and the context also comprise of

non-default shapes.

Lookups that fall under the Lookup configuration 3 & 4 can be termed as ‘dependent

lookups’. Simply because these lookups have, as outTransitionGlyph, non-default glyphs

and are therefore dependent on lookups that have these (similar non-default) glyphs as

inTransitionGlyph. Similarly lookup configuration 2 lookups are dependent lookups

because of the same reason.

1 Default shapes are shapes that a letter has after the ‘init’, ‘medi’ and ‘fina’ lookups have been applied.

 60

Meanwhile lookups that belong to Lookup configuration 1 can be either ‘dependent or

independent lookups’. This is explained below with a small example.

Consider the following lookup L1:

Lookup L1:

bayinit1 bayinit3

whenever it if followed by jeemmedi1

Here bayinit1 and jeemmedi1 are default initial and medial shapes respectively. This

lookup is an independent lookup if the context glyph(s) i.e. jeemmedi1 is not an

outTransitionGlyph in any other lookup.

Suppose there is another lookup L2 in which jeemmedi1 is an outTransitionGlyph:

Lookup L2:

Jeemmedi1 jeemmedi6

 Whenever it is followed by seenfina

In this case lookup L1 becomes a dependent lookup because it is dependent on the

position of L2. Consider the following input from right to left:

seenfina jeemmedi1 bayinint1

If L2 is placed before L1, then L1 will not get processed because it does not get the

context jeemedi1 which has already been replaced to jeemedi6 after the application of L2.

seenfina jeemmedi1 bayinint1

after L2: seenfina jeemmedi6 bayinint1

after L1: No change

Output: seenfina jeemmedi6 bayinint1

 61

If on the other hand L2 is placed after L1 then L1 gets processed and the result is

different. Again using seenfina jeemmedi1 bayinint1 as input

seenfina jeemmedi1 bayinint1

after L1: seenfina jeemmedi1 bayinint3

after L1: seenfina jeemmedi6 bayinint3

Output: seenfina jeemmedi6 bayinint3

Hence L1 is also a dependent lookup (which is lookup configuration 1).

Sometimes a lookup may have both default and non-default outTransitionGlyph glyph(s)

and can be considered as a dependent Lookup configuration 3 or 4 lookups. Also a

lookup may have both default and non-default context glyph(s). In such case, given that

the outTransitionGlyph glyphs(s) are all default shapes, the lookup can be classified as

independent only if the context contains the complete domain of shapes the context glyph

can acquire. This is illustrated with another example that requires two additional lookup

L3 and L4.

Lookup L3:

bayinit1 bayinit3

 whenever it is followed by jeemfina or

 whenever it is followed by jeemmedi1

 whenever it is followed by jeemmedi2

 …. Jeemmedin

Lookup L4:

Jeemmedi1 jeemmedi2

 Whenever it is followed by seenfina

Algorithmically, L3 should be dependent on L4 because L3 has as context jeemmedi2,

which is realized only after the application of L4. Even with such inference, it can be

 62

seen that L3 is independent of lookup L4 because the context contains the complete

domain or range of shapes the context glyph i.e. jeem can acquire. As a result L3 will get

processed in any case irrespective of whether L4 is placed / positioned before or after L3.

In conclusion, a lookup whose outcome is not affected by its position in the lookup list is

classified as independent lookup whereas lookups that yields different output by simply

shifting its position in the lookup list are dependent lookups.

11.2. Lookup Arrangement

After the lookups have been categorized then the OpenType font is modified in such a

way that all independent lookups are placed before the dependent ones. The font designer

should specify through some variable in the OpenType specification the number of

independent lookups.

11.3. The Working

Assuming the number of independent lookups is n then the algorithm works as follows

Starting from element IND = 1 to length (input string)

 Directly apply all independent lookups that have a rule for string [IND]

As an example suppose the first element in the input string has rules in lookup 2,4,22 and

n = 7; Then apply lookup 2 on first element, if not successful apply the fourth lookup.

Lookup 22 will not be applied because it is not an independent lookup. Then the

dependent lookups are processed according to the newly proposed algorithm.

 Starting from lookup LK = n to lookupcount

 Starting from element IND = 1 to length (input string)

if(lookup LK has a rule for element at index IND)

Apply lookup LK on INDth index of input string

One thing that can be inferred is that more the independent lookups better the efficiency.

 63

Chapter 12

12. Results

The efficiency of the new algorithm can best be explained in terms of reduction in

processing time. A simple methodology was adopted to calculate the overall processing

time of the algorithm on given input. For a given input, the time immediately before the

algorithm was noted and stored. Immediately after the algorithm completes execution, the

time is again noted. The difference indicates the real-time running time of the algorithm.

12.1. Time Difference

The time for the algorithm before and after modification was calculated and tabulated.

Three samples of time (in seconds) for each 3, 10, 25, 40, 60, 120 page documents

written in Nafees Nastaliq were obtained and are given next.

12.1.1 Old Method

The table below gives the time in seconds for the original algorithm.

 No. of
 samples
No. of
Pages

1 2 3

3 1.16 1.19 1.18

10 3.67 3.69 3.71

25 10.08 10.14 10.27
40 15.29 15.49 15.38

60 26.96 27.49 26.97

120 46.11 46.01 46.2
Table 5 Time for original Algorithm

 64

12.1.2 The Efficient Glyph Processing Algorithm

The next table shows the results for the algorithm that uses the glyph_lookup_map table

for selective processing of lookups.

 No. of
 samples
No. of
Pages

1 2 3

3 0.23 0.24 0.22

10 0.75 0.74 0.77

25 1.99 1.96 1.99

40 3.01 3.12 3.07

60 5.67 5.52 5.24

120 9.22 9.11 9.23
Table 6 Time for modified Algorithm

12.1.3 Further Enhancement

The next table shows the results for the algorithm that uses the glyph_lookup_map table

along with the dependent independent information for selective processing of lookups.

 No. of
 samples
No. of
Pages

1 2 3

3 0.20 0.21 0.21

10 0.70 0.69 0.69

25 1.92 1.93 1.90

40 3.03 3.03 3.04

60 5.60 5.61 5.62

120 9.19 9.18 9.20

Table 7 Time for Dependent/Independent Lookup Algorithm

 65

12.2. The t-Test

The collected samples were analyzed using the t-Test method. The t-Test is a statistical

method that is used to solve problems associated with inference based on "small"

samples: the calculated mean (Xavg) and standard deviation () may by chance deviate

from the "real" mean and standard deviation. In this test the samples (group A) for 3-page

document using the old algorithm as given in table 5 were compared with the samples

(group B) using the modified algorithm as given in table 6. The details of the test are

given on table 8 below.

Group A: Number of items= 3

1.16 1.18 1.19

Group B: Number of items= 3

0.220 0.230 0.240

Mean = 1.18

95% confidence interval for Mean: 1.156 to 1.197

Standard Deviation = 1.528E-02

Hi = 1.19 Low = 1.16

Median = 1.18

Avg. Absolute Dev. from Median = 1.000E-02

Mean = 0.230

95% confidence interval for Mean: 0.2093 thru 0.2507

Standard Deviation = 1.000E-02

Hi = 0.240 Low = 0.220

Median = 0.230

Avg. Absolute Deviation from Median = 6.667E-03

t = 89.8

Standard Deviation = 0.129E-01

Degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.000 indicating that measured difference

between the two samples is most likely not due to chance.

Table 8 t-Test for 3-Page samples given in table 5 and Table 6

Similarly t-test was carried out for the samples (group B) for 3-page document using the

first modified algorithm as given in table 6 and the samples (group C) using the

dependent/Independent lookup algorithm as given in table 7. Table 9 summarizes this

test.

 66

Group B: Number of items= 3

0.220 0.230 0.240

Group C: Number of items= 3

0.200 0.210 0.210

Mean = 0.230

95% confidence interval for Mean: 0.2093 to 0.2507

Standard Deviation = 1.000E-02

Hi = 0.240 Low = 0.220

Median = 0.230

Avg. Absolute Deviation from Median = 6.667E-03

Mean = 0.207

95% confidence interval for Mean: 0.1936 thru 0.2198

Standard Deviation = 5.774E-03

Hi = 0.210 Low = 0.200

Median = 0.210

Avg. Absolute Deviation from Median = 3.333E-03

t= 3.50

Standard Deviation = 0.816E-02

degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.025 reducing the possibility that the measured

difference between the two samples is most likely not due to chance.

Figure 9 t-Test for 3-Page samples given in table 6 and Table 7

As can be seen from the tables above the dependent/independent information used for

selective lookup processing yields best results. The output of this algorithm is greatly

dependent on the number of independent lookups. If a font has no independent lookups,

then this algorithm is no better than the previously recommended method. Moreover, this

puts the extra burden on the font developer to correctly specify the independent and

dependent lookups and position or order them correctly.

 67

References

[1] http://www.microsoft.com/typography/default.asp

[2] OpenType Specification v1.2, available at www.microsoft.com/typography/tt/tt.htm

[3] http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&cat_id=RenderingGraphite

[4] www.Freetype.org

[5] www.unicode.org

[6] Hudson John, “Unicode from Text to type “,Language Culture Type: International
 Type Design in the Age of Unicode, Typographique International, NY 2002.

[7] http://www.microsoft.com/truetype/tt/tt.htm

[8] http://www.microsoft.com/typography/otfntdev/arabicot/default.htm: “Creating and
 supporting OpenType fonts for the Arabic script” Microsoft 2001.

[9] www.Redhat.org

[10] Phinney Thomas, “TrueType, PostScript Type 1 & OpenType: What’s the
 difference?” December 2002.

[11] Taylor Owen, "Pango: Internationalized text handling"
 lwn.net/2001/features/OLS/pdf/pdf/pango.pdf

[12] Microsoft, 1992, “TrueType Font Technology, An Overview of its Implementation in
 Microsoft Windows Version 3.1”, Microsoft Corporation.

[13] Jenkins John, “The Unicode Character-Glyph Model: Case Studies”, www.apple.org

 68

Appendix A: Details of t-test

Group A: Time with old Algorithm

Group B: Time with new Algorithm

10-Page Document

Group A: Number of items= 3

3.67 3.69 3.71

Group B: Number of items= 3

0.75 0.74 0.77

Mean = 3.69

95% confidence interval for Mean: 3.661 to 3.791

Standard Deviation = 1.528E-02

Hi = 3.71 Low = 3.67

Median = 3.69

Avg. Absolute Dev. from Median = 1.330E-02

Mean = 0.753

95% confidence interval for Mean: 0.7243 thru 0.7810

Standard Deviation = 1.000E-02

Hi = 0.770 Low = 0.740

Median = 0.750

Avg. Absolute Deviation from Median = 6.667E-03

t = 144

Standard Deviation = 0.129E-01

Degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.000 indicating that measured difference

between the two samples is most likely not due to chance.

 69

25-Page Document

Group A: Number of items= 3

10.08 10.14 10.27

Group B: Number of items= 3

1.99 1.96 1.99

Mean = 10.2

95% confidence interval for Mean: 10.05 thru 10.28

Standard Deviation = 9.713E-02

Hi = 10.3 Low = 10.1

Median = 10.1

Avg.A bsolute Deviation from Median = 6.333E-02

Mean = 1.98

95% confidence interval for Mean: 1.868 thru 2.092

Standard Deviation = 1.732E-02

Hi = 1.99 Low = 1.96

Median = 1.99

Avg. Absolute Deviation from Median = 1.000E-02

t = 202

Standard Deviation = 0.178E-01

Degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.000 indicating that measured difference

between the two samples is most likely not due to chance.

40-Page Document

Group A: Number of items= 3

15.29 15.49 15.38

Group B: Number of items= 3

3.01 3.12 3.07

Mean = 15.4

95% confidence interval for Mean: 15.26 thru 15.52

Standard Deviation = 0.100

Hi = 15.5 Low = 15.3

Median = 15.4

Avg. Absolute Deviation from Median = 6.667E-02

Mean = 3.07

95% confidence interval for Mean: 2.937 thru 3.196

Standard Deviation = 5.508E-02

Hi = 3.12 Low = 3.01

Median = 3.07

Avg. Absolute Deviation from Median = 3.667E-02

t = 187

Standard Deviation = 0.80E-01

Degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.000 indicating that measured difference

between the two samples is most likely not due to chance.

 70

60-Page Document

Group A: Number of items= 3

26.96 27.49 26.97

Group B: Number of items= 3

5.67 5.52 5.24

Mean = 27.1

95% confidence interval for Mean: 26.72 thru 27.56

Standard Deviation = 0.303

Hi = 27.5 Low = 27.0

Median = 27.0

Average Absolute Deviation from Median = 0.177

Mean = 5.48

95% confidence interval for Mean: 5.053 thru 5.900

Standard Deviation = 0.218

Hi = 5.67 Low = 5.24

Median = 5.52

Average Absolute Deviation from Median = 0.143

t = 100

Standard Deviation = 0.264

Degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.000 indicating that measured difference

between the two samples is most likely not due to chance.

120-Page Document

Group A: Number of items= 3

1.16 1.18 1.19

Group B: Number of items= 3

9.22 9.11 9.23

Mean = 31.6

95% confidence interval for Mean: 30.96 thru 32.23

Standard Deviation = 0.542

Hi = 32.2 Low = 31.2

Median = 31.4

Average Absolute Deviation from Median = 0.343

Mean = 6.27

95% confidence interval for Mean: 5.641 thru 6.906

Standard Deviation = 0.130

Hi = 6.40 Low = 6.14

Median = 6.28

Avg. Absolute Deviation from Median = 8.667E-02
t = 78.6

Standard Deviation = 0.394

Degrees of freedom = 4

The probability of this result, assuming the null hypothesis, is 0.000 indicating that measured difference

between the two samples is most likely not due to chance.

