Design and Development of an
Automatic Speech Recognition System for Urdu

by

Agha Ali Raza

A thesis presented to
FAST-National University of Computer and Emerging Sciences
In partial fulfillment of the requirements for the degree of
Master of Science (Computer Science)

NUCES-FAST, Lahore, Pakistan, July 2009
The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled *Design and Development of an Automatic Speech Recognition System for Urdu* by Agha Ali Raza in partial fulfillment of the requirements for the degree of Master of Science (Computer Science).

Head
(Department of Computer Science)

Committee Members:

Thesis Supervisor

Dr. Sarmad Hussain
Professor
FAST - National University

Thesis Co-Supervisor

Mr. Awais Athar
Lecturer
FAST - National University

Dated: July 2009
AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my supervisors.

I understand that my thesis may be made electronically available to the public.

______________________ ______________________
Signatures Date
Abstract

Easy access to information is one of the key factors contributing to the economic and social growth of societies in the modern era. Most of the available means of information access like print media are useful only for the literate members of the society. Other modes like television and radio are non-interactive and computers, although being interactive are not suitable for the major portion of the society that is either not familiar with its interface and usage or does not have access to it at all. One solution to this problem can be a telephone based speech interface for human-computer interaction. As an Automatic Speech Recognition System (ASR) is a key component of such an interface, the prime impediment to the achievement of this goal in Pakistan is the lack of research and local language resources for Urdu that are required for the development of an Urdu ASR. On an abstract level a speaker independent automatic, continuous\(^1\) and spontaneous\(^2\) speech recognition system for local languages and its further adaptation to telephone based interface is required as a first step towards achieving this goal.

CRULP is currently working on a project entitled “Telephone-based Speech Interfaces for Access to Information by Non-literate Users” in collaboration with the Carnegie Mellon University. The goal of this project is to investigate the use of speech interfaces in a field-deployed system by providing easy access to medical information to lady health workers in Pakistan. This will be achieved by developing a telephone based dialogue system consisting of an Urdu Speech Recognition system and a Text to Speech system that can interact with the health workers to answer their queries.

One of the main components of this system is a core Urdu Speech Recognition system that can be trained with field specific data at a later stage. I have taken that to be the goal of my MS Thesis. This thesis presents the design and development of a medium vocabulary\(^3\) ASR system for spontaneous Urdu speech. The targeted domain is the accent spoken by literate speakers in the suburban areas of Lahore. The system is trained for continuous read as well as spontaneous speech and has been adapted to home and office level background noise. In this initial phase the system is speaker specific. This involves the design and development of speech corpora for read and spontaneous Urdu speech, and ASR system training for Urdu. CMU Sphinx system has been used as the primary training and recognition engine.

\(^1\) Where words are not necessarily separated by silence i.e. a lexicon entry does not necessarily map onto an individual utterance

\(^2\) As naturally spoken by speakers in everyday life where the processes of planning and speaking go side by side in contrast to reading out prepared data

\(^3\) 10,000 words, approximately
Acknowledgements

Five years ago, a mere spark of curiosity led me to register in the course of Phonetics and Phonology. Little I anticipated that Dr. Sarmad will leave me with a burning flame of fascination for this field and it will become the nucleus of my graduate study. I am greatly indebted to my thesis supervisor, Dr. Sarmad Hussain, for his help and continuous support while I desperately kicked around in the unknown waters of Speech Processing and finally learned to enjoy the quest for knowledge. I am also very thankful to Sir Belal Mohammad Hashmi for his role resembling an oracle in my thesis. Towards him, I used to look whenever I lost my way in the tortuous alleys of computer hardware. And many thanks to my thesis co-supervisor and colleague Mr. Awais Athar for keeping me on my toes throughout my thesis research through continual interrogation and constant criticism and for nudging me back to work whenever I slacked.

I wish to express my gratitude towards the team of researchers of the Center for Research in Urdu Language Processing (CRULP), working on the project entitled Telephone-based Speech Interfaces for Access to Information by Non-literate Users, for their help and support, as many parts of my thesis overlapped with that project. I would like to thank Ms. Huda Sarfraz and our brilliant linguists Mr. Inam Ullah and Mr. Zahid Sarfraz for their eager support throughout the thesis. I found them to be the most difficult to convince persons in matters of Phonetics (with the exception of Dr. Sarmad), and this was precisely what used to trigger my search for answers based on solid arguments. I wish to thank my batch fellows Mr. Umer Khalid, Mr. Zeeshan Latif, Mr. Ahmad Muaz, Mr Imtiaz Ahmad and my students Mr. Ameer Sheikh, Mr. Afif, Mr. Sayyam Mehmood, Mr. Talha Ahmad, Ms. Maria, Ms. Nida Fatima and Ms. Jweria Ghazanfar for gladly volunteering for the speech recordings and for their patience in uttering phrases and sounds which make the human tongue realize that there are yet unexplored regions in the oral cavity.

Finally I am greatly thankful to the CRULP for generously providing me with valuable linguistic resources and an open access to the technical expertise of its researchers and linguists. I am grateful to FAST-National University of Computer and Emerging Sciences for supporting my thesis.

Above all I want to thank my caring mother without whom I would have given up a long way back. She is still the only person who holds my finger and compels me to jump over yet another hurdle. All the praise and all the glory rightly belongs to my Almighty Allah, my dear and powerful companion whose hand supports me when my frail knees buckle under the weight of my responsibilities.
I dedicate this work to my Lord Allah and my parents.
Table of Contents

Chapter 1 INTRODUCTION ... 1

1.1 Speech Recognition Architecture .. 5

1.2 The Acoustic Model ... 8

1.3 The Language Model ... 16

1.4 Smoothing ... 17

1.4.1 Laplace Smoothing ... 17

1.4.2 Good-Turing Discounting .. 18

1.4.3 Witten-Bell Discounting ... 18

1.4.4 Deleted Interpolation ... 19

1.5 The Training Phase ... 19

1.5.1 Hand Phone Segmentation .. 19

1.5.2 Embedded Training ... 20

1.6 The Decode Phase ... 21

1.7 Evaluation ... 22

Chapter 2 The Sphinx Speech Recognition System ... 24

2.1 Available Versions ... 24

2.2 Sphinx-3 .. 26

2.2.1 Sphinx-3 Trainer ... 27

2.2.2 The Language Model Tool ... 28

2.2.3 Sphinx-3 Decoder .. 29

Chapter 3 Urdu Acoustics and Letter to Sound Rules .. 31

3.1 Vowels .. 31

x
3.2 Consonants...31
3.3 Letter to Sound Rules for Urdu..32

Chapter 4 Literature Review...36

4.1 Corpus Construction ..36
 4.1.1 Speech Corpus for Amharic Large Vocabulary Continuous Speech Recognition System
 ...36
 4.1.2 Speech Corpus for Turkish Text To Speech System ...37
 4.1.3 Speech Corpus for Hindi Large Vocabulary Continuous Speech Recognition System .38
 4.1.4 Cell Phone based American English Speech Corpus Construction.......................................38
 4.1.5 Phrase Based Phonetically Rich and Balanced Corpus for Mexican Spanish Language
 ...39
 4.1.6 Speech Corpus for Greek Dictation System..40
 4.1.7 Speech Corpus for Automatic Transcription System for Spontaneous Dutch Speech .40
 4.1.8 Microphone and Telephone based Russian Speech Corpus..41
 4.1.9 Minimal Corpus for Tamil, Telugu and Marathi Landline and Cellular Phone Based
 Continuous Speech Recognition ..41
 4.1.10 Annotated Corpus for Spontaneous Chinese Language ...43
 4.1.11 Isolated Word Phonetically Rich Corpus for Lithuanian Speech Recognition System
 ...43
 4.1.12 Comparison of Biphone and Triphone Rich Speech Corpora for Taiwanese........44

4.2 Corpora Construction Summary ...44

4.3 Design of ASRs for Spontaneous and Continuous Speech ...45
 4.3.1 Speech Recognition System for Spontaneous German Speech ...45
 4.3.2 Automatic Detection of Pauses in Spontaneous Japanese Speech...46
4.3.3 Performance Comparison of Spontaneous Speech Recognition Systems vs Dictation Systems ...47

4.3.4 Technique for Paraphrasing Spontaneous Japanese Speech into Written Style Sentences...48

4.3.5 Disfluent Repetitions in Spontaneous Speech ...49

4.3.6 An Unsupervised Approach towards the Transcription of Continuous Broadcast News Data for Training Continuous Speech Large Vocabulary Speech Recognition Systems49

4.3.7 Automatic Transcription System for Arabic ..50

4.3.8 Automatic Speech Recognition System for Spontaneous English Speech using the English CMU Recognition Dictionary...51

4.3.9 Speaker Independent Continuous Speech Recognition System for Transcribing Unrestricted American English Broadcast News..52

Chapter 5 METHODOLOGY ..53

5.1 Introduction ..53

5.2 Design of a Speech Corpus ...54

5.2.1 Corpus Analysis and Development of Lexicons ..55

5.2.2 Phonetically rich word list ..57

5.2.3 Tri-phoneme based phonetically rich corpus ..59

5.2.4 Sentence Generation ..65

5.2.5 Analysis of Sentences and Wordlist ..66

5.2.6 Preparation of Interview questions ..68

5.3 Development of the Speech Corpus ..70

5.3.1 Recording of the Speech Corpus ..71

5.3.2 Timing Statistics of the Recording sessions ..74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3 Recording of the Interviews</td>
<td>75</td>
</tr>
<tr>
<td>5.3.4 Splitting and transcribing the interviews</td>
<td>75</td>
</tr>
<tr>
<td>5.3.5 Timing Statistics of Interview sessions</td>
<td>76</td>
</tr>
<tr>
<td>5.3.6 Phonetic vs. Phonemic transcription</td>
<td>77</td>
</tr>
<tr>
<td>5.3.7 Tools Developed – The Urdu Auto completer and Lexicon Development Utility</td>
<td>78</td>
</tr>
<tr>
<td>5.4 Compilation of files required by Sphinx</td>
<td>81</td>
</tr>
<tr>
<td>5.4.1 Phonetic transcription using CISAMPA</td>
<td>82</td>
</tr>
<tr>
<td>5.4.2 Unicode text format</td>
<td>83</td>
</tr>
<tr>
<td>5.4.3 Files required by Sphinx for training</td>
<td>84</td>
</tr>
<tr>
<td>5.4.4 File required by Sphinx-3 for decoding and running tests</td>
<td>87</td>
</tr>
<tr>
<td>5.4.5 Test Files required for Sphinx-4 decoder</td>
<td>90</td>
</tr>
<tr>
<td>5.4.6 Tools developed – the Sphinx Compiler</td>
<td>92</td>
</tr>
<tr>
<td>Chapter 6 Experimental Results</td>
<td>102</td>
</tr>
<tr>
<td>6.1 Test Setup</td>
<td>102</td>
</tr>
<tr>
<td>6.1.1 Available Data</td>
<td>102</td>
</tr>
<tr>
<td>6.1.2 Test Plan</td>
<td>104</td>
</tr>
<tr>
<td>6.1.3 Test Set – 1 (a & b): Read Speech</td>
<td>105</td>
</tr>
<tr>
<td>6.1.4 Test Set – 2: Part c Read Speech</td>
<td>116</td>
</tr>
<tr>
<td>6.1.5 Test Set – 3: Spontaneous Speech</td>
<td>117</td>
</tr>
<tr>
<td>6.1.6 Test Set – 4: Mixture of Read and Spontaneous Speech</td>
<td>118</td>
</tr>
<tr>
<td>6.2 Comparison with previous work</td>
<td>125</td>
</tr>
<tr>
<td>6.3 Conclusion</td>
<td>127</td>
</tr>
<tr>
<td>Chapter 7 Future Directions</td>
<td>128</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1 - The Automatic Speech Recognition System Architecture... 7
Figure 2 - Phone Clusters .. 8
Figure 3 - The Human Articulatory System [5] ..10
Figure 4 - Speech Signal to MFCCs [1], [6] ..14
Figure 5 - Embedded Training [1] ...21
Figure 6 - Trainer Front-end [10] ...27
Figure 7 - SLM tool kit architecture [14] ...29
Figure 8 - Sphinx-3 Decoder [10] ...30
Figure 9 - Urdu Vowels [17] ...31
Figure 10 - Urdu Consonants [17] ...32
Figure 11 - Urdu Letters and Aerab [17] ...33
Figure 12 - Letter to sound mappings of Urdu Consonants [17] ..33
Figure 13 - Effects of phonetic context ..58
Figure 14 - Example Problematic words in the list ..61
Figure 15 - Modified Minimal Set Cover Algorithm ...61
Figure 16 - Acoustic effects of voiced/voiceless unaspirated stops in context positions63
Figure 17 - Effects of Aspiration at triphoneme ends ..64
Figure 18 - Plot of tri-phonemes verses frequency in corpus ..65
Figure 19 - Example sentences ..66
Figure 20 - Phone frequencies (log_{10}) in the corpus vs. the sentences ...67
Figure 21 - Triphoneme frequencies (log_{10}) in the corpus vs. the sentences ..68
Figure 22 - Interview Questions Part-1 ...69
Figure 45 – Effects of Language Weight Variation (100 utterances) .. 107
Figure 46 - Effects of Beam Width Variation (200 utterances) ... 109
Figure 47 - Effects of Language Weight (200 utterances) ... 110
Figure 48 - Combined Read Speech Test Results .. 115
Figure 49 - Results with Spontaneous Language Model .. 120
Figure 50 - Comparison of WER with OOVs in the Test Data ... 121
Figure 51 - Comparison of WER with OOV instances in the Test Data .. 121
Figure 52 - Results with Training Data based Language Model .. 123
Figure 53 - Comparison of WER with OOVs in the Test Data ... 124
Figure 54 - Comparison of WER with OOV instances in the Test Data .. 124
List of Tables

Table 1 - Summary of Corpora [28] ... 42
Table 2 - Result Statistics [28] ... 42
Table 3 - Training and Test data summary [32] ... 46
Table 4 - Training and Test data (100 utterances) ... 106
Table 5 – Effects of Beam Width Variation (100 utterances) ... 106
Table 6 – Effects of Language Weight Variation (100 utterances) ... 107
Table 7 - Training and Test Data (200 utterances) ... 108
Table 8 - Effects of Beam Width variation (200 utterances) .. 108
Table 9 - Effects of Language Weight (200 utterances) ... 110
Table 10 Training and Test Data (300 utterances) ... 111
Table 11 - Test Results (300 utterances) .. 111
Table 12 - Training and Test Data (400 utterances) ... 112
Table 13 - Test Results (400 utterances) .. 112
Table 14 - Training and Test Data (500 utterances) ... 113
Table 15 - Test Results (500 utterances) ... 113
Table 16 - Training and Test Data (600 utterances) ... 113
Table 17 - Test Results (600 utterances) ... 113
Table 18 - Training and Test Data (708 utterances) ... 114
Table 19 - Test Results (708 utterances) .. 114
Table 20 - Combined Read Speech Test Results ... 115
Table 21 - Training and Test Data (Non-Overlapping tests) .. 116
Table 22 - Training and Test Data (Spontaneous Speech) ... 117
Table 23 - Spontaneous Speech Test Results with fixed Beam Width of 1e-700
Table 24 - Training and Test Data for Sp:Re Ratio Experiments
Table 25 - Results with Spontaneous Language Model
Table 26 - Results with Training Data based Language Model
Table 27 - Comparison of ASR systems
Chapter 1

INTRODUCTION

The aim of Automatic Speech Recognition research is to develop computational techniques to convert acoustic speech signals into strings of words. The problem of general speech recognition has not been solved yet for any language. This means that there exists no such versatile speech recognition system which can recognize the words spoken by any person, of any gender, in any accent and at any rate of speech in any environment. Therefore the task of speech recognition starts by making simplifying assumptions which manifest as the constraints on the system. In other words, all the open ended variables are constrained to certain practical limits which render the problem more feasible to tackle.

There are many areas where Automatic Speech Recognition (ASR) systems can play a pivotal role in facilitating the daily activities, and where the current levels of accuracy that these systems have attained can prove useful. One of these areas is speech based human-computer interaction (HCI). This line of research promises to be of significant advantages in areas where keyboards may not be appropriate and natural language communication is desired. This includes control applications where hands and eyes may be busy at the same time and speech becomes a good means of issuing the commands. In addition to this, such systems can be of immense use for people with vision related disabilities, lack of motor control, crippled hands etc. In the under-developed countries where literacy rate is poor, this can provide a mechanism of information access to people who are unable to read and write as well as people who may be literate but not qualified in computing skills. Speech based HCI ideally brings computers within reach of anyone who can speak and listen. The major hurdle however, is the lack of the resources required to develop these systems for the native languages of underdeveloped countries. Another major area of application for ASR systems is telephony where such a system can provide recognition for digits or simple commands in the form of yes/no questions. These two application areas can be combined into one by allowing a complete telephone based HCI for computers, which is the goal of the Telephone-based Speech Interfaces for Access to Information by Non-literate Users, project currently being done by a joint effort of the Center for Research in
Urdu Language Processing (CRULP) and Carnegie Mellon University (CMU) and is also the prime motivation behind this thesis. Other useful applications include ASR based dictation systems and speech transcription systems for meetings and conferences. Control systems for mobile phones, automobiles and aircrafts are rapidly becoming feasible and are commercially available.

As discussed earlier, the problem of general speech recognition is as yet not practically solved; therefore the domain is restricted by using simplifying assumptions. These assumptions are dependent upon the application areas of the ASRs as they are dependent upon the practicality of the resulting system requirements. The task is to take the variables involved in the ASR system design and restrict them one by one to feasible constraints. Following are some of these variables and sample parameters which can be used to restrict them:

- **Language**: The systems are generally language specific. Therefore currently the ASR systems are trained for data of a specific target language.
- **Speaker Class**: The speaker class may be defined in a variety of ways depending on the acoustic and phonetic variations represented by these classes.
 - **Literacy**: There may be a lot of variation in the pronunciation and articulation methods of people with different literary backgrounds, and it may be advisable to predefined the target literacy level [1].
 - **Area of residence**: This may in some cases also capture the literacy class as well as the dialect. The area of residence or the area where a speaker has spent most of his/her life may represent his/her phonetic classification.
 - **Accents and Dialects**: Languages often have numerous dialects which lead to a great variation of pronunciation even within a single language. Therefore the target dialect (or the set of target dialects) has to be defined before the ASR system design. Moreover, unfamiliar accents i.e. the accents which are different from the ones on which a system has been trained pose a challenge to recognition. For example, a person from Sindh or Northern Areas of Pakistan using an ASR trained with Urdu in the Lahore suburban accent may not get good recognition results. Therefore, separately trained systems may be required for
recognizing different accents. Compatibility of various dialects and accents may have to be phonetically verified before such decision making.

- **Age:** The acoustic properties of speech like pitch, formants etc. are stable in ages between 20-45 years. However, children and old aged individuals may represent variable acoustic properties that may make the system commit more mistakes. Therefore, different systems may be required for children, middle aged and old aged individuals.

- **Gender:** The male and female voice is different in many basic characteristics like pitch and format placement. Therefore, a system targeted towards male and female speakers both, will require balanced amounts of training data from both the genders. It may even require separately trained systems for the two genders working with a front end of gender recognition for better results.

- **Vocabulary size:** This represents the number of distinct words the target system is supposed to recognize. Systems may vary from *small vocabulary* systems with a vocabulary of a few words e.g. a yes/no system with a vocabulary size of two or a digit recognition system with a vocabulary size of tens, to *medium vocabulary* and *large vocabulary* systems with vocabularies of sizes below 20,000 or above 20,000 to 60,000 words respectively. The systems may be trained in terms of words, syllable, phones or combination of phones (like diphones or triphones). The meaning of vocabulary size will be different for each of these systems. A system trained on all phones of a language may be able to recognize all (or most of) the words in that language although the actual number of words actually in the phonetic lexicon are much less.

- **Degree of Fluency:** The degree of fluency represents the rate of speech and in turn represents the chances of wrong or incomplete pronunciations.
 - **Isolated:** By far this is the simplest constraint. The words are required to be preceded and followed by pauses (i.e. silence). Digit recognition systems and yes/no systems (command driven systems) often fall into this category. The words are mostly carefully uttered and are hence are by and large complete and error free.
Continuous: These are the systems where words may run into each other and hence segmentation of speech into sound units becomes a challenge. These may further be divided into many subcategories. For example, there are systems in which the pace of speech is controlled, like dictation systems where the speech is carefully articulated at a constant pace. Furthermore, there are systems in which a person knowingly issues commands to a computer system and hence is often careful in articulation and pronunciation (this may lead to unnatural pronunciations as well). In general we can make the following distinctions:

- **Read Speech**: Continuous speech read from some text is generally characterized with careful pronunciation and a controlled and consistent pace of speaking [1].

- **Spontaneous**: This is the most difficult to model variation, for example when a human talks to another human as in meetings or conferences, or over telephones etc. [1] The rate of speaking varies greatly as speech planning and delivery go side-by-side, the words may be mispronounced and/or incomplete as the humans rely on non-verbal communication, experience, context etc. to understand and rectify speech errors. The spontaneous speech also possesses many subcategories like for example the spontaneous speech uttered in broadcast news or television or radio shows may be more carefully articulated compared to the speech in everyday human conversation where there might be too many disfluencies like repetitions, incomplete words and pauses etc.

- **Environment**: Speech environment has to be predetermined as it shows a wide variation from controlled noise studio environments, to low ambient noise house and office environments leading to the extremely noisy automobile, air craft environments and busy street environments.

- **Channel**: The recording channel may be a simple microphone attached to digital speech acquisition hardware, a telephone based system employing VoIP techniques or a mobile phone channel characterized by packet losses etc. Every channel introduces its own characteristics into the speech like frequency limits (e.g. a 16000 or 44100 sample per
second microphone based speech vs. the 4000 Hz, 8000 sample per second speech for a telephony system). Besides the characteristic channel noise due to any of numerous factors like channel properties (which may remain consistent) to variable factors like vicinity of electronic equipment (which varies greatly) are some of the salient features of speech environments.

- **Online vs. Offline Systems**: The efficiency requirements on a live or online system which works under some real-time constraints are much different from an offline system which transcribes recorded audio (where even a 10 times (10x) real time limit may be tolerated). Examples of the former are interactive systems like the speech based control systems for devices while transcription systems for meetings and discussions may be implemented as offline systems.

1.1 Speech Recognition Architecture

The main task of a Speech Recognition system is to take an acoustic signal as input and produce a string of words as output. In HMM based speech recognition systems this is modeled by using a *noisy channel model* [1]. The idea is to assume that the acoustic signal is a noisy version of the string of words. Hence, in essence we model the acoustic system, acoustic variation as well as the environment and channel noise all as a channel which adds noise to the string of words. In order to extract the original string of words from this noisy string, we need to know how the channel modifies the string. So if we have a model for the channel, we can pass every sentence in the language through that model and *compare* it with the noisy string of words to find the original string of words.

Let us intuitively review the architecture of a speech recognition system. We train the system by giving it recorded speech data and its transcribed form (the original string of words). With this data, we try to find a pattern for the noisy versions of all the basic sound units in the language (if we are making a phone based system) or the noisy versions of all the words in the language (if we are making a word based system). This is called the *training phase* and it provides us with the *Acoustic Model*. To this information we add the language dependent information i.e. the probability of words occurring in different contexts, in what is called the
Language Model. Together the language model and the acoustic model help us convert the input acoustic signal to a string of words. This later process is called the *decoding phase*.

So, a speech recognition system asks the following question [1]:

Given some acoustic observation O, *what is the most likely sentence out of all the sentences in the language?*

Where, O is a sequence of individual observations obtained by segmenting the input wave form into representative chunks of particular durations:

$$O = o_1, o_2, o_3, ..., o_t$$ \hspace{1cm} (1.1)

Let us define a sentence W as a string of words w:

$$W = w_1, w_2, w_3, ..., w_n$$ \hspace{1cm} (1.2)

The words defined here are based upon orthography, i.e. 'ن' (new) and 'ن' (nine) will be considered as same while, 'ک' (boy) and 'ک' (boys) will be considered as different words. So the probabilistic interpretation of our question becomes:

$$W' = \arg\max_{W \in L} P(W|O)$$ \hspace{1cm} (1.3)

Where W' is the required string of words (sentence) and L represents the set of all sentences in the language. As there is no direct way of calculating this, we may simplify it by using the Bayes’ Rule, defined as:

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$ \hspace{1cm} (1.4)

So applying it on Equation (1.3) we get:

$$W' = \arg\max_{W \in L} \frac{P(O|W)P(W)}{P(O)}$$ \hspace{1cm} (1.5)
The probability in the denominator is not a simple one to calculate. However, as we are only interested in the maximum value we can remove it as the common denominator to give:

$$W' = \arg\max_{W \in L} P(O|W)P(W)$$ \hspace{1cm} (1.6)

So, we are saying that the most probable sentence \(W\) given some observation sequence \(O\) can be computed by taking the product of two probabilities: the \(P(W)\) or the prior probability comes from the language model, while the \(P(O|W)\) or the observation likelihood is computed by the acoustic model.

So the Automatic Speech Recognition System is composed of a trainer which trains the \(P(O|W)\) and \(P(W)\) using a particular data set. The trained system can then be used to decode (recognize) input speech \(O\), to give a string of words \(W\) as output. Figure 1 depicts this procedure.

![Figure 1](image.png)

Figure 1 - The Automatic Speech Recognition System Architecture

In the remaining discussion we shall see how we can estimate these two probabilities.
1.2 The Acoustic Model

The acoustic model establishes a mapping between phonemes and their possible acoustic manifestations, i.e. the phones. So given an observation i.e. a slice from a digitized speech waveform, we have to designate the most closely matching phoneme. Looking at the high level design, the acoustic model training process takes three main types of data as input. A set of recorded speech files, a text file containing parallel transcription of these speech files and a phonetic dictionary. The phonetic dictionary maps all the words in the transcription file to their constituent phonemes (these can be as finely grained as phones or as coarse grained as words). The training process maps all the occurrences of phonemes onto the acoustic set of phones.

Let us assume there were only two phonemes in the corpus, /b/ (voiced, bilabial stop) and /k/ (unvoiced, velar stop) (as shown in Figure 2). Now by the very nature of speech and human articulatory system, even a single phoneme cannot be uttered in exactly the same way twice (spectrally). However, the acoustic properties of an utterance of /b/ will be more similar to other utterances of /b/ than to those of /k/. In this way, we can make clusters of the acoustic realizations for all the required phonemes. In the decode phase when a new observation is presented to the trained system, it is matched with all the available clusters using the same matching criteria as was used in training and designated to the one which it most closely resembles. These criteria will be defined later.

![Figure 2 - Phone Clusters](image)

This simple description of speech recognition systems needs more details. For example, phones, the acoustic manifestations of phonemes, are not independent temporal entities in an utterance. They are affected by the phones following and preceding them. Hence some weight must be
given to the acoustic context. Then there is the question "Are all phones as easy to cluster as our example of [b] and [k]?" The answer is, "No". There are many phones which closely resemble others (e.g. [o] and [ɔ]) and their clusters are not so trivial to classify. Hence, acoustic context, possible phone combinations and history will play an important role in the recognition. Finally, the acoustic properties do not remain constant even in a single phone, so for classification phones are broken down to smaller units, mostly consisting of three stages, the beginning, middle and end of phone.

Human speech is produced as air from the lungs rushes out through the larynx producing vibrations in the vocal folds and/or noise in any regions of the oral or nasal cavity [2] (see Figure 3). This sound is modified by the change in shape and size of the tracts as the oral and/or nasal tract is completely or partially obstructed. A typical open vocalic sound like [œ] is characterized by vocal-fold vibrations producing a periodic waveform, which produces stationary waves in the (open) oral tract. Some of the frequencies in the glottal waveform get suppressed while others are reinforced in the oral tube. The reinforced portions exhibit a periodic pattern and show peaks at roughly 500 Hz, 1500 Hz, 2500 Hz and so on in case of an average adult (with a 17.5 cm long oral tube like an average American ([3], [4])). These resonances are called formants which hold a key significance in characterizing vocalic sounds. Nasal vocalic sounds are produced when the velo-pharyngeal port is open and the air partially escapes through the nose, producing a dampening effect on the formants and they become wider, shifted and lower in amplitude. Thus the oral and/or nasal tracts act as a filter which modify the source waveform produced by the voice box (trachea). The consonants are produced by partial or complete blockage of air flow in different portions of the oral or nasal tract. This results in an explosive or noisy egress of air from the mouth or nose resulting in the consonantal sounds.
The first step in speech recognition is to decide upon the phone representation. After recording, the speech is available as a digitized time-varying waveform. We have to split this waveform, obtained for the complete utterance, into segments. Then we need to represent each segment using some technique which would help in the process of identifying it as a separate phone. In other words we want to bring out those features which make any phone different from other phones.

The splitting of the utterance into segments of around 10ms duration is accomplished using windowing [1] (Figure 4 (part-2)). Using rectangular window introduces sharp discontinuities at the edges. These discontinuities appear as impulses and introduce white noise in the frequency response; therefore a more tapering window function is preferred, like a Hamming window.

\[
Rectangular: w[n] = \begin{cases} 1, & 0 \leq n \leq L - 1 \\ 0, & \text{otherwise} \end{cases}
\]

(1.7) [6]

\[
Hamming: w[n] = \begin{cases} 0.54 - 0.46 \cos \left(\frac{2\pi n}{L} \right), & 0 \leq n \leq L - 1 \\ 0, & \text{otherwise} \end{cases}
\]

(1.8) [6]
After the signal has been split to achieve a sequence of windowed audio segments, the next step is to bring it into frequency domain. This is accomplished using the Discrete Fourier Transform, Figure 4 (part-3) or its more efficient version, the Fast Fourier Transform. The formula for the DFT is shown below:

\[X(k) = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N} \]

(1.9)

This frequency domain signal can be used as a representative of the phones; however, the problem is that many other kinds of information which is not required in speech recognition are mixed together with the useful information in these signals. For example, the speaker-related information (evident from the pitch and some higher formants), information about intonation and stress etc. We are interested in separating out the useful information from the rest of the signal.

As the glottal waveform is characterized by a -12db/decade tilt [2], which is compensated by the radiation filter as sound leaves the mouth to a final -6db/decade tilt, we need to reinforce this wave before doing any further processing otherwise the higher formants will not be prominent. This is done using a pre-emphasis filter which tends to raise the higher frequencies, producing a more level spectrum Figure 4 (part-1). The next step is to adjust the energy distribution in different frequency bands to match the human perceptual response. The sensitivity of the Human ear increases from 20 Hz to about 1000 Hz and then begins to fall logarithmically [1]. The mapping is done to imitate that response by using the MEL (melody) scale Figure 4 (part-4) frequency mapping as given below in equation 1.10:

\[\text{mel}(f) = 1127\ln\left(1 + \frac{f}{700}\right) \]

(1.10)

Next we need to separate the glottal information from the vocal/nasal tract response. Many techniques can be used to accomplish this however, in speech recognition Cepstrum Analysis ([1], [6]) has been found to be of more use. The main idea of the Cepstrum is to treat the frequency domain speech signal as a simple time domain waveform. As can be seen in Figure 4
(part-3) the spectrum of the speech waveform contains some rapidly changing components which ride on slowly undulating peaks. The rapidly varying components are the harmonics of the pitch or the fundamental frequency i.e. the source (in the terminology of the source-filter theory [6]). The slowly varying components are the formants, i.e. the filter response. The Cepstrum Analysis is a technique which suggests to treat this spectrum as just an ordinary waveform and to separate out the high frequency and low frequency components that it contains. The problem is that from source-filter theory we know that these source and filter responses do not exist as a sum, which could have been easily filtered in frequency domain using high pass and low pass filters, but as a product. Therefore, we need to use the logarithm to convert the product into sum first. Next we take a DFT of the spectrum. Taking the DFT of a spectrum should return us to Time-Domain, but the log prevents this to be a time domain signal. Instead we are in an inverse frequency domain, or quefrency domain [6]. This plot is called a Cepstrum. As can be clearly seen in Figure 4 (part-5), the source and the filter response are now well separated. And can easily be separated by filtering (liftering in Cepstral terminology). This gives us the log domain source and the log domain filter response. This can be converted back into frequency or time domain by taking inverse DFT and antilog.

Mathematically the Cepstrum for a windowed frame of speech can be represented as:

$$c[n] = \sum_{n=0}^{N-1} \log \left(\sum_{n=0}^{N-1} x[n] e^{-\frac{j2\pi kn}{N}} \right) e^{\frac{j2\pi kn}{N}} \tag{1.11}$$ [1]

We are generally more interested in the first 12 cepstral coefficients that give the formant information required for recognition. In addition we also want the information regarding signal energy to discern between voiced and voiceless and vocalic versus consonantal phones. The energy in a frame is the sum over time of the power of the samples in the frame, thus for a signal x in a window from time sample t_1 to sample t_2, the energy is given as [6]:

$$\text{Energy} = \sum_{t=t_1}^{t_2} x^2[t] \tag{1.12}$$
These 13 parameters form the basic set representing a phone. However, more information is required to capture the rising and falling trends of the formants as these are the characteristics of the places of articulation. Therefore, 13 deltas representing the rate of change of the 13 values (the velocity) and another 13 valued vector representing the rate of the rate of change (the double deltas, or the acceleration) are also stored. This gives us a 39 dimensional vector, representing a spectral slice. The Cepstral features so extracted are called the Mel Frequency Cepstral Coefficients (MFCCs). The summary of the MFCC features is as follows [1]:

- 12 cepstral coefficients
- 12 delta cepstral coefficients
- 12 double delta cepstral coefficients
- 1 energy coefficient
- 1 delta energy coefficient
- 1 double delta energy coefficient

The complete procedure from speech signal to MFCCs is shown in Figure 4.
The acoustic state of inappropriate has spewed from the current phone to the next state or phone. The context model of an HMM is appropriate as the spectral properties change drastically even within a single phone. A phone has spectrally three major and relatively stable portions: the beginning, which is a transition from the previous phone to the current one, the middle which depicts the actual properties of the current phone and the end, which is a transition from the current to the next phone. Therefore a phone is often modeled using five states of an HMM. The start and end are non-emitting and three central states model the three phases of the phone. The HMMs used for speech recognition fall into the category of Bakis Networks as in these there are no transitions to the previous states or jumps to skip states. The only two allowed transitions are to the next state or a self loop. The self loop allows modeling phones with varying lengths.

The complete HMM can be defined as:

- A set of states: $Q = q_1, q_2, ..., q_N$
- A transition probability matrix: $A = \alpha_{01}, \alpha_{02}..., \alpha_{0n}, ..., \alpha_{nm}$. Each α_{ij} represents the probability for each sub-phone of taking a self loop or going to the next sub-phone, such that $\alpha_{ii} + \alpha_{ij} = 1$ for all i
- A set of observations: $O = o_1, o_2...o_n$
• A set of observation likelihoods, also called emission probabilities: \(B = b_j(o_t) \). Each expressing the probability of an observation \(o_t \) being generated from state \(j \)

• A special start and end state: \(q_0, q_{\text{end}} \) that are not associated with observations

The state transition probability from state \(i \) to state \(j \) \(\alpha_{ij} \) and the emission probability at state \(j \) \(b_j(o_j) \) are trained using some Expectation Maximization algorithm (e.g. Baum-Welch [1]). The \(\alpha_{ij} \) are trained using the information from the phonetic dictionary in which all the phonetic constituents of words are given. The \(b_j(o_j) \) are modeled from the 39 dimensional MFCCs. The MFCCs are used to calculate, 39 dimensional multivariate Gaussian Probability Density Functions (PDFs). The PDFs are trained using Baum-Welch Algorithm. As it cannot be guaranteed that the cepstral coefficients will produce normal distributions in all cases so the PDFs are used to compute Gaussian Mixture Models (GMMs) [1].

Therefore the calculation of the value of \(b_j(o_j) \) in a simplified model for a single cepstral feature, and assuming that each HMM state \(j \) has associated with it a mean \(\mu_j \) and a variance \(\sigma_j^2 \) can be carried out as:

\[
b_j(o_t) = \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp \left(-\frac{(o_t - \mu_j)^2}{2\sigma_j^2} \right)
\]

(1.13) [1]

In order to do the same with a \(D \)-dimensional feature vector (in our case \(D=39 \)), given HMM state \(j \), using a diagonal covariance multivariate Gaussian we use:

\[
b_j(o_t) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi\sigma_d^2}} \exp \left(-\frac{1}{2} \left(\frac{o_{td} - \mu_{jd}}{\sigma_{jd}} \right)^2 \right)
\]

(1.14) [1]

As discussed before that the assumption of normal distribution for all cepstral features is too hard a constraint. Therefore, the observation likely hood is often not estimated using a single multivariate Gaussian but a weighted mixture of multivariate Gaussians. The resulting model is called a Gaussian Mixture Model, which is trained using Baum-Welch to determine the observation likelihood \(b_j(o_j) \).
One problem that may occur in the calculation of probabilities mentioned in this section is that of numeric underflow. Many small probabilities multiply to produce even smaller numbers. This problem can be solved by using log probabilities [1]. An additional benefit of working with probabilities in the logarithmic domain is that of enhanced computational speed. Instead of multiplying probabilities the log probabilities have to be added. And addition is a faster operation then multiplication. Thus 1.14 can be represented in log domain as:

$$ log_b(\alpha_r) = -\frac{1}{2} \sum_{d=1}^{D} \left[\log(2\pi) + \sigma_{jd}^2 + \frac{(\alpha_{td} - \mu_{jd})^2}{\sigma_{jd}^2} \right] $$

(1.15)

1.3 The Language Model

The prior probability, \(P(W) \) is calculated using the Language Model. Generally trigram or even 4-gram based language models are used in modern speech recognition systems. For smaller systems that have to be deployed on embedded devices like mobile phones etc. a bigram or even unigram model may be used to save space.

Briefly, an N-gram language model is constructed from a transcribed corpus by calculating the following probability:

$$ P(w_1^n) = \prod_{k=1}^{n} P(w_k | w_{k-1}^{k-1}) $$

(1.16)

This is done for all word combinations present in the corpus. In order to keep this practical we approximate this probability by limiting \(n \) (where, \(k=1...n \)) to include previous 1 (bigram), 2(trigram) or 3(4-gram) words. We can even use simple occurrence probabilities of single words without considering the history, which is called a unigram model. For example, for a bigram language model the following probability is calculated for all the words in the corpus:

$$ P(w_1^n) \approx \prod_{k=1}^{n} P(w_k | w_{k-1}) $$

(1.17)
The simplest way to calculate these probabilities is by using the Maximum Likelihood Estimation (MLE). This is done by using normalized (between 0 and 1) counts from the corpus. For example in case of a bigram we can calculate the probabilities as below:

\[P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})} \tag{1.18} \]

Where \(C \) denotes the counts of the respective entities. For a complete N-gram based model the general counting based probability can be given as:

\[P(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})} \tag{1.19} \]

1.4 Smoothing

One major problem with MLE is of Sparse Data. That is, in case of sparse N-Grams there are many N-Grams which do not occur in the corpus, hence producing 0 entries, which reduce the overall relative frequency to zero. Thus we use smoothing techniques to give these entries a small value instead of making them zero. There are many such techniques used, some of which are mentioned below:

1.4.1 Laplace Smoothing

This is also called the add-one smoothing as the constant 1 is added to all the N-gram counts in the corpus before these are converted into probabilities. This method generally does not perform very well as often too much probability mass is moved to the N-grams with zero counts. The adjusted counts \(c_i^* \) for add-1 smoothing are defined as:

\[c_i^* = (c_i + 1) \frac{N}{N + V} \tag{1.20} \]

Where \(N \) is the total number of word tokens and \(V \) is the vocabulary size (i.e. the total number of word types).
1.4.2 Good-Turing Discounting

Good-Turing Smoothing is based upon the idea that the probability mass to be assigned to N-grams with zero counts is estimated from the number of N-grams with higher counts. So the smoothed out count c^* of N-Grams with count c, will be estimated from the number of N-Grams with count $c+1$ (N_{c+1}) as below [1]:

$$c^* = \frac{(c + 1)N_{c+1}}{N_c}$$ \hspace{1cm} (1.21)

where N_c is the number of N-Grams with count c. The weight assigned to the lower count N-Grams must then be discounted from higher count N-Grams using the same formula. Hence we calculate $N_0, N_1; N_1$ from N_2 and so on. In practice however, we only discount for c up to a certain k [4]. k is suggested to be 5 in [7]. So the corrected formula is [1]:

$$c^* = \frac{(c + 1)N_{c+1} - c(k + 1)N_{k+1}}{1 - \frac{(k + 1)N_{k+1}}{N_1}}$$ \hspace{1cm} (1.22)

1.4.3 Witten-Bell Discounting

In Witten-Bell discounting the probability of unseen things (i.e. the N-grams with zero counts) is estimated from the probability of things seen at least once (i.e. the N-grams with non-zero counts). If T is the types that we have already seen and V is the vocabulary size (the number of types that we will ever see), then the adjusted counts are given as:

$$c^*_i = \begin{cases} \frac{T}{Z} \left(\frac{N}{N + T} \right), & \text{if } c_i = 0 \\ c_i \left(\frac{N}{N + T} \right), & \text{if } c_i > 0 \end{cases}$$ \hspace{1cm} (1.23) [1]

Where Z is the total number of N-grams with zero count.
1.4.4 Deleted Interpolation

Here the probability of the N-Grams with zero counts is estimated from the interpolated sum of the probabilities of the (N-k)-grams where \((k = 1, 2, ..., N-1)\). By using a weight \(\lambda\) the adjusted probability of a trigram can be given as:

\[
P^*(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n) \quad (1.24) [1]
\]

Such that: \(\sum \lambda_i = 1\).

The values of \(\lambda\) can be trained using some EM algorithm or simply fixed to give more weight to higher N-grams as compared to lower ones. This however, depends on the importance that we wish to give to context versus simple occurrence of words (tokens) in the corpus.

1.5 The Training Phase

The \(a_{ij}\) and \(b_j(o_j)\) matrices of the HMM are trained in the training phase of the ASR system. There are two main method of training available: Hand Segmentation and Embedded Training.

1.5.1 Hand Phone Segmentation

This is a relatively simple method (from the ASR system’s point of view). The speech files are hand transcribed and also completely labeled regarding the starting and ending time of each words and phone in the utterances. Once such detailed information is available, the training of the \(a_{ij}\) and \(b_j(o_j)\) matrices is just a matter of counting the occurrences of phones in the training data. The \(a_{ij}\) values are word specific while \(b_j(o_j)\) are shared across multiple words which share common phones.

The problem with hand tagging of data is that it is an inaccurate and extremely lengthy procedure. It may take 400 hours to label 1 hour of speech recording [1]. The second reason i.e. loss of accuracy, means that humans are generally not good at doing phonetic transcription for units smaller than phones and also not very accurate at detecting phone boundaries. For these reasons it is often preferred to use the second method i.e. Embedded Training. The Hand Segmentation is often used for initial boot strapping of a system.
1.5.2 **Embedded Training**

In this method each phone HMM is trained while embedded in the entire sentence and the phone segmentation and alignment is done as part of the training. For this procedure the speech corpus is divided in small utterances. Then a transcription file, containing word transcriptions of these utterances in correct order, is constructed. A pronunciation lexicon establishes the mapping between words and phones and a phoneset contains all the possible (untrained) phones. The sentence HMM is built from this as shown in Figure 5, by using the Baum Welch as below:

i. A sentence HMM is built for each sentence, as shown in Figure 5.

ii. The α probabilities are initialized to 0.5 (for loop back and next state transition) and all other transition probabilities are set to 0.

iii. The $b(o_t)$ probabilities are initialized by setting the mean and variance for each Gaussian to the global mean and variance for the entire training set. Steps ii and iii are termed as a **flat initialize**.

iv. Multiple iteration of Baum-Welch is run to train the system.
The Baum-Welch repeatedly computes $\xi(t)$, the probability of being in state i at time t, by using forward-backward [1] to sum over all possible paths that were in state i emitting symbol o_t at time t. This allows the accumulation of counts for re-estimating the emission probability $b_j(o_t)$ from all the paths that pass through state j at time t.

1.6 The Decode Phase

Viterbi algorithm is used in the decoding phase [1]. In order to create a balance between the weights of likelihood and prior in Equation 1.6, we add a language weight, LW:

$$W' = \arg\max_{W \in L} P(O|W) P(W)^{LW}$$ (1.25)
The language weight is also referred to as the Language Model Scaling Factor (LMSF). It value is generally kept between 6 and 13, and an increase in LW causes a decrease in the value of LM probability (as it is between 0 and 1). So the goal of the Viterbi is to maximize equation 1.15.

The Viterbi is a dynamic programming algorithm. Given that it has already computed the probability of being in every state at time \(t-1 \), it computes the Viterbi probability by taking the most probable of the extensions of the paths that lead to the current cell. For a given state \(q_i \) at time \(t \), the value of \(v_t(j) \) is computed as:

\[
v_t(j) = \max_{1 \leq i \leq N} v_{t-1}(i) a_{ij} b_j(o_t)
\]

(1.26)

Where,

- \(v_{t-1}(i) \): The previous Viterbi path probability from the previous time step
- \(a_{ij} \): The transition probability from previous state \(q_i \) to current state \(q_j \)
- \(b_j(o_t) \): The state observation likelihood of the observation symbol \(o_t \) given the current state \(j \)

Where, the goal of the Viterbi is to find the best state sequence \(q = (q_1, q_2, ..., q_T) \) given the set of observations \(o = (o_1, o_2, ..., o_T) \). It also needs to find the probability of this sequence, to do which the Viterbi takes MAX over the previous path probabilities. However, this tends to be slow for modern speech research. Therefore, for large vocabulary recognition we do not consider all possible words when the algorithm is extending paths from one column to the next. Instead the low priority paths are pruned at each step and are not extended to the next step. This pruning is usually implemented by using beam search in which at each time step \(t \), the probability of the best (most probable) state/path \(D \) is computed. Then all the states worse than some threshold \(\theta \) (beam width) from \(D \) are pruned. It is implemented with an active list of states that is kept for each step. Only transitions from these states are extended when moving to the next step.

1.7 Evaluation

The standard evaluation metric for ASR systems is the Word Error Rate (WER). The word error rate is calculated by comparing the output word string produced by the ASR system (called hypothesis) with the correct string expected from it (called the reference). The comparison is
done by calculating the *Minimum Edit Distance* between the hypothesis and the reference. The minimum edit distance calculates the minimum substitutions, word insertions and word deletions required to map the hypothesis onto the reference. This minimum edit distance is then converted into WER as follows:

\[
\text{Word Error Rate} = \frac{\text{Insertions} \times \text{Deletions} \times \text{Substitutions}}{\text{Total words in the Reference String}} \tag{1.27} \text{[1]}
\]

As the expression contains substitutions therefore the WER can exceed 100%.
Chapter 2

The Sphinx Speech Recognition System

This section briefly explains the architecture of the Sphinx Speech recognition system. The information has been extracted from the documentation available online and primarily from sources [8], [9], [10], [11], [12] and [13]. The Sphinx speech recognition system is an open source, high performance speech recognition system developed by the CMU Sphinx project that can be used in building speech recognition applications. It also includes related resources such as acoustic model trainer, language model trainer. Hence Sphinx is available as a complete speech recognition system trainer and decoder.

2.1 Available Versions

Several projects of sphinx are available. A brief description is given below:

- **Sphinx-2** is a high speed large vocabulary speech recognizer. It is usually used in dialogue systems and pronunciation learning systems. Sphinx-2 is the predecessor of PocketSphinx. It is not being actively developed at this time, but is still widely used in interactive applications. It uses Hidden Markov Models (HMM) with semi-continuous output probability density functions (PDF). Even though it is not as accurate as Sphinx-3 or Sphinx-4, it runs in real time, and therefore it is a good choice for live applications.

- **Sphinx-3** is a slightly slower but more accurate Large Vocabulary Speech Recognition System. It is usually used as a server implementation of Sphinx for evaluation. It uses HMMs with continuous output PDFs. It supports several modes of operation. The more accurate mode, known as the "flat decoder", is descended from the original Sphinx-3 release. The faster mode, known as the "tree decoder", was developed separately. The two decoders were merged in Sphinx-3.5, though the flat decoder was not fully functional until Sphinx-3.7

- **Sphinx-4** is a completely rewritten version of Sphinx decoder in Java. It provides high accuracy and speed performance comparable to the state of the art. It uses HMMs with continuous output PDFs. Sphinx-4 uses models trained by Sphinx-3 trainer.
- **PocketSphinx** is a speech recognizer which can be used in embedded devices. It is highly optimized for CPUs such as ARMs. PocketSphinx is CMU’s fastest speech recognition system. It uses HMMs with semi-continuous output PDFs. Even though it is not as accurate as Sphinx-3 or Sphinx-4, it runs at real time, and therefore it is a good choice for live applications.

- **SphinxTrain** is a suite of tools which carry out acoustic model training. SphinxTrain is CMU Sphinx’s training package. It trains models in Sphinx-3 format, which is also used by PocketSphinx. The Sphinx-3 format can also be converted to Sphinx-2 format under some conditions related to Sphinx-2’s limitations.

- **CMU-Cambridge Language Modeling Toolkit** is a suite of tools which carry out language model training.

- **SphinxBase** provides a common set of library used by several projects in CMU Sphinx.

According to the tests performed at CMU which compare Sphinx4 with Sphinx3 (flat decoder) and to Sphinx3.3 (fast decoder) in several different tasks, ranging from digits recognition to medium-large vocabulary, Sphinx3 (flat decoder) is often the most accurate, but Sphinx4 is faster and more accurate than Sphinx3 in some of these tests [8].

The decision about which version to use depends on the type of application being developed. A few considerations are:

Programming Languages

Sphinx-2 and Sphinx-3 are in C and Sphinx-4 is in Java. So these are all quite portable.

Accuracy and Speed

Very extensive benchmarking of different Sphinx versions is not available; however, the following rough estimates are present [8]. According to these measurements, the accuracy numbers can be summarized as:

Sphinx-4 ≥ Sphinx-3 > Sphinx-2 [12]

And in terms of processing time the comparison is as follows:

Sphinx-4 ≥ Sphinx-3 ≥ Sphinx-2 [12]
That means Sphinx-2 is still the fastest recognizer in the sphinx inventory. However its accuracy is also the lowest. Sphinx-3 is the best C-based recognizer which can be configured as both fast and accurate. Sphinx-4 is possibly the most all round recognizer and it can actually be very fast.

Interfaces

Sphinx-4 provides the best interface among all. It can be configured by using a configuration file and command-line. This advantage can make web development tasks much easier. Usage of Sphinx-2 and Sphinx-3 requires much more skill in scripting and in general understanding of the program. At the current stage, they are still regarded as systems for expert users.

Platforms

Sphinx-2, Sphinx-3 and Sphinx-4 are all platform-independent. However, the use of Java language in Sphinx-4 may allow higher degree of platform independence. It is also of common interest that whether any version of the decoders could be used in an embedded platform. Sphinx-2 is perhaps the best recognizer for embedded platforms due to its smaller size and lesser processing time.

Research

Sphinx-2, 3 and 4 all have a clean design and they all support continuous HMMs which is currently a de-facto standard of HMM. In the case of individual research, for acoustic modeling and fast GMM computation, Sphinx-3 is generally considered a better research platform for speech recognition. By itself, it supports Semicontinuous HMM (SCHMM), continuous HMM (CHMM) and Sub-vector quantized HMM. They represent three different kinds of modeling techniques for speech recognitions.

2.2 Sphinx-3

Sphinx-3 is the successor to the Sphinx-II speech recognition system from Carnegie Mellon University. It includes both an acoustic *trainer* and various *decoders*, *i.e.*, text recognition, phoneme recognition, N-best list generation, etc. The following is a brief summary of its main features and limitations:

- Works with *discrete, semi-continuous, or continuous* acoustic models
- Works with 3 or 5-state left-to-right HMM topologies
- Bigram or trigram language model
- Batch-mode or live operation from pre-recorded speech

This distribution has been prepared for UNIX platforms and can be ported to MS Windows as MS Visual C++ 6.0 workspace and project files have been provided.

2.2.1 Sphinx-3 Trainer

The Sphinx trainer trains the HMM Acoustic models for the recognizer. Figure 6 explains the working of the front end trainer system which converts audio files in Mel Frequency Cepstral Coefficients.

![Figure 6 - Trainer Front-end](image)

Front End Parameters

A brief description of the front end parameters is given below:

- **Sampling rate:** The sampling frequency of the input speech signal
- **Frame rate:** The speed of how fast a window is moving. It is terms of number of samples
• **Window length:** The size of moving window in terms of number of samples. Hamming window is used

• **Number of Cepstral Coefficients:** The number of coefficient *including* the energy coefficient in the feature vector

• **Number of filters:** The number of filters that would be used in the filter banks

• **The size of FFT:** The number of points of FFT used

• **The lower filter frequency:** It is actually the lower frequency of the lowest filter in the filter bank

• **The upper filter frequency:** It is actually the upper frequency of the highest filter in the filter bank

• **The pre-emphasis coefficient:** The value of the pre-emphasis coefficient in the pre-emphasis filter

The MFCCs are then used to train the HMM Acoustic models by using embedded training approach and the Baum-Welch algorithm.

2.2.2 The Language Model Tool

The CMU statistical modeling toolkit can be used to generate the language models. It takes a text corpus as input and produces Trigram or Bigram Language Models in binary or *ARPA* format. These can be converted into binary dump file format by using the `lm2dmp` utility also (separately) made available with the Sphinx. The language model can be generated using any one of four smoothing strategies:

- Good Turing discounting
- Witten Bell discounting
- Absolute discounting
- Linear discounting

The SLM toolkit architecture is shown in Figure 7.
2.2.3 Sphinx-3 Decoder

The Sphinx-3 decoder is based on the conventional Viterbi search algorithm and beam search heuristics. It uses a lexical-tree search structure. It takes its input from pre-recorded speech in raw PCM format and writes its recognition results to output files.

Inputs

The decoder requires the following inputs:

1. **Lexical model**

The lexical or pronunciation model contains pronunciations for all the words of interest to the decoder. Sphinx-3 uses phonetic units to build word pronunciations.

2. **Acoustic model**

Sphinx uses acoustic models based on statistical hidden Markov models (HMMs). The acoustic model is trained from acoustic training data using the Sphinx-3 trainer. The trainer is capable of building acoustic models with a wide range of structures, such as discrete, semi-continuous, or continuous HMMs.
3. **Language model (LM)**

Sphinx-3 uses a conventional back off bigram or trigram language model.

4. **Speech input specification**

Sphinx3_decode uses a control file for batch mode processing. The entire input to be processed must be available beforehand, *i.e.*, the audio samples must have been preprocessed into Cepstrum files.

Outputs

The decoder produces a *Recognition hypothesis*: A single best recognition result (or *hypothesis*) for each utterance processed. It is a linear word sequence, with additional attributes such as their time segmentation and scores. In addition, the decoder also produces a detailed log that can be useful in debugging, gathering statistics, etc.

Figure 8 depicts the detailed decoder operation. A complete description of all the files and file formats used by the decoder is given in section 5.4 and Appendix G.

![Figure 8 - Sphinx-3 Decoder](10)
Chapter 3

Urdu Acoustics and Letter to Sound Rules

Urdu, the national language of Pakistan, is spoken by more than a 100 million people around the globe [15]. Phonetically, it is a rich language with a large inventory of 44 consonants, 7 long oral vowels, 7 long nasal vowels, 3 short vowels and numerous diphthongs [16]. Let us briefly review the phonetic inventory of Urdu.

3.1 Vowels

Urdu has a rich variety of vocalic sounds. As shown in Figure 9 the Urdu vocalic sounds are distinguished on the basis of all the criteria of quality, duration and nasalization. Other than the 7 long oral vowels, e also occurs in Urdu, but only as a phone, not as a phoneme. Moreover, ɔ̃ also occurs as a phone and not as a phoneme. Except for this, all the other long vowels have nasal versions. The three short vowels in Urdu do not possess nasalized counterparts. The three higher back vowels also are characterized by lip rounding.

![Figure 9 - Urdu Vowels [17]](image)

3.2 Consonants

The 44 consonants of Urdu are shown in Figure 10. Once again we see a large variety of acoustic features with several examples of all the four voicing mechanisms of voiced, unvoiced, and voiceless and voiced aspirated sounds. Nasal consonants e.g. /m/, /n/ add to already diverse
nasal sounds of Urdu, which mark a clear distinction between languages like English which possess relatively lesser number of nasal sounds.

<table>
<thead>
<tr>
<th>Voicing</th>
<th>Bilabial</th>
<th>Dental</th>
<th>Alveolar</th>
<th>Palatal</th>
<th>Volar</th>
<th>Uvalor</th>
<th>Phar</th>
<th>Laryn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosive</td>
<td>b, p, b', p'</td>
<td>t, d, t', d'</td>
<td>k, g, k', g'</td>
<td>m, n</td>
<td>l, n</td>
<td>r, l</td>
<td>s, h</td>
<td></td>
</tr>
<tr>
<td>Nasal</td>
<td>m, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trill</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flap</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10 - Urdu Consonants [17]

Since we will be requiring phonetic transcription of Urdu words therefore, it is must that we briefly visit the letter to sound rules of Urdu. For a detailed discussion on the subject the reader may refer to [17].

3.3 Letter to Sound Rules for Urdu

It is written in Arabic script in Nastalique style using an extended Arabic character set [18]. The character set includes basic and secondary letters, aerab (or diacritical marks), punctuation marks and special symbols [19]. However, everyday-Urdu is written only using the letters, which primarily represent just the consonantal content, and the use of diacritics, which mostly represent the vowels in Urdu, is optional. Though this does not cause any difficulty for the native speaker, the absence of vowel marks makes the job of letter to sound mapping more difficult computationally [17]. As a result, Urdu corpora obtained from sources like newspapers etc. are generally phonetically transcribed using lexical lookup, though manual review is necessary for cases where multiple pronunciation are possible for same written form.
The Urdu letters and aerab are shown in the Figure 11. These letters can be divided into the following categories on the basis of the different types of grapheme to phoneme mapping rules:

1. **Consonantal characters**

The characters shown in the Figure 12 always map to consonantal phonemes in Urdu. The mapping between grapheme to phoneme for these characters is many-to-one in some cases while one-to-one in others. However, it is not one-to-many in any case. Simple context independent mapping rules can be used to convert these graphemes to phonemes in any Urdu character string.

![Figure 12 - Letter to sound mappings of Urdu Consonants [17]](image)
2. **Characters which show dual (consonantal and vocalic) behavior**

There are three characters in Urdu which depict the dual behavior of vocalic or a consonant depending on the context of occurrence. These characters are Alef (ا), Vao (و) and Yay (ے or ی). Vao changes to the voiced labiodentals /v/ and Yay changes to the approximant /j/ when these occur at the onset or coda of a syllable. While at nucleus positions they make long vowels.

3. **Vowel modifiers**

There is only one such example in Urdu and that is the letter Noon Ghunna (ں) which does not add any new sound but only nasalizes the previous vowel. If it occurs after a type 2 character, then it converts into nasal long vowel.

4. **Consonantal modifiers**

The Do-Chashmey Hay (ھ) acts as a consonantal modifier as it combines with stops, nasal stops approximants and affricates to form aspirated consonants.

5. **Composite (consonantal and vocalic) characters**

This category also has a single example, the Alef Madda (ّ) which is just an alternative transcription for double Alef. It thus represents an Alef in consonantal and second in vocalic position.

Similarly the aerab can be divided into the following types:

6. **Basic vowel specifier**

There are short vowel aerabs used in Urdu called Zabar (اً), Zer (اُ) and Pesh (اُ). These combine with other characters to form vowels according to the following rules:

a. They make *short vowels* when they occur with type 1 and type 2 consonants and are not followed by type 2 letters

b. They generate *long vowels* when they occur with type 1 and type 2 consonants followed and combined by type 2 characters
c. They make long nasalized vowels when they combine with type 1 and type 2 consonants followed by type 2 characters followed by type 3 character i.e. Noon Ghunna

7. **Extended vowel specifier**

The single diacritic Khari Zabar (ٍ) is an extended vowel specifier, which represents an Alef. When it occurs on top of Vao or Yay, it converts the sound to Alef (/a/).

8. **Consonantal gemination specifier**

The Tashdeed or Shad (ّ) geminates consonantal characters except for Alef. As a result of the doubling the consonant acts as the coda of the previous syllable and the onset of the next one.

9. **Dual (vocalic and consonantal) inserter**

The Do-Zabar (ٓ) only occurs on Alef in vocalic position and converts the long vowel /a/ to the short Schwa followed by consonant /n/.

10. **Vowel-aerab placeholder**

This category includes Alef (١), which is a letter and Hamza (٢) which is a diacritic. Alef occurs in this role at word initial positions while Hamza otherwise. At word initial positions Alef acts as a place holder for short vowel if no other consonant is there to act as one and the words starts with the short vowel. In words medial positions this role is taken up by Hamza in case of onset-less vowels.

Further if the preceding syllable ends on a vowel and next start with one then Hamza may be introduced between the two vowels. Lastly, if the preceding vowel is closed by a coda consonant, then Hamza may be used with Alef.
Chapter 4

Literature Review

A lot of work has been done on the development of Automatic Speech Recognition systems for many languages of the world. The work ranges from the activities involved in the development and enhancement of speech corpora to the development and improvements in the speech recognition systems. The main area on which I focused my study was the development of speech corpus, especially the ones for Asian languages, as I need to develop such a corpus for Urdu before being able to develop a speech recognition system. Secondly, as this work focuses on the development of an ASR system for continuous and spontaneous speech I have tried to include research work focusing on these areas in my study. Following is a brief review of the work done on Speech corpora development and Automatic Speech Recognition systems.

4.1 Corpus Construction

4.1.1 Speech Corpus for Amharic Large Vocabulary Continuous Speech Recognition System

Abate et al. [20] developed a Speech corpus for Amharic, the official language of Ethiopia, for training a large vocabulary continuous speech recognition system. Amharic speech contains 38 different phones with 31 consonantal and 7 vocalic sounds and at least 234 distinct CV (consonant-vowel) syllables. They used archives of a website where newspaper and magazine articles are published to build the corpus, which was cleaned semi-automatically. It consists of read speech only. The corpus has been phonetically enriched based on syllables. The syllable based phonetically rich corpus was collected using computational methods from a large corpus of around 100,000 sentences. It has been balanced by adding on the required phonetically rich content. The process of the phonetically rich corpus construction was divided into two steps. In the first step sentences with the highest phonetic richness were selected. Of these sentences, only the ones which preserve the syllabic phonetic balance above a certain threshold were kept. The syllable found to be missing in the final corpus, due to rare occurrence, were added by collecting the rare words required. These words were then converted into sentences according
to the grammatical rules of Amharic. The corpus was divided into data for training, testing and speaker adaptation. The speech was recorded in office level background noise. The speech corpus contains 20 hours of training speech collected from 100 speakers who read a total of 10850 sentences. The sentences were split semi-automatically. The speakers represented all the five different dialects of Amharic. The total number of words present in the training speech amounted to 28666 that covered all 233 Amharic syllables. The corpus was annotated manually and split at word and syllable level.

4.1.2 Speech Corpus for Turkish Text To Speech System

Bozkurt et al. [21] designed a speech corpus for Turkish Text to Speech system based on read speech, and have used a Greedy algorithm for text selection. They have used diphones to simplify concatenation issues. The greedy algorithm used assigns costs to sentences according to the number of out-of-cover units (diphones) and in-cover units in the sentence. In each iteration the algorithm picks the sentence with maximum cost, i.e. which adds the maximum number of out-of-cover elements to the already made pool of sentences. It removes the sentence from the universal sentence pool and updates the target and universal sentence pools accordingly. They modified the algorithm for maximum variability of units, by using weighted sums instead of binary costs in the greedy decision making. They also used it to construct a Turkish speech corpus for TTS. The main tasks involved in the process of collecting the text for the corpus development included:

- Collection of Turkish text from the internet producing a total of 115000 sentences
- Preprocessing and rejection of sentences including some unexpected phoneme sequences primarily due to foreign words and mistyping
- Multiple iterations of the greedy algorithm and manual cleaning of the selected text which finally selected 2500 sentences
- Finally special sentences for including uncovered diphones were manually designed
4.1.3 Speech Corpus for Hindi Large Vocabulary Continuous Speech Recognition System

Chourasia et al. [22] have developed a speech corpus for Hindi to be used in the construction of a large vocabulary, continuous speech, multi-speaker recognition system which can also be used for recognizing fluent speech. They have chosen phonetically rich sentences from a Hindi corpus which was collected from various sources like hand typed articles, periodical, magazines etc. and text data available online. The data is automatically transcribed phonetically using grapheme to phoneme rules. The sentences chosen from the corpus must conform to certain requirements as mentioned below:

- The sentences should be short (with a minimum of 4 and maximum of 10 words)
- They are manually inspected to ascertain that they do not sound artificial
- They are meaningful
- They do not contain any offensive or sensitive words

The phonetic richness in the sentences is made context sensitive by making triphones as the unit of selection. Special attention has been paid to make sure that the rare phones and triphonemes are also sufficiently represented in the corpus. 350,000 sentences were chosen from the corpus and from these the phonetically rich sentences were chosen by using a program called “corpusCrt”. 50,000 phonetically rich sentences were finally selected and divided into 5000 sets of 10 sentences each.

4.1.4 Cell Phone based American English Speech Corpus Construction

Heeman et al. [23] have presented the complete details of the task of the collection of cell phone based speech for the American English corpus SALA-II. The main goal of the corpus construction is to train speech recognition systems. The target community is the population of North, Central and South America and the focused speech transmission medium is the speech over cell phones. The speech had to be recorded from 4000 different speaker in different environmental conditions including cars, trains, buses, public places, busy streets, over speaker phones in cars and also while using car phone kits also in quiet offices. All nine accent regions
and both the genders had to be covered. The conversations included 44 different read items including:

- City names, company names people’s names
- Credit card numbers, dollar amounts, numbers, phone numbers
- Typical application words (e.g., stop, play)
- Time phrases, date phrases
- 9 different phonetically rich sentences
- 4 phonetically rich words. In order

Also included were several spontaneous item including:

- Speakers their first name
- The city they grew up in
- The current time and date
- Several yes/no questions

The phonetically rich sentences of English were collected from the Harvard corpus, the Timit corpus, and children’s stories and constructed some sentences to enhance the phonetic richness. A total of 4412 such sentences were collected. After recording from 3200 speakers the phonetic richness of the recorded sentences was examined and the phones which lacked richness were included in the remaining 800 prompt sheets. SpeechView, a tool included in the CSLU toolkit, was used for the transcription of the speech data. They have reported speaker recruitment to be the most challenging part of the whole project.

4.1.5 Phrase Based Phonetically Rich and Balanced Corpus for Mexican Spanish Language

Villaseñor-Pineda et al. [24] present an automated method of building a phrase based phonetically rich and balanced corpus from the web, for Mexican Spanish Language. The hypothesis that they have tested is that the phonetic distribution of a corpus collected from the web will match that of the language. Or in other words the Web, due to its huge size, is already a phonetically rich and balanced source, and thus, taking a subset of it is enough to assemble a
phonetically rich and balanced corpus. A smaller set of phrases is obtained on the basis of sentence perplexity measure in accordance with a language model. Lower perplexity sentences are kept as their phonetic distribution matches that of the language model. A comparison of the phonetic richness of the auto-selected web based corpus with that of the Spanish language showed that the hypothesis of the phonetic balance of the web based content was correct. The final corpus contained 864,166 words, and 20893 lexical forms spanning over a set of 6082 phrases.

4.1.6 Speech Corpus for Greek Dictation System

Digalakis et al. [25] have developed a dictation system for Greek. The recordings for the speech corpus were conducted on 55 male and 70 female speakers in three different environments: a sound proof room, a quite environment and an office environment. The speakers completed 291 sessions. Each session in the sound proof environment consisted of 180 utterances, each quiet session of 150 utterances and each office session of 150 utterances. 30 of the 180 utterances of the sound proof session were specially selected in order to contain rich phonetic coverage. Therefore the total number of utterances that were collected was 46,020. After cleaning the total collected speech amounted to 72 hours. 30 sessions were then recorded with spontaneous speech. For transcription the corpus was split in two sets. One set of 23,136 utterances was transcribed by the speech recognition group of the Technical University of Crete and the other set of 10,000 utterances transcribed by the Institute of Language and Speech Processing in Athens. The transcriptions were done for the speech and many types of non-speech events like mispronunciation, noise etc. The SRI's DECIPHER speech recognition system was used for the ASR. The gender independent model gave a Word Error Rate of 21.01%, the independent model for male speech gave 19.27% WER, while that for female speech gave 20.85% WER.

4.1.7 Speech Corpus for Automatic Transcription System for Spontaneous Dutch Speech

Binnenpoorte et al. [26] have developed a method for automatic transcription of Dutch spontaneous speech. A corpus of telephone conversations was used for the transcription tests.
All available transcribed data was gathered to act as the reference model. The continuous speech recognizer (CSR) was trained with nearly 24.5 hours of speech data containing 304502 words with around 14113 unique words. The test data consisted of 13 minutes of speech with 2850 words and 826 unique words. Using the CSR and a bigram language model the test data was transcribed. To test this automatically generated transcription the test data was manually transcribed by two phonetically trained and experienced listeners. They transcribed from scratch and were required to reach a consensus on each symbol in the transcription. They used the same symbol set as was used for the automatically generated transcription. This gave the reference transcription. An alignment of the auto-generated and reference transcription revealed 21.73% of phone error rate.

4.1.8 Microphone and Telephone based Russian Speech Corpus

TeCoRus speech corpus was collected by Ronzhin at al. [27] to with the goal of facilitating Russian speech research especially in the field of telecommunication. The speech corpus is designed to train context-dependent phone models. The speech has been recorded over two different channels: narrowband telephone channel (4 kHz, Moscow fixed telephone network) and broadband microphone channel (11 kHz computer Koss SB35 microphone). TeCoRus mainly consists of two parts. The phonetic part provides phonetically rich speech material to build the boot set of context-dependent phone models. This part contains 3050 utterances read by 6 speakers. The second part of the corpus is a collection of the short answers extracted from interviews and also includes both read and spoken material in the form of controlled answers and spontaneous speech on the predefined topic. It mostly consists of one-word positive and negative answers, digits (isolated and digit strings), numbers, names of months and weekdays, Russian first names, Spelling of Russian alphabet, time and date, few phonetically rich sentences and short stories. The second part was recorded from 100 speakers.

4.1.9 Minimal Corpus for Tamil, Telugu and Marathi Landline and Cellular Phone Based Continuous Speech Recognition

Anumanchipalli et al. [28] have used Sphinx-2 system for Tamil, Telugu and Marathi landline and cellular phone based continuous (read) speech recognition. Their system is speaker
independent and is trained with the speech of around 560 speakers for the three languages. They started their work by developing a minimal text corpus that should cover all the phonetic variation that is present in these languages. The corpus consisted of phonetically rich sentences and the goal in its development was that it should also represent the syntactic structures of the target languages. The primary source for the corpora was newspapers and websites. Following (Table 1) is a summary of the corpora that they collected:

<table>
<thead>
<tr>
<th>Language</th>
<th>No. of Sentences</th>
<th>No. of Unique Words</th>
<th>No. of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marathi</td>
<td>155541</td>
<td>184293</td>
<td>1557667</td>
</tr>
<tr>
<td>Tamil</td>
<td>303537</td>
<td>202212</td>
<td>3178851</td>
</tr>
<tr>
<td>Telugu</td>
<td>444292</td>
<td>419685</td>
<td>5521970</td>
</tr>
</tbody>
</table>

Table 1 - Summary of Corpora [28]

Grapheme-to-phoneme converters were used for the phonetic transcription of the corpora. Phonetically rich speech corpora for these languages were constructed using an “Optimal Text Selection (OTS) algorithm” that selects the sentences which are phonetically rich. They have utilized the greedy set cover algorithm for this task, which basis its selection on diphone based richness. The sentences are chosen to satisfy a certain threshold of diphone richness. The sentences were spoken by native speakers and 560 speakers were recruited to perform the task. The recordings were done on landline and cell phone channels. The models were trained and ASR systems for the target languages were developed. The following table (Table 2) lists the word error rates for the target languages trained:

<table>
<thead>
<tr>
<th>ASR System</th>
<th>WER (%)</th>
<th>Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marathi Landline</td>
<td>20.7</td>
<td>21640</td>
</tr>
<tr>
<td>Marathi Mobile</td>
<td>23.6</td>
<td>18912</td>
</tr>
<tr>
<td>Tamil Landline</td>
<td>19.4</td>
<td>13883</td>
</tr>
<tr>
<td>Tamil Mobile</td>
<td>17.6</td>
<td>16187</td>
</tr>
<tr>
<td>Telugu Landline</td>
<td>15.1</td>
<td>25626</td>
</tr>
<tr>
<td>Telugu Mobile</td>
<td>18.3</td>
<td>16419</td>
</tr>
</tbody>
</table>

Table 2 - Result Statistics [28]
4.1.10 Annotated Corpus for Spontaneous Chinese Language

Li et al. [29] have developed an annotated corpus for spontaneous Chinese language and language effects. The Chinese Annotated Spontaneous Speech (CASS) corpus contains phonetically transcribed spontaneous speech. The goal of the corpus development was to capture the phonetic variations in Mandarin spontaneous speech due to pronunciation effects, including allophonic changes, phoneme reduction, phoneme deletion and insertion, as well as duration changes. The purpose is to develop an automatic speech recognition system for Mandarin casual speech. The recordings in the corpus are from sources like university lectures, student colloquia, and other public meetings. The environments for recordings included classrooms, amphitheatres, or school studios, resulting in a lot of background noise of different types. Initial around 6 hours of recordings were made. The speech was transcribed at words, syllable and semi-syllable level with detailed annotation of pronunciation variants. The detailed annotation of one hour of raw speech took around 380 hours of effort by a single transcriber. The speech was annotated in three tiers: the syllable tier, semi-syllable tier and miscellaneous tier. The CASS corpus is still under active development.

4.1.11 Isolated Word Phonetically Rich Corpus for Lithuanian Speech Recognition System

Raškinis et al. [30] have based the speech recognition system for Lithuanian on an isolated word phonetically rich corpus. HTK toolkit has been used for training the triphone based single Gaussian HMM speech recognition system based on Mel Frequency Cepstral Coefficients (MFCC). The best word error rate achieved was around 20% for speaker independent recognition of around 750 distinct isolated words. The training data included broadband recordings of 4 speakers (2 males and 2 females) of Lithuanian. Each recording consisted of 275 utterances that contained 2 to 5 phonetically rich words. This gave a corpus containing 60.6 minutes of speech. Speaker adaptation and language modeling techniques were not used.
4.1.12 Comparison of Biphone and Triphone Rich Speech Corpora for Taiwanese

Yio et al. [31] have compared the performance of speech recognition engines for Taiwanese trained with two different speech corpora: one that covered all cross-syllable biphones and another which covers all cross-syllable triphones. The triphone rich corpus requires 10 times more words than the biphone rich one. A greedy algorithm is used for the word set construction. In order to collect the corpus data with as much phonetic richness as possible while keeping the words small a two step process was followed. First two sets of words were selected such that they covered all the cross-syllable bi-phones and tri-phones. In cross-syllable biphone words set, total distinct cross-syllable bi-phones were selected before total distinct syllables. In tri-phone words set, total distinct cross-syllable tri-phones were selected before the total distinct syllables. All the words were recorded by a male Taiwanese speaker over a microphone. The resulting speech corpora consisted of 100 minutes duration for each of the 10 sets of biphone rich words. The corpora were used to train speech recognition systems. Three different types of training data were used with durations ranging from 100 to 167 minutes. The training data was composed of 18.4 minutes of speech recordings. It was found that the Syllable Recognition Rate for Inside Syllable Biphone rich corpus reached 95.38% and that of Inside Syllable Triphone rich corpus reached 93.08%. Similarly the Syllable Recognition Rate for across syllable bi-phone corpus reached 95.75% while that of cross syllable triphone rich corpus reached 94.48%. In both cases the recognition rates for triphone rich corpora are less than the biphone rich corpora. The authors have attributed this discrepancy towards scarcity of training data. So their results show that the triphone rich corpus does not show significant advantages over the biphone rich corpus.

4.2 Corpora Construction Summary

A lot of work has been done on the development of speech resources for many languages of the world. These resources have been developed both for TTS (e.g. [21]) and ASR systems (e.g. [20], [28], [22] and [25]). The main goal in the development of speech corpora is phonetic coverage [27], which allows them to represent the phonetic structure of the target language. Speech
corpora have been developed for various tasks, including: (a) isolated word corpora, e.g. Lithuanian [30], (b) continuous speech, e.g. Indian Languages [28], Hindi [22] and Greek [25], and (c) continuous and spontaneous speech, e.g. Dutch [26], Mandarin [29], and Russian [27].

The second criterion for the speech corpus development is the phonetic balance, i.e. the phonetic content should occur in the same proportions as in the language, to properly train the statistical models, as discussed for Russian [27], Amharic [20], and Mexican Spanish [24]. The phonetic richness can simply be phone-based [29] or context-based. The context-based methods take into consideration either a single immediate context, using diphone-based methods [28] or both beginning and ending context, using triphone-based methods ([22], [27]). However, an analysis in [31] shows that the triphone richness may not improve the accuracy of speech recognizer significantly but it requires much more data.

There is also difference in approaches towards gathering the data for the speech corpora. Most of the automatic approaches utilize some kind of a greedy algorithm to maximize the number of sound units (half-phones, phones, diphones or triphones) in minimal data set ([28], [21] and [31]). Still other make phonetically balanced sentences by comparing the phonetic composition with a language model by using perplexity [24]. This set is made richer by adding spontaneous speech data, e.g. from interviews [27] or recorded free speech. Still other approaches may include collection of text which represents the phonetic richness and proportion of a language [24].

4.3 Design of ASRs for Spontaneous and Continuous Speech

4.3.1 Speech Recognition System for Spontaneous German Speech

Sloboda et al. [32] developed a speech recognition system for spontaneous Germen speech, using Janus 2 speech recognition system, by developing an acoustic database driven approach. In case of spontaneous speech phenomena like false starts, human and nonhuman noises, new words, and alternative pronunciations pose a challenge in recognition. Therefore, the actual required pronunciation (phonemic pronunciation) of a word cannot be considered as recognition criteria. Rather the pronunciation should be chosen by the frequency with which it appears in the speech database. Therefore, in their approach they add new pronunciations to
the database on the basis of the gathered speech data, especially for frequently misrecognized
words. They have argued that the popular methods of using the intended pronunciation as the
recognition criteria is not useful in case of spontaneous speech as words are seldom
pronounced to perfection. However, modifying the phonetic dictionary by hand is also not a
very feasible or useful approach as when the number of phones increases it is difficult to
maintain consistency in manual transcription. Also the actual pronunciations may not be easy
to predict without analyzing the actual data, e.g. in case of the pronunciation of foreign words
and names. In addition it may not be easy to determine which acoustic variants are statistically
more relevant. Therefore, to solve this problem they propose a computational technique in the
form of an algorithm to improve phonetic dictionaries. This algorithm should optimize
dictionaries on the basis of recognition performance and statistical relevance of pronunciations.
The training and test data details are shown below (Table 3):

<table>
<thead>
<tr>
<th></th>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Dialogues</td>
<td>608</td>
<td>8</td>
</tr>
<tr>
<td>No. of Utterances</td>
<td>10735</td>
<td>110</td>
</tr>
<tr>
<td>No. of Words</td>
<td>281160</td>
<td>2346</td>
</tr>
<tr>
<td>Vocabulary size</td>
<td>5442</td>
<td>543</td>
</tr>
</tbody>
</table>

Table 3 - Training and Test data summary [32]

They achieved best word accuracies (WA) between 65.6% and 68.4% for the multi speaker
German Spontaneous Speech.

4.3.2 Automatic Detection of Pauses in Spontaneous Japanese Speech

Masataka et al. [33] have developed a method for automatically detecting pauses in
spontaneous speech which result in errors in the speech recognition. Their work is focused on
Spontaneous Japanese speech. Catering for the pauses that occur in natural spontaneous
speech, allows for recognition of more naturally spoken continuous and spontaneous speech.
Their approach assumes that speakers do not change articulatory parameters during filled
pauses. In their paper they have concentrated on two phenomena of spontaneous speech, word
lengthening and filled pauses. Filled pauses are vocalized pauses which occur when a speaker
hesitates or plans for further speech. They have proposed a detection mechanism for filled
pauses on the basis of their spectral properties. As mentioned before they assume that the
speaker does not vary the vocalic acoustic parameters during the vocalized pauses. Hence these pauses are characterized by a slight change in F0 and a small deformation of spectral envelop. The amount of F0 change and deformation of spectral envelop is hence used as an indicator for the possibility of filled pauses which is then evaluated probabilistically. They have presented their results of the correct detection of filled pauses tested on spontaneous speech corpus consisting of 100 utterances by five men and five women, each containing at least one filled pause. The recall rate i.e. the number of filled pauses detected correctly/the total number of filled pauses they have achieved is 84.9%. They applied their methods to the word alignment in HMM based speech recognition however they have not reported the improvement in Word Error Rate achieved.

4.3.3 Performance Comparison of Spontaneous Speech Recognition Systems vs Dictation Systems

Jacques et al. [34] explain the poor performance of spontaneous speech recognition systems compared to dictation system on the basis of inadequate language models. This is because of a lack of training data modeling the spontaneous speech disfluencies. They propose an approach for improving spontaneous language models by flexibly manipulating the context when disfluencies occur. They express that the WERs for large vocabulary speaker independent dictation systems is around 5%, while that of spontaneous speech recognition goes to 15% for broadcast news ([35] and [36]) and 40% for meeting and telephone conversation transcription [37]. They have categorized disfluencies into hesitations, repetitions and sentence restarts. In their method the context in an N-gram language model is modified as disfluency occurs. Thus they proceed to generate models for all the three types of disfluencies. They tested their system for telephone based spontaneous American English Speech using the Switchboard Corpus and ESAT Speech Recognition System. The acoustic models were trained on 310 hours of speech data. The trigram language model was generated from 3 million words of the Switchboard transcription corpus smoothed using Good-Turing Discounting. The lexicon consisted of 27000 words. The test data consisted of 20 telephone calls (almost 2 hours of data), containing 1718 sentences with 20K words. The tests showed that the method reduced the WER from 29.8% (without using the technique in this paper) to 29.6% after applying the proposed improvement.
Since only about 20% of the sentences have disfluencies so to get a better idea the experiment was repeated with only the sentences with which the proposed method changes the recognition results. The WER reduced from 36.7% to 35.1% in case of repetition however became worse for other types of disfluencies.

4.3.4 Technique for Paraphrasing Spontaneous Japanese Speech into Written Style Sentences

Takaaki et al. [38] proposed a method for paraphrasing spontaneous Japanese speech into written style sentences. As there is a lot of difference between spontaneous and written style Japanese most other speech recognition systems do not perform very well. Therefore they have proposed a method to translate spontaneous speech directly into written text by using a Weighted Finite State Transducer (WFST). The spontaneous speech transcribed by normal speech recognition systems is difficult to read due to disfluencies, filled pauses, repetitions, repairs and word fragments. Moreover the spoken Japanese has a much different style then written one e.g. Because of change of verbs, auxiliary verbs and adjectives etc. The proposed method is useful in tasks like automatic generation of captions, minutes, annotations etc. in their method they compose two WFSTs one for recognition and another for paraphrasing. The combined models are better than separate ones as this allows simultaneous translation of speech into readable text and also the linguistic constraints in speech recognition are reinforced as the two models work together. The method is tested using a 20,000 words spontaneous Japanese speech in the form of lectures. The Language Model was derived from a 36.8 million word corpus from newspapers and World Wide Web. The experiments showed a decrease in error rate ranging between 2.2 and 5.3 percent. The minimum WER for recognition achieved was 24.2% and maximum was 39.1% (for different test data). The decrease in WER in paraphrasing was between 2.2 and 5.2 percent, as manually transcribed data was compared with the automatically paraphrased data. The WER ranged between 29.6% and 51.5%.
4.3.5 Disfluent Repetitions in Spontaneous Speech

Vivek et al. [39] have concentrated on the problem of disfluent repetitions in spontaneous speech. They have used a metric called Repetition Word Error Rate (RWER) to quantify the errors caused by this type of disfluencies. They have proposed a solution by using an acoustic prosodic classifier for these disfluencies and a multi word model for modeling repetitions. Using this approach they have analyzed the RWER in the Fisher’s conversational speech corpus. The classifier approach did not work very well as it produced many unnecessary warnings, however the multi word model approach resulted in the absolute RWER reduction of 1.26% and an absolute WER reduction of 2% on already well trained acoustic and language models. The data used for testing is of 5849 conversations from the Fisher’s corpus, each lasting up to 10 minutes. They used 20 hours of data for training the system from the Fisher’s corpus. The test corpus consisted of 2 hours of data from 20 speakers not overlapping with the training data. The percentage of repetitions in the test set was 1.91%. The language models were constructed from the transcribed training data transcripts and the remaining part of the Fisher corpus and also other conversational data sources. The classifier was generated from the repetitions in the training data by using features like duration, F0 and pause information from the boundary of the repetitions. The pause information after the repetition and F0 values around boundary were taken into consideration as were the duration information and the creakiness of voice in the repetition. However, the classifier generated lot of “false alarms”. The word error rates before the multi word training remained within ranges of 42.1% to 48% with different acoustic models and between 48% and 56% for different language models. Next the system was trained with multiword models in which the frequently repeated words were trained as multiwords and also added to the dictionary. An improvement of 2% in WER resulted by incorporating these models into the training system.

4.3.6 An Unsupervised Approach towards the Transcription of Continuous Broadcast News Data for Training Continuous Speech Large Vocabulary Speech Recognition Systems

Frank et al. [40] have proposed an unsupervised approach towards the transcription of continuous broadcast news data for training continuous speech large vocabulary speech
recognition systems. Since a large amount of transcribed acoustic data is must for training a good speech recognition system, therefore speech from various sources is generally transcribed manually, which is a very lengthy and painstaking process. This paper proposes that such raw (untranscribed) acoustic data can be transcribed by using an already trained speech recognition system, referred to as unsupervised learning because the system is not given the information about the correct output. The authors have tried two methods. One in which a speech recognition system trained with one to six hours of speech data is used to transcribe seventy two hours of speech. The complete data is then used to develop a speech recognition system. Next the system is trained iteratively starting from only one hour of transcribed speech data. In this approach the initial (small) speech recognition system is used to transcribe the whole seventy two hours of speech. Next the speech recognition system is trained with this speech and again used to transcribe the seventy two hours of speech, giving better results as the model had been improved. A confidence score is used to restrict the training to those portions of the speech corpus where the words are most probably correct. This was repeated several times. With the iterative approach the Word Error Rate was reduced from 71.3% to 38.3% on the Broadcast New’96 evaluation test set and from 65.6% to 29.3% on the Broadcast news’98 evaluation test set. When compared to a manually transcribed speech system for seventy two hours of speech the word error rate increased by 14.3% for the Broadcast New’96 evaluation test and 18.6% the Broadcast news’98 evaluation test using gender independent within-word models. However, using across-words models the word error rates increased by 20.9% and 23% respectively.

4.3.7 Automatic Transcription System for Arabic

Soltau et al. [41] have reported the outcome of a project to transcribe Arabic broadcast news using the GALE ASR. The training data used for the procedure consisted of 85 hours of broadcast speech data with transcripts, 51 hours of speech data from another source with transcriptions and 1800 hours of unsupervised data without transcriptions. Other resources used for training included the Arabic Gigaword corpus and transcripts for Arabic from various sources including a 28 million word resource. A 4-gram language model with 58 million n-grams was trained with Kneser-Ney smoothing. The system was tested on nearly 13 hours of
speech from broadcast news and TV shows. The main problem faced was due to the lack of diacritics in everyday Arabic. The solution to this problem utilized was to train the initial models using fully hand diacritized transcribed speech. Then using this initial training model performs unsupervised learning of the non-transcribed data. That ensured diacritization of the overall data. The Word Error Rates obtained ranged between 14.9% and 25.1% for different types and sizes of test data. This means an overall 42% relative decrease in Word Error Rate.

4.3.8 Automatic Speech Recognition System for Spontaneous English Speech using the English CMU Recognition Dictionary

Nedel et al. [42] have developed an ASR for spontaneous English speech using the English CMU recognition dictionary and the Sphinx-3 speech recognition system. They argue that in case of spontaneous speech, contrary to carefully articulated speech or read speech, the uttered sounds hardly ever conform to linguistic assumptions and rules regarding pronunciation. Therefore, there may be patterns of acoustic variations among single phones. In that case it is beneficial to model these variations of phones as separate phones. They have tested their hypothesis by applying such a phone splitting model to two phones AA and IY. They proposed three different methods for phone splitting and applied it to all the instances of these phones in the CMU dictionary. The speech corpus used is the NIST Multiple Register Speech Corpus for spontaneous speech with parallel transcription. The training data consisted of 2 hours of spontaneous speech and test data composed of 0.5 hours of continuous speech. The baseline performance of the system without applying the phone splitting came out to be 51.1% in terms of Word Error Rate. By applying the Gaussian Splitting technique on the said phones the WER reduced to 49.6% for splitting AA, 49.3% for splitting IY and 50.2% for modeling AA and IY as split phones. In case of their second technique the HMM likelihood based phone splitting the performance did not improve over the baseline for splitting AA, became worse after splitting both however, gave an improved WER of 49.6% after splitting IY. In the third method, duration based phone splitting was used. In this case the performance improved in all three cases. In case of splitting AA it went to 49.8% WER, in case of IY, 49.6% WER and finally after modeling both AA and IY as split phones the WER reduced to 49.9%.
4.3.9 Speaker Independent Continuous Speech Recognition System for Transcribing Unrestricted American English Broadcast News

Gauvain et al. [36] developed a speaker independent continuous speech recognition system for transcribing unrestricted American English broadcast news, with a best WER of 20%. The acoustic models were trained with around 150 hours of audio data. The language models were obtained by interpolation of backoff n-gram language models trained on different text sets including 203 million words of Broadcast News transcriptions, 343 million words of newspaper texts and 1.6 million words corresponding to the transcriptions of the Broadcast News acoustic training data. The phonetic lexicon contained 65,122 words and 72,788 phone transcriptions. A system of 48 phones was used with additional units representing silence, filler words and breath etc. On a test data of around 3 hours a word error rate of around 20% was achieved.
Chapter 5

METHODOLOGY

5.1 Introduction

The main difference between the work done towards the development of an Automatic Speech Recognition System in this thesis and similar works being done for other languages is the lack of phonetically transcribed corpora for Urdu. Therefore a goal of this effort was to develop such resources for Urdu and then to utilize them to develop a working speech recognition system. So the objectives of the thesis can be summarized as below:

- To develop a speech corpus for continuous Urdu speech (read speech corpus)
- To develop a speech corpus for continuous and spontaneous Urdu speech (spontaneous speech corpus)
- To utilize the speech corpora to develop a speaker specific Automatic Speech Recognition system

In order to achieve these goals the work was divided into separate parts. Each targeted to achieve a partial goal. The final product is the combination of all the subparts. These steps can be summarized as below:

1. **Design of a Speech Corpus**
 a. For continuous speech, a text corpus has to be developed that can be read and recorded
 b. For spontaneous speech interviews have to be designed to capture spontaneous dialogue based speech
 c. Various tools and techniques have to be developed to facilitate the development and evaluation of these resources

2. **Development of the Speech Corpus**
 a. The text corpus has to be read out and recorded in controlled environmental condition
b. The spontaneous corpus has to be generated from interviews and question-and-answer sessions

c. Both these corpora are analyzed into separate utterances

d. The utterances of the spontaneous corpus have to be transcribed in Urdu and also using phonemic transcription

3. **Adaptation of the Speech Corpus to the Speech Recognition system**

 a. This step requires processing the speech corpora to conform to the input standards of the Sphinx speech recognition system

 b. This step requires the development of a compiler like tool which takes a transcribed corpus as input and produces all the resources required by the Sphinx ASR system as output

4. **Training and testing of the speech recognition system**

 a. The main task involves the study of the internal working of the ASR and to fine tune all parameters to produce satisfactory results

Following sections discuss the methodology adopted in achieving all these goals.

5.2 Design of a Speech Corpus

The Large Vocabulary Automatic Speech Recognition (LVASR) system for Urdu requires the construction of a *phonetically rich* and *balanced* speech corpus for recognition of continuous and spontaneous speech in Urdu. Here phonetically rich means that the corpus should cover all the phonemes (and hence phones) present in Urdu. And balanced refers to the property that the phonemes should occur in the corpus with the same relative frequency distribution as in naturally spoken Urdu. The first part of this task is to develop a text corpus with these properties. That corpus can then be read out by a native speaker of Urdu and recorded to produce the Speech corpus for continuous Urdu speech.

So the first goal is to develop a sentence based corpus for Urdu, automating the design task as much as possible using existing language resources. The fundamental criterion remains to cover all possible phone combinations that are used in Urdu. The resulting phonetically rich corpus can serve to provide the baseline acoustic models for continuous LVASR for Urdu. However it
will not necessarily be phonetically balanced. In order to convert it into a balanced corpus, recordings of actual interviews, using everyday speech will be done and transcribed. This will not only serve to balance the corpus but also model the spontaneous speech.

The first step is to find all possible phones that are used in Urdu Speech. A more practical approximation is to find all possible phonemes that exist in Urdu and then try to construct a word based corpus with the goal of covering all those phonemes. The word list is then manually converted into sentences. The Urdu corpus that is used for this purpose has been developed at the Center for Research in Urdu Language Processing (CRULP, [43]) and consists of 18 million words of Urdu. This data is gathered from various domains. The corpus is not fully diacritized and hence cannot be mapped completely to phonemes using simple letter to sound rules [17].

It must be mentioned here that an approach could have been to pick phonetically rich sentences directly from the corpus instead of making a word list and then converting them into sentences. However, this sentence list would not have been minimal, a criterion that can be controlled while making a word list. It would have been more natural representation of the language, even if redundant, but it has not been possible (especially for vowels) because the available Urdu text corpus is not clean and diacritized.

5.2.1 Corpus Analysis and Development of Lexicons

The available resource included an 18.2 million words corpus. This resource had been gathered from sources including newspapers and online pages related to sports, politics and current affairs. This corpus however was not clean, diacritized and/or normalized and the cleaning process required much manual intervention. However a word to frequency list for all the corpus words and a phonetic lexicon in SAMPA was also available for this corpus. The phonetic lexicon consisted of around 54,000 unique words. The second resource available was the URDU (Pakistan) 200 SPEAKER DATABASE developed by the Appen Pty Ltd [44]. This consisted of 3373 sentences comprising of 4336 unique words. The two corpora were merged and this resulted in an overall lexicon with 56000 unique words of Urdu. This was done to ensure that most of the common Urdu words are present in the lexicon. A list of these words was formed and the new words were phonemically transcribed in two passes. In the first pass an automatic transcription
was done using the letter to sound rules. However, due to the lack of diacritics this resulted in partial transcription only. In the second pass the words were manually phonemically transcribed. As a result a complete phonetic lexicon is obtained which gives word to phoneme set mappings (henceforth referred to as phonetic lexicon). SAMPA representation [45] is used for phonetic and phonemic transcriptions. However, it was later converted to a format that will be referred to as Case Insensitive SAMPA (CISAMPA) in this text. This was done to match the requirements of the Speech Recognition Engine used in this research. The details of the new CISAMPA format and its motivation are given in Section 5.4.1 and Appendix A.

Next a word frequency analysis of the corpus is done to find the frequency of occurrence of all the 56,000 words in the corpus. This analysis gives another lexicon containing word to frequency mappings (henceforth referred to as word-frequency lexicon).

Summary of Language Resources available:

- Urdu text corpus (this will be referred to as the Main Text Corpus) with 18.2 million words. This not clean and diacritized, however, word to frequency lists and phonetic lexicon for it were made available to me
- Phonetic Lexicon for the Main Text Corpus
- Words to frequency list for the Main Text Corpus
- The 200 Speaker Database Corpus with 4336 unique words, of which around 2000 were not already present in the phonetic lexicon of the Main Text Corpus

Summary of Language Resources developed:

- A combined Phonetic Lexicon with around 56000 entries all of which are completely phonetically transcribed in CISAMPA
- A combined Word-frequency listing with around 56000
5.2.1.1 Tools Developed

In order to accomplish these tasks Java based text processing software was developed, which allowed the following functionality:

- **Inputs:**
 - Combined Urdu text corpus in Unicode (16-bit Big Endean) format (The 200 Speaker text corpus was analyzed using this)
 - Phonetic lexicon
 - Letter to Sound rules of Urdu transcription
 - SAMPA to CISAMPA mapping rules

- **Functions:**
 - *Corpus Cleaner:* Removes white space, punctuation marks etc. from the input corpus. Also normalizes the input text to a certain extent. Generates a list of words not already present in the Phonetic lexicon. This can be effectively used with the 200 Speaker corpus as it is relatively small
 - *Letter to Sound Converter:* Converts the input wordlist to SAMPA using letter to sound rules (assuming the input is fully diacritized). This facilitates the transcription process. The 2000 words of the *URDU (Pakistan) 200 SPEAKER DATABASE* were transcribed with the help of this tool
 - *SAMPA to CISAMPA:* Converts input files in SAMPA format to CISAMPA formats
 - *Exception List Generator:* Generates a list of all the words in the corpus that are not present in the lexicon and transcribes them using letter to sound rules and allows manual modification, hence, it helps in the lexicon development

5.2.2 Phonetically rich word list

The primary goal of the development of a phonetically rich corpus was to ensure that it represents all sounds that occur in Urdu. This allows it to serve as a baseline for training an Automatic Speech Recognition system. However since the targeted ASR system is to be used for
continuous and spontaneous speech, therefore a simple occurrence of all phonemes will not suffice for the following reasons.

5.2.2.1 Effects of phonetic context

The acoustic properties of a phone are not localized and are affected by the acoustic properties of the neighboring phones, i.e. the phonetic context. An example of this phenomenon is depicted in Figure 13 where the spectrogram plots of phone [b] are shown as it occurs between vowels [a] and [i]. The effects of the context ([a] and [i]) are quite pronounced on the target phone [b] through the formant transitions into and from the closure. As a result of this the different phones must be present in the Speech corpus while occurring in different phonetic contexts.

![Figure 13 - Effects of phonetic context](image)

5.2.2.2 Across Word Effects

In continuous speech, words run into each other hence the last phone of a word maybe affected by the initial phone(s) of the following word. Hence across-word influences will form a part of the phonetic context as well.

5.2.2.3 Spontaneous Speech

As mentioned earlier, the system must be trained for spontaneous speech in which the words are not carefully articulated. This often results in shorted words with missing phones or
modified versions of target phones. Hence, it is required that the system should be trained by a model coming from free speech as well. However, this should be in addition to the speech read from phonetically rich text, as spontaneous speech is not guaranteed to be phonetically rich.

5.2.3 Tri-phoneme based phonetically rich corpus

As mentioned in 5.2.2.1, simple phonemic enrichment cannot guarantee that the resulting word set will be a representative of the acoustic properties of all the phones. Hence, context must be added to the phone set. For this we made sequence of three phonemes (henceforth referred to a tri-phoneme) the basic unit of the acoustic model for a particular sound. We define a tri-phoneme to consist of three phonemes \(\{P_t, P_1, P_3\} \), where \(P_t \) is the target phoneme and \(P_1 \) and \(P_3 \) act as the phonetic context. Now in order to represent the acoustic properties of all sounds, the dataset should contain all possible tri-phonemes that can occur in the language.

As the phonemic inventory of Urdu language comprises of 62 phonemes (excluding silence), there can be a total of 250,047 potential tri-phoneme combinations (including silence as a phoneme). In order to find the tri-phoneme combinations that actually exist in Urdu the phonetic lexicon is analyzed for tri-phonemes and their frequency of occurrence. This analysis is done from two different perspectives.

The first analysis is done to find all the unique tri-phonemes that occur within words. It is assumed for this analysis that all words are followed and preceded by silence, which is dealt with as a separate phoneme represented by the symbol #. The analysis shows that the corpus contained 18,294 unique in-word tri-phonemes.

Next, an analysis of the across-word tri-phonemes is performed. However, for this analysis, instead of finding all the existing across-word tri-phonemes, all the potential across word tri-phonemes are found (including the in-word tri-phonemes). This is done due to the flexible syntactic structure of Urdu which allows many possible arrangements of words in a sentence. This is achieved by assuming that every word (preceded by silence #) can be followed by any other word (followed by silence #). This list is found to contain around 85,000 unique tri-phonemes. This number should be interpreted as the upper limit of the number of tri-phonemes in Urdu (if vocabulary is limited to the used lexicon).
5.2.3.1 Word list construction

In order to allow utility in an ASR system the word list used for training the speech model must consist of a minimal word set that can maximize the number of tri-phonemes. In order to compute the word set a modified version of the Set Covering algorithm [46] is used. A decision has to be made whether to maximize the number of across-word tri-phonemes or the in-word ones. If the list is constructed on the basis of across-word tri-phonemes the word set will consist entirely of word-pairs instead of words. This will make the job of converting these into sentences very difficult (and for some combinations of words it will not even be possible).

Moreover, even if the sentences are generated from a wordlist based only upon in-word tri-phonemes, they will necessarily contain many of the across-word tri-phonemes and a post analysis can reveal the shortcomings. These can in turn be compensated by generating a supplementary sentence list. Hence, the wordlist is generated using the in-word triphonemes only.

5.2.3.2 Minimal Word List

The Set Covering algorithm Figure 15 is used to generate the minimal list of words that contains all the in-word tri-phonemes. All the words in the phonetic lexicon are converted into CISAMPA format, with silence (indicated by #) following and preceding them. Then the list searched for the word that increases the tri-phoneme count by the greatest amount. Once a candidate is found it is added to the wordlist and the list is searched again. This process continues till all the 18294 triphonemes are found. The list that is generated contained 4,390 words (for the condition in Figure 15a). However, the major problem with the list is that it consists primarily of words that are long, unfamiliar or borrowed words from other languages as shown in Figure 14. Such a wordlist cannot be effectively used for the ASR system as the native speakers of Urdu will not be able to fluently go through the sentences made from such words. This will prevent the aspects of continuity and spontaneity to be present in the recordings. Besides it would make the job of making the sentences far too hard. However, it must be noted that this is the smallest list for the given corpus that can be generated which covers all tri-phonemes.
Figure 14 - Example Problematic words in the list

<table>
<thead>
<tr>
<th>Inputs</th>
<th>X is the input corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>C is the condition</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>O is the output list of words</td>
<td></td>
</tr>
</tbody>
</table>

Greedy-Set-Cover(X, C)

U = X
O = Ø
while U ≠ Ø
 do select word W from U that maximizes C
 U = U - W
 O = O + {W}
 endwhile
return O

a C = |tri-phonemes(W) ∩ tri-phonemes(U)|

b let, N = |tri-phonemes(W) ∩ tri-phonemes(U)|
let, F = Frequency(W)
then, C = w_f F + w_n N

c let, N = |tri-phonemes(W) ∩ tri-phonemes(U)|
let, F = Frequency(W)
then,
if N = Ø
 C = MIN
else
 C = F
endif

Figure 15 - Modified Minimal Set Cover Algorithm

5.2.3.3 High Frequency Minimal Word List

The solution to the problem presented in the previous section is to give weight to the frequency of occurrence of the words in the corpus as well. Hence the condition of the Set Covering algorithm can be modified, as shown in Figure 15b, to add weights \(w_f\) and \(w_n\). This way the weights \(w_f\) and \(w_n\) can be adjusted to get a minimal list of common (high frequency) words of
Urdu. The list(s) thus obtained contain more words than the one generated in 5.2.3.2 but fulfill the requirements of familiarity of words.

Different values of weights are tried, however the problem of uncommon words continues for most of the experiments. Finally, priority is given to frequency of occurrence of the word in the corpus and subsequent weight to the number of tri-phonemes that it adds to the set (as shown by the condition in Figure 15c). The final wordlist generated contained 11,884 high frequency words.

The major problem with this wordlist is the high number of words. Considering an average sentence length of 8 words, we would end up with 1486 sentences, which are too many to be practically read out by a few speakers. And for the ASR repetition of sentences by multiple speakers is also desired for this data.

5.2.3.4 Reduced high frequency minimal word list

To reduce the size, the wordlist is carefully analyzed and several rules were devised based on the phonetic structure of Urdu and the acoustic properties of the phones. Following are the major rules that are formulated to reduce the size of the in-word tri-phoneme list. The reduction is at the cost of losing some context. However, this is done to so that there is minimal compromise.

5.2.3.4.1 Voiced/voiceless unaspirated stops in context positions

When voiced or voiceless unaspirated stops occur before or after the target phone, their acoustic context has similar effect on the target phone, as long as they have same place of articulation [47]. Hence, the affect on the target remains quite minimal (especially spectrally) by the variation in the voicing property (in case of unaspirated stops). An example is shown in Figure 16, in which spectrograms of the three triphones `[t a b]`, `[t a p]`, `[d o b]` are given ([d] and [t] are voiced and unvoiced dental stops, respectively, and, [b] and [p] are voiced and unvoiced bilabial stops, respectively). It can be seen that the phone [a] changes only slightly by the variation of the voicing property of the context phones, as opposed to change in place. There is pronounced difference in the duration of the vowel, as expected [16].
So, we collapsed all the voiced/voiceless unaspirated stops at the same place occurring at context positions to the voiced version. This reduces the tri-phoneme set significantly. This will however lead to some degree of loss in training but we must remember that the context based phones are being used just to provide enough training as a target occurs with different contexts.

![Graph showing acoustic effects of voiced/voiceless unaspirated stops in context positions](image)

Figure 16 - Acoustic effects of voiced/voiceless unaspirated stops in context positions

5.2.3.4.2 Aspirated/unaspirated stops at tri-phoneme ends

The aspirated/unaspirated stops occurring at the end of tri-phonemes affect the target phone similarly. An example is demonstrated in Figure 17, where triphones [s a t] and [s a tʰ] are compared ([t] is an unaspirated dental stop, while [tʰ] is its aspirated version). It can be seen that the spectrogram is similar, though some breathiness may be introduced towards the end of the vowel. Therefore these two types can be merged (with some compromise).
5.2.3.4.3 Removing low frequency tri-phonemes

Next a frequency analysis of the tri-phoneme list is performed. The goal was to find the frequency of occurrence of each tri-phoneme in the corpus. The resulting frequency list is plotted, as shown in Figure 18. All tri-phonemes occurring more than 10 times are selected for inclusion in the list. At a later stage if there is need in modeling, other tri-phonemes can be added.

As a result of applying the above constraints 9,436 tri-phonemes are removed from the in-word tri-phoneme list, hence leaving behind 8,858 tri-phonemes to cover for recording. Using the algorithm of section 5.2.3.3 the final wordlist generated after removing the tri-phonemes that fall into the above mentioned categories contains 5,681 unique high frequency words. This is comparable with the most optimal list generated earlier using the greedy set cover method which had mostly unfamiliar 4,390 words.
5.2.4 Sentence Generation

The 5681 words generated as described in section 5.2.3, are used by a team of language experts to construct sentences. The aim is to construct sentences that are grammatically correct and sound natural to native Urdu speakers. The guidelines followed during sentence generation are given below:

- Each sentence consists of at least five words
- Sentences with commas are avoided, in order to avoid sentences including lists of items
- Native Urdu speakers should be able to utter the sentence without much difficulty
- The word list has no diacritical marks, so if any words are detected which are ambiguous in pronunciation, sentences are constructed for all variations in the pronunciation, with the appropriate diacritical marks inserted
- Sentences that do not make semantic sense are allowed to be part of the set as long as they are grammatically correct, and easy to read fluently, but should be avoided as much as possible

A total of 708 sentences are produced as a result of this exercise. For quality control, each sentence is reviewed by a member of the team not taking part in the sentence construction. Sentences that are found to be difficult or odd for a native Urdu speaker to utter are identified
and sent back to the sentence construction process. For example, Figure 19 shows examples of good and bad sentences. Sentence A is good as it is short, easy to read and makes complete sense. Sentence B is graded as average as it is slightly difficult to read smoothly since the initial part is almost a tongue twister. Some of the words may also be unfamiliar for the average Urdu speaker. Otherwise is correct, grammatically and semantically. Sentence C is only marginally accepted as it is semantically odd, and may cause the reader to react unexpectedly. Grammatically it is correct and over all short. The last example shown as sentence D is rejected because it is too long and difficult. This makes it almost impossible to read through smoothly. Such sentences are reconstructed into other smaller and sensible sentences. The complete list of 708 sentences is shown in the Appendix C.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>بزی بحث اور تجزیہ گے بعد پہلے فصلہ بوا</td>
<td>کاشف افرادیت نشان کے سسب تعالج کے بہت سے تعالج کے پاس گا</td>
<td>شنید ہیں کہ بوڑی پنجی کی حسن نظر کے سسب مرحبا جا گا کو پہ</td>
<td>واج نگر کے کنہک خانزیر شبید راؤندر مس گوند نجوز کروار سوچی چھکی کر دورون پر آئے</td>
</tr>
</tbody>
</table>

Figure 19 - Example sentences

5.2.5 Analysis of Sentences and Wordlist

The final sentence list is analyzed and it is found to contain a total of 9804 tri-phonemes and 60 out of 61 phonemes (it misses [Ɂ], however, the occurrence of this phone is very rare in Urdu [17] and the instances that were found were either rejected as non-words or were removed in the phase where aspiration at word ends was collapsed).

A few words in the wordlist were found to be incorrect and/or lengthy, and are removed from the set by the linguists at the sentence generation phase. The final wordlist from which linguists generated the sentences was analyzed to confirm that it contained all 8,858 tri-phonemes. The sentences produced by the linguists were then separately analysed and found to contain 9804 triphonemes. The reason for this increase from 8858 to 9804 is that every new word added in the set cover algorithm potentially adds some tri-phonemes which may not already be in the minimal list of triphonemes. Moreover, close class words which may be necessary for making a sentence were also added during the sentence generation phase. The
benefit of these additional triphonemes is that they add a reasonable measure of phonetic balance to the sentences.

Figure 21 shows the logarithmic plot of frequency of occurrence of each tri-phoneme in the corpus (the curve above) and its frequency of occurrence in the sentences (shown below). Another feature of interest is the phone-frequency property of the sentences, i.e. the frequency of occurrence of every phone in the sentences. In fact this is the feature which reflects the phonetic balance in the corpus. Figure 20 shows the comparison of the frequencies of occurrence of the Urdu phones in the corpus and the frequencies of occurrence of the same phones in the sentence list. The complete list is shown in Appendix D. This figures (Figure 21 and Figure 20) clearly reflects that phone level (phonetic) balance has been preserved in the sentences (Figure 20), however, triphoneme level phonetic balance is not present (Figure 21). The sentences hence produced cover 60 out of 61 phones of Urdu and are balanced at phone level. They cover all the in-word contextual phones however; are not completely balanced at triphoneme level.

![Figure 20 - Phone frequencies (log10) in the corpus vs. the sentences](image)
5.2.6 Preparation of Interview questions

The primary goal in the design of interview questions was that the native speakers who are interviewed should be able to respond to them as fluently and spontaneously as possible. Therefore, it comprises of questions related to facts and everyday life. Another motivation behind the design is that the questions should allow for a lengthy answer. The procedure for interviews also caters for the case when the interviewee gets stuck on a question. This is done by asking follow up questions to motivate a detailed response. The questions have been divided into the following two major categories:

5.2.6.1 Factual questions

These serve the dual purpose of gathering specific information about the speaker including their origin, nationality, demography and qualifications related details. Following are the main points about which the speaker is asked:

- Name
- Gender
• Date of birth
• Place of birth
• Area(s) of residence
• Educational institutes attended
• Profession

Not only does this provide the information about the speaker to be used for statistical purposes but also provide useful training data about Proper Nouns (Names of persons, places, institutes) numbers and number formats (dates, years etc.) and names of days of week, months etc. An example interview questionnaire related to this part is shown below (Figure 22):

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. What is your name?</td>
</tr>
<tr>
<td>b. What is your gender?</td>
</tr>
<tr>
<td>c. What is your height?</td>
</tr>
<tr>
<td>d. What is your place of birth?</td>
</tr>
<tr>
<td>e. What is your date of birth? Please answer using the format ی آنی ایمی پم نا</td>
</tr>
<tr>
<td>f. Which is your current area of residence?</td>
</tr>
<tr>
<td>g. Which, if any, are some other areas of your previous residences?</td>
</tr>
<tr>
<td>h. Which school or schools did you attend?</td>
</tr>
<tr>
<td>i. Which other educational institutes have you attended, if any?</td>
</tr>
<tr>
<td>j. What is your current profession?</td>
</tr>
</tbody>
</table>

Figure 22 - Interview Questions Part-1

5.2.6.2 Natural Speech Elicitation

The goal of this part is to allow the speaker to speak as much and as fluently as possible. The interviewer is required to engage the speaker in a dialog. Each question has a subset of prompts to elicit substantial amount of speech. The purpose of this activity is to induce the volunteer to speak naturally for about fifteen minutes. Completing all the questions is not an objective. The person conducting the session is free to improvise and deviate from the script. This activity should last up to thirty minutes to ensure that at least fifteen minutes of nature speech have
been acquired from the speaker. The following figure (Figure 23) shows a sample of questions that can be asked in this session:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Explain the route you took to get from your home to this location.</td>
</tr>
<tr>
<td>b.</td>
<td>How long does it take for you to get to work every day?</td>
</tr>
<tr>
<td>c.</td>
<td>What are your responsibilities at work?</td>
</tr>
<tr>
<td>d.</td>
<td>Describe a normal day at work.</td>
</tr>
<tr>
<td>e.</td>
<td>How did your day go yesterday? Describe with timelines if possible.</td>
</tr>
<tr>
<td>f.</td>
<td>Describe a memorable day.</td>
</tr>
<tr>
<td>g.</td>
<td>Describe a funny experience.</td>
</tr>
<tr>
<td>h.</td>
<td>Describe a scary experience.</td>
</tr>
<tr>
<td>i.</td>
<td>Describe an interesting experience.</td>
</tr>
<tr>
<td>j.</td>
<td>What is your greatest fear?</td>
</tr>
<tr>
<td>k.</td>
<td>Which places would you like to visit and why?</td>
</tr>
<tr>
<td>l.</td>
<td>Describe an accomplishment that you are proud of.</td>
</tr>
<tr>
<td>m.</td>
<td>Do you have any brothers or sisters? Are they younger or older than you?</td>
</tr>
<tr>
<td>n.</td>
<td>Tell us about your friends.</td>
</tr>
<tr>
<td>o.</td>
<td>Name some of your closest friends.</td>
</tr>
<tr>
<td>p.</td>
<td>How did you become friends?</td>
</tr>
<tr>
<td>q.</td>
<td>Tell us about three of your favorite childhood memories.</td>
</tr>
</tbody>
</table>

Figure 23 - Interview questions Part-II

A detailed interview sheet is shown in Appendix E.

5.3 Development of the Speech Corpus

The next phase involved converting the sentence based text corpus into a speech corpus by recording it as a speaker reads it out. Several rules had to be developed to make this process as smooth as possible. The interviews also have to be recorded, split and transcribed. This section provides details and time statistics of this procedure.
5.3.1 Recording of the Speech Corpus

The text corpus consists of 708 sentences, some of which are a bit hard to articulate even by a native speaker. This is the result of the greedy approach used in forming the wordlist and sentences. While almost all sentences are grammatically correct, there are some which are semantically confusing. In general the following steps are involved in the speech corpus development:

1. Directions for recording
 - The recordings are carried out in normal home or office environment with common ambient background noise.
 - Before starting the session the room is checked for any unique intermittent or continuous noises which may hinder the recording procedure e.g. sounds of crickets and other insects, ticking of clocks, water dripping, repair work etc. in progress inside or outside the building, traffic noise, rain etc. which may not leave a distinct impression upon immediate perception, but will render the recordings unusable.
 - Continuous background noises like the ones emanating from fans, air conditioners etc. may be allowed to continue, if these continue during the entire length of one session
 - It is ascertained that the speaker is not suffering from any major articulatory disorder. For this purpose nasal and voiced vowel sounds uttered by the speaker are recorded and spectrally analysed to ensure correct pronunciation, if necessary

2. Equipment setup
 - The recordings are carried out on a laptop computer using an external sound card and microphone to make the recordings laptop unspecific (Creative® External USB sound card and Colorvis® desktop microphone were used for speech data collection). Praat® [48] is used as the main recording and analysis software
 - The recordings are done at a sampling rate of 16000 samples per second, 2 bytes per sample, single channel (mono), using Intel (little Endian byte order) PCM
 - Microphone booster settings are disabled as these make the microphone too sensitive and allows recording low amplitude background noises in a lot of detail
• The microphone is placed in front of the speaker and a little below his/her chin so that the open end of the tube points towards his mouth. A test recording is conducted to ensure that it is not in a horizontal line with his mouth (so that he/she may not breathe directly into it)
• Next the microphone is moved a little towards the left or right so that the breath exhaled from the nose does not go directly into it

3. Testing the setup
• The speaker is requested to utter high energy vowels like [a] or [e] (in sentences like: Ĩ ū ū) and the recording level is adjusted so that the bar remains within the green zone (in Praat recorder)
• The recordings are checked to make sure that there is no amplitude clipping
• Next the speaker is requested to utter strong breathy sounds (like [dʰ], [tʰ], [dʰ]) and the recording is checked to see that he not directly breathing into it (if he is, then the bar will go in the yellow or red zone) and there is no amplitude clipping

4. Recording Session
• The speaker reads out a given number of sentences. It was determined by previous experience that CRULP gained while doing recordings for the Urdu Speech Synthesis system that this number should not exceed 15 in a single recording session, or the quality of utterance suffers (as the speaker may get exhausted).
 a. The 15 sentences are first given to the volunteer to read and get familiar with the pronunciation and become fluent at uttering them; he/she may confirm the diacritics etc. of any confusing word or ambiguities. The IPA transcription is consulted to explain the proper pronunciation of ambiguous/unknown words to the speaker
 b. When the volunteer thinks that he/she is comfortable with the sentences, the recording session begins
 c. The volunteer is required to utter every sentence twice in the following manner:
 i. Utter the sentence with brief pauses after every word. This will not only provide with useful non-continuous speech data, but will also allow the
speaker to gain sufficient fluency as he will utter the sentence in the next phase.

ii. Utter the sentence as fluently as possible, while at a normal and uniform pace.

iii. If the recording person feels that a sentence is uttered wrongly, he/she may ask the volunteer to repeat one or both versions after saying the word “Repeat”.

iv. If at any time during the recording there is an overlapping sound like creaking chairs, doors or calls of street hawkers, that part of the recording must be repeated (this requires a lot of alacrity on part of the recording person)

5. Post-Recording quality check

- The sessions are saved in MS WAV format
- The recorded session is listened to and checked after completion and a repetition is requested wherever required
- The recording is checked to see that the speaker did not accidently start breathing into the microphone at any time
- If any disturbing noise overlaps a particular piece of recording, the speaker is requested to repeat that part
- The global sentence numbers are maintained while recording (the sentence number in the actual list according to which transcription is done) to help in the transcription process

6. Splitting the recordings

- The sessions consisting of 15 sentences, uttered twice, are then split into sentences
- The sentence files are saved as 16K samples/sec, 16-bit PCM, little Endean PCM, NIST files (for use with Sphinx)
- Silence is included at the start and end of all the utterances (approximately 100 ms)
- Files are given names according to global file numbers to help in sound to transcription matching at the time of training
5.3.2 Timing Statistics of the Recording sessions

Actual time of recorded speech

These are the actual timing statistics from the recorded data

For 1 hour of recording:

1 sentence gives 5 seconds of recorded speech on the average

Therefore,

12 sentences will give 1 minute and 720 sentences will give an hour of recording (the total sentences in the list are 708 so that is a benefit). After recording and splitting (and removing repetitions, pauses etc.) it was found that 708 sentences gave 70 minutes of actual speech data

Actual time required for recording 720 sentences (each sentence uttered twice)

1. Average Time required for reading 15 sentences and confirming pronunciation: 5 minutes
2. Average Time required for speaking one sentence twice and correcting errors, mistakes and breaks where these exist by repetition: 1 minute
3. Therefore 15 sentences require 5 minutes for reading + 15 minutes for uttering: 20 minutes
4. 720 sentences (1 hour of recording) require: 960 minutes (16 hours) if spoken continuously without a break and 1200 minutes (20 hours) if a 5 minutes break is allowed after every sentence
5. Note: uttering every sentence only once will save around 15 seconds per sentence i.e. 180 minutes (3 hours) in total but will make the recordings more susceptible to error and during training we may require the sentence with pauses

Actual Time required for splitting 720 sentences (x2)

1. Splitting one session with 15+15 sentences takes on the average 10 minutes
2. Therefore, splitting 720+720 (2 hours of recording) sentences requires: 480 minutes, i.e. 8 hours, which comes to around 4 hours per hour of actual speech data
5.3.3 Recording of the Interviews

The guidelines regarding recording setup etc. remain the same as mentioned earlier. The only difference is that the volunteers are informed about the questions to be asked and will be given some time to prepare their responses, if required. They can make brief notes, however, reading out written answers is not allowed.

The interviews are divided into the introduction (factual) and the Natural Speech Elicitation (natural discussion may or may not be based upon facts). The files are recorded, saved and checked as mentioned earlier.

5.3.4 Splitting and transcribing the interviews

Splitting interview sessions requires more time than the read speech as it may sometimes be difficult to find a natural pause (that could be mapped on silence) in the discourse. Following rules have been developed by the team of CRULP CMU ASR Project for splitting recorded interviews.

Speech File Segmentation PROCESS

The Speech files are split using Audacity version 1.2.6 (open source).

The completion of a segment can be marked at:

- The end of a sentence
- The end of an utterance, where the speaker takes a natural pause, this may be due to sentence structure, e.g., a conjunction, or because the speaker is catching his/her breath in preparation of the next utterance

The following is a transcribed sentence showing the pauses and the segments produced from it:

(oral vocalized pause) (silence) آج کل بھی (vocalized pause) (silence) فاسٹ پیورسی کی طرف سے (silence) سرگودھانا کے مختلف دیہاتی علاقائی میں بھی کمپیوٹر کی ترویج کے لئے رہی بھی (silence) اور میں اس نیم کا حصر بھی.
The test interviews that were conducted for the thesis showed that the complete questionnaire (shown in Appendix E) took around 2 hours to record and provided with around 90 minutes of speech data. However, the task of splitting and transcription is very time consuming. Following are the actual statistics of the splitting and transcription task for the 120 minutes of interview data by 2 trained linguists:

Figure 24 - Splitting Interview recordings (courtesy of CRULP-CMU ASR team)

5.3.5 Timing Statistics of Interview sessions
The total time taken to split interviews into utterances and to transcribe 128 minutes of recorded interviews by trained Urdu typists was around 5460 minutes (91 hours). That would mean that it takes around 42 minutes to split and transcribe 1 minute of spontaneous speech on the average. The 128 minutes of spontaneous speech recordings produced 108 minutes of actual speech after splitting and removing extra silence, noise, repetitions etc.

5.3.6 Pho netic vs. Phonemic transcription

This is one of the major questions; will the speech files be transcribed phonetically or phonemically? The difference is that in phonemic transcription the words are transcribed as these should be uttered. This is mostly rule based and can follow from the Urdu script without even hearing the speech files. This makes it easier to perform and given an Urdu text corpus we can simply generate a phonemic transcription from our (already phonemically transcribed) lexicon. On the other hand the phonetic (or narrow) transcription requires actually hearing the speech files and to perform the transcription as the words have been actually pronounced. This is not only a tedious and time consuming process but also brings out further challenges as sometimes the uttered phone can actually lie between the boundary of two phones or map onto a new phone (for that language) altogether. The transcription may require the study of spectrograms to reveal the actual phone designation in addition to perceptual response. However, this approach is better for the acoustic model training as it establishes a more accurate mapping between phones and acoustic waveforms.

For the purposes of the thesis it was decided that the initial training of the speech recognition system should be done on the basis of phonemically transcribed corpora. This will rapidly generate the test results and then on the basis of the error analysis we can phonetically transcribe the corpora in part or as a whole at a later stage in the project. However, diacritics based disambiguation is being done for confusable words of Urdu to facilitate correct lookup of the phonemic lexicon.
5.3.7 **Tools Developed – The Urdu Auto completer and Lexicon Development Utility**

In order to facilitate the task of transcription of the interviews and building of the lexicon an Urdu auto completion and phonetic transcription utility was developed in Java. The main objectives behind the utility were as follows:

- To facilitate the task of Urdu transcription by providing auto complete options from the lexicon
- To prevent spelling errors
- To allow the typist to write the words in exactly the same way as previously available in the lexicon. This prevents errors at a later stage when these transcriptions are compiled for use with Sphinx. This is necessary as many words of Urdu can be correctly written using more than one way (e.g. with or without diacritics, or even with partial diacritics)
- In addition this will prevent or at least reduce collation and normalization errors
- To indicate that a typed word does not exist in the lexicon
- To allow phonetic transcription of words in CISAMPA format
- To allow addition of entries to the lexicon
- To give the facility of rule based letter to sound conversion of Urdu words

Figure 25 shows the interface of the software. The interface and its different uses are summarized below:

- The area indicated as “Typing Area” is the where the sentences to be transcribed are typed. As a word is typed the auto-completion suggestions from the lexicon start appearing in the menu area labeled “Auto complete suggestions”
- This menu can be scrolled using the menu bar or the Page Up and Page Down keys. Pressing Insert key or the button marked “<<” replaced the partially typed word in the Typing Area with the suggested word
- The text area below the auto complete suggestions menu shows the CISAMPA transcription of the suggested word. This way, even if there are no diacritics of the
lexicon entry the typist can recognize the pronunciation of the suggested word and may
scroll to choose the most appropriate one

![Figure 25 - Urdu Autocompleter](image)

- The text areas labeled "Word" and “Transcription” are meant to help in the lexicon
 construction process. That can be accomplished using any of the following two methods:
 - As text is typed in the main Text Area the word being typed also appears in the
 area labeled "Word" and the CISAMPA transcription of the closest match found
 in the lexicon is shown in the “Transcription area”. If the word and the
 transcription is satisfactory at any given time, the typist can press the button
 “Write Entry to Lexicon” to add the entry and its transcription to the lexicon.
 This will also add a Romanization of the word to the lexicon as explained in the
 Section 5.4.1
 - The text area marked “Word” is editable and words can be typed here. Its
 transcription in the area marked “Transcription” can also be edited and then can
 be added to the lexicon as explained in the previous section
If a new word is typed in the Main Text Area i.e. a word not previously in the lexicon, the text area marked “Word” turns yellow to indicate this as shown in Figure 26. The typist can simply add the transcription in the transcription area by hand using the lexical best match suggestion (which is already present there) or can use the Letter to Sound option as explained below.

Figure 26 - Auto completer new word warning

- The “To CISAMPA (Rule Based)” option provides letter to sound conversion option for the text written in the Word text area. Pressing this button gives the CISAMPA transcription suggestion in the transcription text area which can be modified if required. As shown in Figure 27, the suggestion gives the correct transcription for this hypothetical word as it is completely diacritized, otherwise it would have given partial transcription.
Finally the button marked “Write Sentence to File” writes the sentence to a predefined Unicode file. The button “Revert to Old Value” simply revert from the letter to sound rules based CISAMPA suggestion to the lexical suggestion in case if it is ever desired.

5.4 Compilation of files required by Sphinx

The Sphinx speech recognition system requires many different files in specific formats to be able to perform the training and decoding tasks. Manually generating these files is a lengthy job which is also more susceptible to errors, which may not be easy to detect at a later stage. For this project the Sphinx-3 trainer and Sphinx-3 decoder has been used. Some tests were also performed with Sphinx-4. This section discusses the files required for all these systems as well as the Sphinx file compiler that I developed to facilitate the file generation and data analysis tasks. Let us start with some basic issues and their solutions that we had to come up with.
5.4.1 Phonetic transcription using CISAMPA

The phonetic transcription (actually phonemic as mentioned earlier) needs to be done is some phonetic notation. IPA uses the Unicode character set and is hence not usable as Sphinx does not as yet recognize Unicode. This led us to use the SAMPA character set which we had to abandon very soon as Sphinx is not case sensitive and hence does not differentiate between capital and small case letter; whereas SAMPA distinguishes between many characters on the basis of case like n (for [n]) vs N (for [η]). We could not use X-SAMPA [49] as it largely relies upon special characters in its character set e.g. \, < etc. Since these characters needed to be used as files names as well (where use of many special characters is not allowed e.g. \) and moreover certain software systems treat these special characters as control characters or position markers. Therefore, a notation free from special characters was required. ARPABET [50] could have provided the solution but the ARPABET notation is too specific for American English pronunciation (for which it has been developed) and is difficult to read for Urdu sounds. E.g. Urdu word بجل ([b i ʤ l i]) is more readable as B 1 D ZZ L II (in CISAMPA) than B IH JH L IY (in ARPABET) or [b ʃ t ɾ] can be represented as B A RR A (in CISAMPA) but I was unable to find any character for the retroflex [ɾ] in ARPABET, same goes for many other Urdu specific symbols like nasal vowels. In short, ARPABET is too English specific and not suitable for Urdu.

Therefore a notation similar to SAMPA was needed which is also case insensitive. Hence using SAMPA character set as a starting point a phonetic character set was developed for the purposes of this thesis and project. It was named CISAMPA (Case Insensitive SAMPA). The character sets are shown side by side in Appendix A. The basic rules of conversion from SAMPA to CISAMPA are as follows:

- The complete character set is in capital case
- The character set does not include any punctuation mark or special character like @ or / or ? etc. as these may be treated as control characters or position markers in different software systems
- Most of the consonants have been converted simply by converting them into capital form
• Dentals are indicated by an _D, as [t] is represented as T_D
• Aspiration is indicated by _H, as [tʰ] is represented by T_D_H
• Retroflex is indicated by double characters e.g. [ʈ], [ɖ] and [ɽ] are represented as TT, DD and RR (this remains true for the alveolar versions of the former two as well i.e [t] and [d])
• Short vowels are indicated by single capital character while long ones by double capital characters (A for [ə] and AA for [a])
• Some vowels are represented by ARPABET like notations like [e] is represented as AE
• Nasals are represented by appending an N e.g. [ḍ] is represented as AEN

5.4.2 Unicode text format

Sphinx does not support Unicode text format as yet, while Urdu script uses Unicode characters. Therefore, a Unicode to ASCII mapping mechanism was required. A simple solution for this problem was developed. As the phonemic transcription in CISAMPA is done using the lexical lookup, and the CISAMPA notation is completely ASCII based therefore the Romanization is simply done by removing the spaces from the CISAMPA transcription. This produces a one-to-many mapping between Urdu and CISAMPA but a one-to-one mapping between Romanization and CISAMPA. The phonetic lexicon hence contains entries in Urdu mapped to Romanization and CISAMPA transcription as shown in Figure 28 (extra tabs have been added to improve readability) which is a sample from the phonetic lexicon.
5.4.3 Files required by Sphinx for training

Following files are required by Sphinx for training:

5.4.3.1 Audio Data

The audio data files (speech files) are required to be in NIST or .WAV format. These files will be used in developing the Mel Frequency Cepstral Coefficients (MFCCs) using which, the system will be trained. The files I used were in .nist format, single channel, sampled at 16000 Samples per second at 16 bits per sample in little Endean format. All utterances (sentences) were followed and preceded by silence.

5.4.3.2 Dictionary File

The dictionary file establishes the word to phonetic transcription mappings. In our case it contains Roman to CISAMPA transcription mapping. More than one pronunciation mappings can be shown with a (1) and (2) etc. after the word.

For example

AEK \quad AE K

AEK(1) \quad AA AE K

However, in our case as the Romanization is done after CISAMPA transcription there will only be a one-to-one mapping. The one-to-many mapping can be done in the phonetic lexicon.
between Urdu and CISAMPA transcription. A sample from the dictionary file is shown in Figure 29.

LAAUBAALII	L AA U B AA L II
D_DUGNAA	D_D U G N AA
SHAAGIRD_D	SH AA G I R D_D
T_SHARR_HAAO	T_SH A RR_H AA OO
LAAD_DINJAT_D	L AA D_D II N J A T_D
ATTTT_HAAIIS	A TT TT_H AA II S
T_DAD_ZZARBAA	T_D A D_ZZ A R B AA
PUUNT_SH_HNAE	P UU N T_SH_H N AE
D_ZZONAA	D_ZZ O N AA
KAYOOLARII	K AY OO L A R II
BILAAXOF	B I L AA X O F

Figure 29 - Dictionary File

5.4.3.3 Filler Dictionary File

The filler dictionary contains the filler words e.g. the words for mentioning silence and special sounds like cough, breath, chair creaking, door closing etc. I have defined the non-speech utterances i.e. the start of utterance silence <s>, the end of utterance silence <\s> and the middle of utterance silence <sil> in the filler file. I have mapped them all to the same phone SIL, which models silence or the background noise. A sample is shown in Figure 30.

<s> SIL
</s> SIL
<sil> SIL

Figure 30 - Filler File

5.4.3.4 Phone Definition File

The phone file defines all the phones used in the dictionary file including the silence SIL. There should be no empty lines in this file. A sample is shown in Figure 31.
5.4.3.5 File IDs definition file

In the file train file ids file, all audio file ids without extensions with references to the root folder are defined. A sample is shown in Figure 32.

```
an4_train/c1
an4_train/c2
an4_train/c3
an4_train/c4
an4_train/c5
an4_train/c6
an4_train/c7
an4_train/c8
an4_train/c9
an4_train/c10
an4_train/c11
an4_train/c12
```

Figure 32 - File IDs

5.4.3.6 Transcription File

The train transcription file establishes sentence to utterance mappings. These are not phone to audio mappings but mappings between the words in the left column of the dictionary file and the audio files. It is important to note is that the files should be in the same order as described in the training file IDs file. First few lines of my file are shown in Figure 33.
5.4.4 File required by Sphinx-3 for decoding and running tests

To recognize given speech files, the Sphinx-3 decoder can use the acoustic model files that are generated in the training phase and a language model file, generated separately. The tests can also be run in batch mode to calculate Word Error Rate, Accuracy and to get detailed alignment results. Following are the main files required for running the batch mode tests:

5.4.4.1 Test Audio speech files

Just like the training mode, the files to be recognized should be present in NIST or WAV format in the given directories. The file characteristics can be set in the decode configurations file.

5.4.4.2 Test File IDs

Like the Train File IDs, this file contains the file names of the test files, placed in the root test directory (can be defined in the decode configurations file).

5.4.4.3 Test Transcription

This file contains the names and word transcription of the test files as the train transcriptions file. The files are mentioned in the same order as in the test file IDs file. These are considered to be the reference transcriptions against which Sphinx compares its decoding hypothesis, aligns these two and calculates the error and accuracy results.
5.4.4.4 Language Model

The Unigram, Bigram or Trigram language models can be generated using either the online language modeling utilities [51] if the unique word count is less than 5000, or the Statistical Language Modeling (SLM) toolkit [14], which works in Linux environment. The SLM toolkit is also useful as it allows more options for generating the Language Models, e.g. different smoothing strategies like absolute, Witten-Bell discounting, Linear Interpolation and Good-Turing Smoothing. There are many other options described in Appendix G. The ASCII based language model has to be converted into a binary dump file using the utility lm2dmp, as Sphinx-3 recognizes binary language model files. Figure 34 shows a few lines from a Linear Interpolation based trigram language model generated by the SLM toolkit.

```plaintext
# This is a 3-gram language model, based on a vocabulary of 5658 words, which begins "7AAFIL", "7AAIB", "7AAJAT_D"...
# This is an OPEN-vocabulary model (type 2)
# (0.50 of the unigram discount mass was allocated to OOVs)
# Linear discounting was applied.
# 1-gram discounting ratio : 0.557447
# 2-gram discounting ratio : 0.166305
# 3-gram discounting ratio : 0.0673904
# This file is in the ARPA-standard format introduced by Doug Paul.

p(wd3|wd1,wd2)= if(trigram exists) p_3(wd1,wd2,wd3)
else if(bigram w1,w2 exists) bo_wt_2(w1,w2)*p(wd3|wd2)
else p(wd3|w2)

p(wd2|wd1)= if(bigram exists) p_2(wd1,wd2)
else bo_wt_1(wd1)*p_1(wd2)

All probs and back-off weights (bo_wt) are given in log10 form.

Data formats:

Beginning of data mark: \data\n
gram 1=nr    # number of 1-grams
ngram 2=nr    # number of 2-grams
```
ngram 3=nr # number of 3-grams

\1-grams:
p_1 wd_1 bo_wt_1
\2-grams:
p_2 wd_1 wd_2 bo_wt_2
\3-grams:
p_3 wd_1 wd_2 wd_3

end of data mark: \end\n
data\nngram 1=5659
ngram 2=9871
ngram 3=10881

\1-grams:
-0.3541 <UNK> 0.0000
-4.3151 7AAFIL -0.0790
-4.3151 7AAIB -0.0790
-4.3151 7AAJAT_D -0.0790
-4.3151 7AALIB -0.0750
-4.3151 7AAN -0.0789
-4.3151 7ABAN -0.0790
-4.3151 7AD_DD_DAAR -0.0790
-4.3151 7AFLAT_D -0.0732
-4.3151 7AFUUR -0.0686
-4.3151 7AJJUUR -0.0790
-4.3151 7ALAT_D -0.0750
-4.3151 7AM -0.0707
-4.3151 7ANII -0.0790
-4.3151 7ARIIB -0.0719
-4.3151 7ASAB -0.0785
-4.3151 7ASHII -0.0732
...
-2.9523 KOO HUVAYD_DAA 0.0487
-2.9523 KOO IIFAA 0.0487
-2.9523 KOO JAELOO 0.0487
-2.9523 KOO KAAMJAAB 0.0074
-2.9523 KOO KALIID_DII 0.0487
-2.9523 KOO KANVAENS 0.0487
-2.9523 KOO KAT_SHOOKAE 0.0487
-2.6513 KOO KIJAA -0.0271
-2.9523 KOO KIRAYSH 0.0487
-2.9523 KOO KOHOST_DAAAN 0.0487
-2.9523 KOO K_HIRRKII 0.0487
-2.9523 KOO K_HULAE 0.0074
-2.9523 KOO LAAHIQ 0.0487
...
-1.1714 ZUUMAA OR MUAZZIZIIN
-1.1714 ZUBAAN GAMB_HIIR NAA
5.4.5 Test Files required for Sphinx-4 decoder

The Java based Sphinx-4 decoder requires the following files for running the performance tests:

5.4.5.1 Speech Data Files

The speech files should be in header less raw data format (.raw), in single channel, 16K samples/second, 16 bit Big Endean Format. The SOX audio converter for windows [52] was used to convert the NIST files in batch mode into RAW files.

5.4.5.2 Wordlist File

It contains the wordlist grammar. We can also run tests on Bigram and Trigram grammar files. Figure 35 shows an example.
Figure 35 - Wordlist grammar file

5.4.5.3 Transcription Batch File

This is the main test file where file names, file paths and transcription of the sentences is given. This transcription is used as the test reference. Figure 36 shows an example.

/an4/wav/c1.raw NIILAM NAE SAALGIRAA PAR HAYDD SAYSMOOGIRAAF ASVAD_D QURAYSHII KAE MAAT_D_HAE PAR AYNTT_HAN OR 7AM KII AAT_DISHIIN RO MEHSUUS KII
/an4/wav/c2.raw HAAD_ZZII MUD_ZZAAHID_D BILGIRAMII MAXZAN OR 7AZVAA KAE AER ARAB QAARAIIN MAEN INT_DIHAAII SAAD_DIQ OR D_ZZAYNUUIN QAARII T_D_HAE
/an4/wav/c3.raw SAAMAEII INFAARMAESIIHAN KII G_HAN GARAD_ZZ SUNAEN T_DOO VIIZAE KII RIPOORTT MAEN POOSHIID_DAA AER MEHD_DUUD_D EL VII DDOOMAYSTTIK PAYKID_ZZ HAE
/an4/wav/c4.raw KAMJOONISTT LOOGOON NAE T_DANG HOONAE KAE BAAVAD_ZZUUD_D KAII SHUBOON MAEN T_DANG_DHII SAE APNAE KAYRIIAR KOO MIZAYJAN KAR LIJAA
/an4/wav/c5.raw TTARAANSAARMAR PAR MIDDNAAITT MAEN SHAHHII GID_D_H OR UQAB SAMAET_D T_SHESTT KAE BAL SARAALMA SAYNHROON BARD BAYTT_HT_DAE HAYN
/an4/wav/c6.raw KARRVAE QAHHAE KAA SHAYD_DAAI AS7AR KAASHEEIRII BAA7BAANII SIQK HNAE VAALLA PAANT_SHVAN MANAED_ZZAR HAE
/an4/wav/c7.raw PATT_HTT_HOON OR SIRKA HAAAD_DSAAT_DII D_DARD_D BAAM SAE FORAN SULD_ZZ HAAAN P_HIR MIITT_HAE OR KOLAYSTTRROOL SAE BAT_SHAEN
/an4/wav/c8.raw KAYOOLARI_D DDAAMY KII MOZUUNIIIJAT_D SAMD_ZZ_HAAANE OR ID_DAAAE KAE ARKAAN KII T_DARBIIJJAT_DII XID_DMAAT_D KAE LIIAE HABIIAB NAE T_BIRIKI T_SHALAAII
/an4/wav/c9.raw IQT_DISaad_DII MUAAMALAAAT_D KII T_DAFHIIM OR FARMAAN BURD DAAR NOOD_ZZVAANOON KII BARIIFING GUFT_DGUU MAEN SARAFAHRIST_DLIK_HAAEN
/an4/wav/c10.raw SAD ZZD_ZZAAD_D RAYSKIJUU MALUUMAAT_D K HANGGAAALNAE KAE BAAD_D D_ZZAANAE KIJUUN BILAASOOT SHAAT SHAANAK SUUIMING PAR RAA7IB HAE

Figure 36 - Sphinx-4 transcription file
5.4.6 Tools developed – the Sphinx Compiler

As can be seen from the above given descriptions, if all these files are generated manually, it will be a very time consuming task and will result in a lot of errors. Therefore, it was required to automate this process as much as possible. A Java based program was developed for the generation of these files and for the analysis of training and test data as well. The software also provides many utility functions e.g. CISAMPA based Roman to Urdu Unicode converter etc. that are essential for the completion of decode process back to Urdu. Following sections give a detailed description of the files required as input along with the file format and examples. And sample output files.

5.4.6.1 Description of Input Files

Following is a brief description of the input files required by different functions of the Sphinx Files Compiler:

5.4.6.1.1 Unicode Training data File

This is a simple sentence corpus of Urdu, which provides the transcription of the audio data files used for training. The file is required to contain one sentence per line (in the same order as the speech files in which these sentences are uttered). The file must be in 16 bit Unicode, Big Endean Format. Figure 37 shows a sample of first few lines.

![Figure 37 - Unicode Training Data File](image-url)
5.4.6.1.2 Unicode Test data File

This is a sentence based corpus for the test data. The requirements and format are the same as for the training data file shown in section 5.4.6.1.1.

5.4.6.1.3 Phonetic Lexicon

The phonetic lexicon (as shown in Figure 28) is also in 16 bit Unicode Big Endian format. It presents a mapping between Urdu words, CISAMPA transcription and Romanized versions of those words. If a word has multiple pronunciations it must be defined with as many entries with different CISAMPA and Romanization in each case. Thus this file produces a one-to-many mapping from Urdu to CISAMPA transcription and Romanization.

5.4.6.1.4 Decode Results File

Sphinx-3 and Sphinx-4 produce the decoding results in the given Romanization format. This file contains the ordered decoding results. It is in plain ASCII file format as shown below in Figure 38.

```
NIILAM NAE SAALGIRAA PAR HAYDD SAYSMOOGIRAAF ASVAD_D QURAYSHII KAE MAAT_D_HAE PAR AYNTT_HAN OR 7AM KII AAT_DISHIIN RO MEHSUUS KII (ct1) HAAD_ZZII MUD_ZZAAHID_D BILGIRAAMII MAXZAN OR 7AZVAA KAE AEK ARAB QARAIIIN MAEN INT DIAAII SAAAD_DIQ OR D_ZZAYNUUIN QAAIIII T_D_HAE (ct2) SAAMAEIIN INFAARMAESHAN KII ^G_HAN GARAD ZZ SUNAEN T_DOO VIIZAE KII RIPOORTT MAEN POOCAAHID_DAA AEK_MEHID_DUUD_D_EL VII DDOOMAYSTTIK PAYKID_ZZ HAE (ct3)
KAMJOONIIIT LOGGOON NAE T_DANG HOONAE KAE BAADVAD_ZZUU_D KAIII SHUBOON MAEN T_DANG_DIIH SAE APNAE KAYRIIIAR KOO MUZAYJAN KAR LIJAA (ct4) TTARAANSFAARMAR PAR MIDDNAAIIT MAEN SHAHIIIN GID_D_H OR UQAAB SAMAET_D T_SHESTT KAE BAL SARAEEAM SAYNTTAR OO BARRDD BAYTT_HT_DAE HAYN (ct5) KARRVAE QAHAVAE KAA SHAYD_DAAII AS7AR KAASHMIIRII BAA7BAANII SIIK_HNAE VAALAA PAANT_SHVAAN MANAED_ZZAR HAE (ct6)
```

Figure 38 - Sphinx-3 results file

5.4.6.2 Functions provided by Sphinx Compiler

5.4.6.2.1 Construct Dictionary File

Inputs: Unicode Training Data File, Unicode Test Data File, Phonetic Lexicon.
Output: Dictionary file for Sphinx in the required format, with Roman Urdu to CISAMPA transcription mappings.

Options: Three options are available:

1. Generate the dictionary only from the words in the Unicode Training data file
2. Generate the dictionary from the combined set of test and training data
3. Generate the dictionary from all the entries in the phonetic lexicon which are composed entirely of the phones which were present in the training data

Errors: The function will exit with error if a word is encountered which is not available in the Phonetic lexicon (Please see section 5.4.6.2.9.1).

5.4.6.2.2 Construct Romanized Corpus for Language Model Generation

The corpus for Language Model generation is required to be in ASCII encoding. This is to be supplied as input to the online Language Model tool or the Statistical Language modeling toolkit.

Inputs: Unicode Training Data File, Unicode Test Data File, Phonetic Lexicon

Output: Romanized version of the Input Corpora

Options: Four options are available:

1. Generate the Corpus only from the training data without silence markers (<s> and </s>) before and after each sentence (this can be used with the online Language Modeling toolkit which can insert these silence markers itself)
2. Generate the Corpus only from the training data with silence markers (start: <s> and end: </s>) before and after each sentence (This is required by the SLM toolkit)
3. Generate the Corpus from the combined training and test data without silence markers (<s> and </s>) before and after each sentence (this can be used with the online Language Modeling toolkit which can insert these silence markers itself)
4. Generate the Corpus from the combined set of training and test data with silence markers (start: <s> and end: </s>) before and after each sentence (This is required by the SLM toolkit)
Errors: The function exits with error condition if an entry in training and/or test data (depending on the selected option) is not found in the phonetic lexicon (Please see section 5.4.6.2.9.1)

5.4.6.2.3 Generate Train IDs and Test IDs

Inputs: Unicode training and test data files, File name prefixes, file number ranges and locations of files on the disk

Outputs: Training and Test IDs files.

5.4.6.2.4 Generate Train and Test Transcription Files

Inputs: Unicode training and test data files, File name prefixes, file number ranges, Phonetic Lexicon

Outputs: Training and Test Transcription files for Sphinx-3

Options: Following options are available for the training and test transcription files

1. Every sentence is transcribed with silence variable (SIL) between all words, and <s> before every sentence and </s>.after every sentence. This is useful for non-continuous speech recordings, as we performed in the first step for the phone cover sentences

2. Every sentence is transcribed with <s> before every sentence and </s>.after every sentence. This is useful for continuous and spontaneous speech recordings

Errors: The function exits with error condition if an entry in training and/or test data (depending on the selected option) is not found in the phonetic lexicon (Please see section 5.4.6.2.9.1)

5.4.6.2.5 Generate filler dictionary

This is a hard coded function and generates the filler dictionary for the filler words.
5.4.6.2.6 Generate Phone File

This function generates the phone file required by Sphinx-3 and 4, which contains all the phones that are present in the training data.

5.4.6.2.7 Generate Report

This is a very useful function which generates a statistical report about the training and test data. This information is required to predict the baseline for word error rate and also to determine training and testing statistics. Figure 39 shows a sample of the report file. Most of the information is self-explanatory however, some parts are described below:

The difference between the entry “No of unique overlapping words between the training and test data:” and the entry “No of overlapping words occurring in the test data:” is that the former gives a count of the number of distinct words in the test data for which the system will be trained by the training data, while the later gives a count of the number of instances of words in the test data for which the system will be trained by the training data.

The four frequency files generated output the extent of training for individual words or phones that the system receives and the extent of testing for individual words that the system will perform. Appendix show samples of all these files for one particular instance of training and testing data.

Inputs: Unicode Training and Test data files, Phonetic Lexicon

Output: Report File and four Word-Frequency and Phone-Frequency files
No of Sentences/Utterances in the training file: 1685
No of Sentences/Utterances in the testing file: 50

No of words in the training file: 10677
No of words in the testing file: 313 i.e. 2% of Training Data

No of Unique words in the training file: 1284
No of Unique words in the testing file: 125 i.e. 9% of Training Data

No of Phones in the training file: 36998
No of Phones in the testing file: 1172

No of Unique Phones in the training file: 57
No of Unique Phones in the testing file: 46

No of Unique overlapping words between the Training and test data: 113
No of Unique overlapping Phones between the Training and test data: 46

No of Unique non-overlapping words between the Training and test data: 12
No of Unique non-overlapping Phones between the Training and test data: 0

No of Overlapping Words occurring in the test data: 301
No of Overlapping Phones occurring in the test data: 1172

No of Non-Overlapping Words occurring in the test data: 12
No of Non-Overlapping Phones occurring in the test data: 0

Phone to Frequency for training File written to: Sphinx\Test1\TrP2Fr.txt
Phone to Frequency for testing File written to: Sphinx\Test1\TeP2Fr.txt
Word to Frequency for training File written to: Sphinx\Test1\TrW2Fr.txt
Word to Frequency for testing File written to: Sphinx\Test1\TeW2Fr.txt

Figure 39 - Sample Report File

5.4.6.2.8 Generate Files for Sphinx-4 tests

Two methods provide the required functionality for performing the Wordlist grammar tests on Sphinx-4. The two files "Wordlist.batch" and "WordlistGrammar" are generated using similar methods as employed in producing the dictionary file and the transcription files. The inputs are same as well. The file format is correctly managed by the functions.
5.4.6.2.9 Utility Functions

The following utility functions are developed to assist in the overall corpus generation and Sphinx Files generation process.

5.4.6.2.9.1 Identify new/incorrect words in the Training and Test Data and Suggest Phonetic transcription

This very useful function should be run before running the Sphinx Files compilation. It generates a list of words (if any) that are present in the Training or Test corpus but not in the Phonetic Lexicon. In addition to that it uses the letter to sound rules to generate a suggestion list with the suggested CISAMPA pronunciations for each word. If the words are properly diacritized then the suggestions can be completely correct. Otherwise a manual review can be done to correct any mistakes. These words can then be added to the phonetic lexicon. Sometimes incorrectly typed words or missed spaces etc. are also present in the input corpora, which are also caught at this level.

Inputs: Unicode Training and Test corpora, Phonetic Lexicon, Letter to Sound Rules’ Files (three files, for three letter, two letter and one letter sounds)

Output: An exception list file, which lists the new words along with transcription suggestions in CISAMPA. An example of the output is shown in Figure 40.
5.4.6.2.9.2 Convert from CISAMPA Romanization to Urdu

This functions converts back from CISAMPA based roman script to Urdu Unicode. This can be used to view the recognition results in the Urdu script. It performs a many to one mapping as the multiple pronunciation mechanism in Sphinx in our case is being dealt with in the phonetic lexicon. A word having different pronunciations can be repeated in the lexicon followed by the different Roman and phonetic transcriptions. This reverse conversion function maps all the different Romans back to the same word as mentioned in the phonetic lexicon.

Inputs: CISAMPA based Roman transcription file, Phonetic lexicon

Output: Urdu Unicode file

Errors: The function will give an exception if a word which is not in the phonetic lexicon is encountered.
5.4.6.2.9.3 Generate SOX batch script

Sphinx-4 requires all the audio files in mono channel 16 KHz, 16 bit Big Endean RAW files. Therefore, the test audio files previously in NIST format have to be converted. This function generates a batch script for all the test audio files for the required conversion and sets all the parameters required by Sphinx. The SOX audio conversion utility for Windows® [52] is used by the batch file to perform the required conversion.

5.4.6.2.9.4 Convert Phonetic Lexicon from SAMPA to CISAMPA

This function was developed to convert the Phonetic lexicons which were previously transcribed using standard SAMPA into the new CISAMPA transcription for the purposes of this thesis.

Inputs: Phonetic Lexicon in SAMPA, SAMPA to CISAMPA rules file

Output: Phonetic lexicon transcribed in CISAMPA

Errors: If a non-standard SAMPA symbol is encountered the function gives an error. Solution: New rule(s) can be added to the SAMPA to CISAMPA conversion rules file.

5.4.6.2.9.5 Calculate total Length of NIST files

This function reads the audio file duration from the NIST file header and performs a sum of the durations of the range of files given in the input. It provides an easy way of estimating the actual length of speech files after splitting.

Inputs: Directory path where the files are stored, File name prefix, File name starting number, File Name Ending Number

Output: Displays the total duration of the NIST files in range on the console in minutes and seconds.
5.4.6.2.9.6 Replace all using mapping file

It is often required while cleaning up a new text corpus to batch replace entries in the input corpus e.g. missing spaces etc. as shown in Figure 40 can be corrected once and then replaced all at a time, which save a lot of time. This function helps in the procedure.

Inputs: Tab separated two-column file mapping words-to-be-replaced to new entries, path of this correction file, path of the old corpus and name of the new corpus.

Output: File with all occurrences of all entries in column 1 of correction file found in the input corpus with the corresponding entries in column 2.

5.4.6.2.9.7 Convert Phonetic Lexicon from CISAMPA based Roman to Grapheme based Roman

The motivation behind this function is explained in 7.5. The task that it performs is to change the old CISAMPA based Romanization scheme in the input phonetic lexicon to the new letter based Romanization as shown in Appendix B on page 139.

Inputs: Path of the old lexicon, path and name of the mapping rules (Appendix B), path and name of new lexicon file to be created

Output: Phonetic Lexicon with only the Romanization changed according to the new rules.
Chapter 6
Experimental Results

6.1 Test Setup

6.1.1 Available Data

The total amount of data that we used for training and testing our system can be summarized as follows:

- 70 minutes of transcribed read speech consisting of 708 greedily made sentences representing all the phones and triphone combinations in Urdu. The data consists of 10101 words, and 5656 unique words. It contains 60 unique phones and 42289 phone occurrences. The word-frequency and phone-frequency graphs of the data are shown in Figure 41. It must be noted that the sentences contained in this corpus are all hand made by trained linguists following the greedy approach to accommodate all the words (which were selected by the set cover algorithm) and to prevent additional words as much as possible. Therefore, while correct grammatically, there are places where these do not represent the semantic structures of Urdu.

![Figure 41 - Word-Frequency (left) and Phone-Frequency (right) graphs of the Read Corpus](image-url)
• 109 minutes of transcribed spontaneous speech consisting of 3266 utterances recorded in the form of interviews. The data consists of 21034 words and 2032 unique words. It contains 60 different phones with 72700 phone occurrences. The word-frequency and phone-frequency graphs are shown in Figure 42. This data represents the natural and spontaneous speech patterns of a native speaker of Urdu.

Figure 42 - Word-Frequency (left) and Phone-Frequency (right) graphs of the Spontaneous Corpus

• The combined data from the spontaneous and read (excluding 22 minutes of spontaneous speech data, which is used only for testing purposes) contains 3174 utterances spanning over 157 minutes of speech. It contains 31135 words (6693 unique words), 114990 phones (62 unique phones including the rare L_H). The word-frequency and phone-frequency graphs are shown in Figure 43.

Figure 43 - Word-Frequency (left) and Phone-Frequency (right) graphs of the Combined Spontaneous and Read Corpus
6.1.2 Test Plan

The tests were divided into three main portions each designed to achieve a specific goal. These are as follows:

1. Read Speech

 Training Data: The system is progressively trained with increasing amounts of read speech in steps of 100 utterances (100, 200... 700 utterances).

 Test Data: For every instance of training, the system is tested with 20% of the size of the training data. These tests are performed in two flavours:

 a. Baseline Tests: In this case the system is tested on the training data. The purpose of these tests is to see whether:

 ▪ The system has been properly trained or not and if everything is working as expected
 ▪ To establish the upper bound on system performance as the system should produce the best results if tested on part of the training data
 ▪ To fine tune the ASR decoder properties like Viterbi search beam width, Language Weight and different Smoothing techniques applied to the language model

 b. Rerecorded Tests: As mentioned earlier, the read speech cannot be used in making good language models. Therefore, the system cannot be usefully tested with new test data, i.e. data with different grammar and semantic characteristics. Hence, 20% of the written data (for all the seven tests) from within the training data is rerecorded in a different environment. This is then used for testing the system.

 c. Separate Tests: These tests were performed with a new set of training data. 100 utterances of everyday read Urdu speech were tested with the system with all 708 utterances of read greedy sentences. The goal was to confirm the hypothesis that the read sentences do provide a good acoustic model but not a good (representative) Language Model for read Urdu speech
2. **Spontaneous Speech**

These tests were designed to analyse the spontaneous speech recognition characteristics of the system and to fine tune the ASR decoding parameters. The 109 minutes of spontaneous speech data was partitioned into 87 minutes (~80%) of training data and 22 minutes (~20%) of test data. The language model is derived from the training data only and the system is tested with different parameters of the decoder.

3. **Mixture of Read and Spontaneous Speech**

These experiments were devised with the goal of finding the optimal spontaneous to read data ratio that would give best recognition results on spontaneous speech. The system is now tested with 800 utterances (22 minutes) of spontaneous (completely non-overlapping with any of the training data). The system is then progressively trained with 100% of spontaneous speech + x % of read speech (where x increases in steps of 25% from 0 to 100%). Next the system is trained with a mixture of 100% read speech + x% of spontaneous speech (where x increases in steps of 25% from 0 to 100%). All other parameters are kept constant to observe the required trend only.

Note: The value of beam width is represented in Sphinx as a number between 0 and 1, with 0 as the widest (no paths are pruned) and 1 as the narrowest (only the best path survives pruning). Therefore the values of beam width are written as 1e-x (i.e. 1x10^(-x)). Therefore, as x increases in magnitude, the beam width increases.

6.1.3 **Test Set – 1 (a & b): Read Speech**

6.1.3.1 **100 Sentences (10 minutes)**

In the first test 100 utterances (~10 minutes of speech) from the read corpus were used to train the system. The system was then tested with two different sets of test data:

- **Control Set:** 20 sentences from the training data itself
- **Rerecorded Set:** The same 20 sentences rerecorded in an environment different from the training environment

Detailed statistics of training and test data are given in Table 4.
The Trigram language model was developed from the 100 utterances of the training data using the Online Language Modelling Toolkit (OLMT), and absolute discounting was used as the smoothing technique. Initially the language weight was fixed at 6 and the beam width was modified from 1e-100 through 1e-700 with the results shown in Table 5 and Figure 44.

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control</th>
<th>Control Rerecorded</th>
<th>Rerecorded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WER %</td>
<td>% Correct</td>
<td>WER %</td>
</tr>
<tr>
<td>1e-100</td>
<td>6</td>
<td>36.16</td>
<td>65.86</td>
<td>53.94</td>
</tr>
<tr>
<td>1e-200</td>
<td>6</td>
<td>23.84</td>
<td>78.99</td>
<td>51.11</td>
</tr>
<tr>
<td>1e-300</td>
<td>6</td>
<td>24.24</td>
<td>79.39</td>
<td>51.52</td>
</tr>
<tr>
<td>1e-400</td>
<td>6</td>
<td>15.15</td>
<td>89.70</td>
<td>51.72</td>
</tr>
<tr>
<td>1e-500</td>
<td>6</td>
<td>15.15</td>
<td>89.70</td>
<td>51.72</td>
</tr>
<tr>
<td>1e-600</td>
<td>6</td>
<td>15.15</td>
<td>89.70</td>
<td>51.72</td>
</tr>
<tr>
<td>1e-700</td>
<td>6</td>
<td>15.15</td>
<td>89.70</td>
<td>51.72</td>
</tr>
</tbody>
</table>

Table 5 – Effects of Beam Width Variation (100 utterances)

The tables show that the best WER of 15.15% is achieved for beam widths greater than 1e-400 for the control experiments and a WER of 51.11% for rerecorded speech using a beam width of
1e-200. Next the experiments were repeated with a fixed beam width (BW) of 1e-700 and language weight was modified. The recommendations of Sphinx tutorials are to use language weights between 6 and 13. These values along with two outlying values were tried. The results have been shown in the Table 6 and Figure 45.

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control</th>
<th>Control</th>
<th>Rerecorded</th>
<th>Rerecorded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WER %</td>
<td>% Correct</td>
<td>WER %</td>
<td>% Correct</td>
</tr>
<tr>
<td>1e-700</td>
<td>1</td>
<td>14.75</td>
<td>90.71</td>
<td>66.46</td>
<td>62.63</td>
</tr>
<tr>
<td>1e-700</td>
<td>7</td>
<td>13.54</td>
<td>90.10</td>
<td>50.71</td>
<td>67.88</td>
</tr>
<tr>
<td>1e-700</td>
<td>8</td>
<td>13.54</td>
<td>90.10</td>
<td>51.92</td>
<td>66.67</td>
</tr>
<tr>
<td>1e-700</td>
<td>9</td>
<td>13.33</td>
<td>90.10</td>
<td>50.91</td>
<td>66.26</td>
</tr>
<tr>
<td>1e-700</td>
<td>10</td>
<td>12.93</td>
<td>90.10</td>
<td>50.51</td>
<td>66.46</td>
</tr>
<tr>
<td>1e-700</td>
<td>11</td>
<td>13.13</td>
<td>89.90</td>
<td>49.70</td>
<td>65.45</td>
</tr>
<tr>
<td>1e-700</td>
<td>12</td>
<td>13.13</td>
<td>89.70</td>
<td>48.69</td>
<td>65.25</td>
</tr>
<tr>
<td>1e-700</td>
<td>24</td>
<td>14.95</td>
<td>87.07</td>
<td>53.94</td>
<td>49.49</td>
</tr>
</tbody>
</table>

Table 6 – Effects of Language Weight Variation (100 utterances)

![Figure 45 – Effects of Language Weight Variation (100 utterances)](image)

The language weight (LW) value of 10 gives the best WER value of 12.93% for the control tests. While the language weight of 12 performs the best for rerecorded speech by giving a WER of 48.69%. However, the overall outcome of these tests indicates (from the high values of WERs) that the training data is not yet enough to train the system to recognize the 53 phones present in the test data. As a result, the validity of the beam width and language weight parameters as being the most optimal ones remains uncertain. Therefore, the next logical step was to increase
the size of the training data (and also the test data proportionally) and to run through all these tests again to find out the best values of Beam Width and Language Weight.

6.1.3.2 200 Sentences (20 minutes)

The experiment was repeated with 200 utterances of read speech as training data. The statistics to training and test data are mentioned in Table 7. The trigram language model has been developed from the training data using the online Language Modelling Toolkit [51] with absolute discounting. Like before the test data consists of two parts:

- **Control Set**: 40 sentences from the training data itself
- **Rerecorded Set**: The same 40 sentences rerecorded in an environment different from the training environment

<table>
<thead>
<tr>
<th></th>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>No. of words</td>
<td>2764</td>
<td>618</td>
</tr>
<tr>
<td>No. of unique words</td>
<td>1698</td>
<td>418</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>11870</td>
<td>2718</td>
</tr>
<tr>
<td>No. of unique Phones</td>
<td>58</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 7 - Training and Test Data (200 utterances)

The initial tests were repeated as in the previous part to focus on the optimal beam width while keeping the language weight constant as shown in Table 8 and Figure 46.

<table>
<thead>
<tr>
<th>Beam Width (e-100)</th>
<th>Language Weight</th>
<th>Control WER %</th>
<th>Control % Correct</th>
<th>Rerecorded WER %</th>
<th>Rerecorded % Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-100</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>14.66</td>
<td>90.30</td>
</tr>
<tr>
<td>1e-200</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>14.88</td>
<td>90.41</td>
</tr>
<tr>
<td>1e-300</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>15.55</td>
<td>89.31</td>
</tr>
<tr>
<td>1e-400</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>15.55</td>
<td>89.75</td>
</tr>
<tr>
<td>1e-500</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>15.55</td>
<td>89.75</td>
</tr>
<tr>
<td>1e-600</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>15.55</td>
<td>89.75</td>
</tr>
<tr>
<td>1e-700</td>
<td>6</td>
<td>0.66</td>
<td>99.34</td>
<td>15.55</td>
<td>89.75</td>
</tr>
</tbody>
</table>

Table 8 - Effects of Beam Width variation (200 utterances)
The results show a drastic improvement for 200 utterances. Now the WER for the control data seems more beam width independent as its value remain the same for all values of the test beam widths. This is understandable as the control test data was an overlapping part of the training data, therefore the correct paths should ascend to higher probabilities in the Viterbi. As a result even smaller beam width would perform equally well as larger ones. For the rerecorded speech the matters are a bit different. The results are slightly better for smaller Beam Widths while worse for larger. This problem has been indicated in various texts as a negative aspect of too large beam widths which prevent less probable paths from being pruned at earlier stages. These paths may gain probability as the algorithm proceeds due to some incorrect utterances later in the sentence giving rise to local maxima of path probabilities, hence making the WER slightly greater in certain cases. This reasoning is supported by the fact that the WER reaches a plateau after Beam Widths of 1e-300.

Figure 46 - Effects of Beam Width Variation (200 utterances)
Next the beam width was kept constant at $1e^{-700}$ and the experiments were repeated with different values of Language Weight as shown in Table 9 and Figure 47.

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control</th>
<th>Control</th>
<th>Rerecorded</th>
<th>Rerecorded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WER %</td>
<td>% Correct</td>
<td>WER %</td>
<td>% Correct</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>1</td>
<td>0.66</td>
<td>99.67</td>
<td>26.79</td>
<td>85.45</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>7</td>
<td>0.66</td>
<td>99.34</td>
<td>14.22</td>
<td>90.63</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>8</td>
<td>0.88</td>
<td>99.12</td>
<td>13.56</td>
<td>90.96</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>9</td>
<td>0.88</td>
<td>99.12</td>
<td>13.56</td>
<td>90.85</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>10</td>
<td>0.88</td>
<td>99.12</td>
<td>14.00</td>
<td>90.30</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>11</td>
<td>0.77</td>
<td>99.23</td>
<td>13.67</td>
<td>89.86</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>12</td>
<td>0.77</td>
<td>99.23</td>
<td>13.78</td>
<td>89.75</td>
</tr>
<tr>
<td>$1e^{-700}$</td>
<td>24</td>
<td>0.44</td>
<td>99.56</td>
<td>19.96</td>
<td>81.81</td>
</tr>
</tbody>
</table>

Table 9 - Effects of Language Weight (200 utterances)

Figure 47 - Effects of Language Weight (200 utterances)

The best values of language weight are achieved for smaller values of language weight and very large values. As the test data has been taken from the training data itself therefore, this is the result of the fact that the acoustic model or language model alone will give higher values of path probabilities then the product of these if likelihood and prior are given equivalent weight. Therefore, the WER is less when prior is given more weight (LW=1 through 7) and when only likelihood is give high weight (LW = 24). The results for rerecorded speech are as expected, with the best WER of 13.56% for LW of 8 and 9.

From these initial experiments it was concluded that there are no great fluctuations in the WER as the BW and LW are modified, therefore, the resolution of these factors is made coarser in the
next experiments. The goal of these experiments is to find the optimal values of beam width and language weight.

6.1.3.3 300 Sentences (30 minutes)

The system was trained with 300 utterances comprising a total of 30 minutes of speech. The language model was developed using the online language modelling toolkit with absolute discounting. The details of training and test data are mentioned in Table 10.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>300</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>30</td>
</tr>
<tr>
<td>No. of words</td>
<td>4359</td>
</tr>
<tr>
<td>No. of unique words</td>
<td>2552</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>18266</td>
</tr>
<tr>
<td>No. of unique Phones</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 10 Training and Test Data (300 utterances)

The system is then tested with three different values of beam width, while keeping the language weight fixed at 7. Next the beam width is made constant and the experiments are repeated with three different values of language weight. The results on control and rerecorded data are shown in the Table 11.

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control WER %</th>
<th>Control % Correct</th>
<th>Rerecorded WER %</th>
<th>Rerecorded % Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-100</td>
<td>7</td>
<td>0.95</td>
<td>99.42</td>
<td>11.55</td>
<td>93.13</td>
</tr>
<tr>
<td>1e-300</td>
<td>7</td>
<td>1.02</td>
<td>99.42</td>
<td>11.55</td>
<td>93.42</td>
</tr>
<tr>
<td>1e-500</td>
<td>7</td>
<td>1.02</td>
<td>99.42</td>
<td>11.84</td>
<td>93.13</td>
</tr>
<tr>
<td>1e-700</td>
<td>7</td>
<td>1.02</td>
<td>99.42</td>
<td>11.84</td>
<td>93.13</td>
</tr>
<tr>
<td>1e-700</td>
<td>9</td>
<td>0.88</td>
<td>99.56</td>
<td>11.84</td>
<td>92.84</td>
</tr>
<tr>
<td>1e-700</td>
<td>11</td>
<td>1.32</td>
<td>99.20</td>
<td>11.62</td>
<td>92.62</td>
</tr>
</tbody>
</table>

Table 11 - Test Results (300 utterances)

The results seem to be pretty stable overall. There are only minor fluctuations in the WERs. For control data the best values are obtained for BW = 1e-700 and LW = 9. For rerecorded, the best values seem more dependent on language weight than beam width and good results are obtained for LW = 7 and LW = 11.
6.1.3.4 400 Sentences (40 minutes)

The same series of tests that were performed for 300 sentences is repeated for 400 sentences with one major difference. The Trigram LM is now developed using the SLM Toolkit, as the online LM toolkit does not support more than 5000 tokens. The discounting method used is Witten-Bell discounting. The statistics of test and training data are shown in Table 12 and the test results are mentioned in Table 13.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>400</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>40</td>
</tr>
<tr>
<td>No. of words</td>
<td>5900</td>
</tr>
<tr>
<td>No. of unique words</td>
<td>3372</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>24514</td>
</tr>
<tr>
<td>No. of unique Phones</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 12 - Training and Test Data (400 utterances)

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control</th>
<th>Control</th>
<th>Rerecorded</th>
<th>Rerecorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-100</td>
<td>7</td>
<td>1.95</td>
<td>98.59</td>
<td>7.70</td>
<td>95.34</td>
</tr>
<tr>
<td>1e-300</td>
<td>7</td>
<td>1.52</td>
<td>99.02</td>
<td>7.70</td>
<td>95.34</td>
</tr>
<tr>
<td>1e-500</td>
<td>7</td>
<td>1.52</td>
<td>99.02</td>
<td>7.92</td>
<td>95.12</td>
</tr>
<tr>
<td>1e-700</td>
<td>7</td>
<td>1.52</td>
<td>99.02</td>
<td>7.92</td>
<td>95.12</td>
</tr>
<tr>
<td>1e-700</td>
<td>9</td>
<td>1.57</td>
<td>98.97</td>
<td>7.59</td>
<td>95.17</td>
</tr>
<tr>
<td>1e-700</td>
<td>11</td>
<td>1.74</td>
<td>98.81</td>
<td>7.21</td>
<td>94.9</td>
</tr>
</tbody>
</table>

Table 13 - Test Results (400 utterances)

The test results for rerecorded speech now show a marked improvement especially for language weights of 9 and 11 and a beam width of 1e-700. On the other hand the results for control data are best for smaller beam widths and smaller values of language weight.

However, the statistics obtained from these experiments clearly indicate that for the rerecorded speech better values of WER are being obtained for beam widths in the ranges of 7 to 9 and for language weights of 1e-500 to 1e-700. Since the system performs much faster with a beam width of 1e-500 as compared to 1e-700, therefore the remaining experiments are done with a beam width of 1e-700 and a fixed language weight of 8.
6.1.3.5 500 Sentences (50 minutes) and 600 Sentences (60 minutes)

Table 14 and Table 16 show the statistics of the training and testing data for the next two experiments with 500 and 600 sentences respectively. In both the tests Trigram LMs developed using the SLM Toolkit with Witten-Bell discounting are employed. Table 15 and Table 17 show the test results.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>500</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>50</td>
</tr>
<tr>
<td>No. of Words</td>
<td>7294</td>
</tr>
<tr>
<td>No. of Unique Words</td>
<td>4129</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>30706</td>
</tr>
<tr>
<td>No. of Unique Phones</td>
<td>58</td>
</tr>
</tbody>
</table>

Table 14 - Training and Test Data (500 utterances)

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control WER %</th>
<th>Control % Correct</th>
<th>Rerecorded WER %</th>
<th>Rerecorded % Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-500</td>
<td>8</td>
<td>2.62</td>
<td>97.86</td>
<td>7.21</td>
<td>95.15</td>
</tr>
</tbody>
</table>

Table 15 - Test Results (500 utterances)

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Utterances</td>
<td>600</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>60</td>
</tr>
<tr>
<td>No. of Words</td>
<td>8588</td>
</tr>
<tr>
<td>No. of Unique Words</td>
<td>4847</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>36378</td>
</tr>
<tr>
<td>No. of Unique Phones</td>
<td>59</td>
</tr>
</tbody>
</table>

Table 16 - Training and Test Data (600 utterances)

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>Control WER %</th>
<th>Control % Correct</th>
<th>Rerecorded WER %</th>
<th>Rerecorded % Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-500</td>
<td>8</td>
<td>3.1</td>
<td>97.7</td>
<td>8.65</td>
<td>93.53</td>
</tr>
</tbody>
</table>

Table 17 - Test Results (600 utterances)

The results show a increase in the WER for control experiments and also a slight increase in WER for rerecorded speech. It shows that as the training model is becoming more general there is a trend towards fall in performance as far as WER is concerned. Another reason can be the
choice of lower beam width of 1e-500 and 1e-700 may have given slightly better results showing a plateau of performance.

6.1.3.6 708 Sentences (70 minutes)

The final test with overlapping read speech is done using all the 708 utterances for the training data and the same parameters for BW and LW as were used in the previous two experiments. The details of Training and Test data are shown in Table 18.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Utterances</td>
<td>708</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>70</td>
</tr>
<tr>
<td>No. of Words</td>
<td>10101</td>
</tr>
<tr>
<td>No. of Unique Words</td>
<td>5656</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>42289</td>
</tr>
<tr>
<td>No. of Unique Phones</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 18 - Training and Test Data (708 utterances)

The system is now tested with all the discounting strategies provided by the SLM Toolkit. Trigram language models are used. The results are shown in the Table 19.

<table>
<thead>
<tr>
<th>Beam Width</th>
<th>Language Weight</th>
<th>LM Smoothing</th>
<th>Control WER %</th>
<th>Control % Correct</th>
<th>Rerecorded WER %</th>
<th>Rerecorded % Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Absolute</td>
<td>4.56</td>
<td>96.16</td>
<td>10.41</td>
<td>91.44</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Good-Turing</td>
<td>4.85</td>
<td>95.87</td>
<td>11.1</td>
<td>90.82</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Linear</td>
<td>4.36</td>
<td>96.32</td>
<td>8.46</td>
<td>93.17</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Witten Bell</td>
<td>3.68</td>
<td>96.81</td>
<td>8.14</td>
<td>93.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 19 - Test Results (708 utterances)

The results indicate that for rerecorded speech the best WERs are achieved with Witten-Bell discounting strategy closely followed by the linear discounting. This precise behaviour is shown by the control data as well.

This completes the tests with the sentences obtained by greedy strategy from words which provide phonetic cover and phonetic balance. The next section summarizes the results.
6.1.3.7 Summary of Tests

Table 20 and Figure 48 show the summary of the best results obtained as the training data was increased from 100 to 708 utterances while testing with different values of beam width and language weight. The optimal value of beam width is found to be 1e-500. This value is better as it provided a nice balance between efficiency and performance with reference to WER. The optimal language weight has been found to be 8 for these experiments.

<table>
<thead>
<tr>
<th>Combined Results</th>
<th>Control</th>
<th>Rerecorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training data Size (No. of sentences)</td>
<td>Best WER %</td>
<td>Best WER %</td>
</tr>
<tr>
<td>100</td>
<td>12.93</td>
<td>48.69</td>
</tr>
<tr>
<td>200</td>
<td>0.44</td>
<td>13.56</td>
</tr>
<tr>
<td>300</td>
<td>0.88</td>
<td>11.55</td>
</tr>
<tr>
<td>400</td>
<td>1.52</td>
<td>7.21</td>
</tr>
<tr>
<td>500</td>
<td>2.62</td>
<td>7.21</td>
</tr>
<tr>
<td>600</td>
<td>3.10</td>
<td>8.65</td>
</tr>
<tr>
<td>700</td>
<td>3.68</td>
<td>8.14</td>
</tr>
</tbody>
</table>

Table 20 - Combined Read Speech Test Results

An analysis of the test summary shows that after the initial bad performance for 100 utterances of training data, the WER comes within acceptable limits and stays there for all the rest of the values. The control experiments show that the system performs at its peak value within 4% of WER at maximum for the most general training set. The rerecorded test data show the adaptation of the system to different test environmental conditions as the speaker and test corpus remains the same. Moreover, the trend in the rerecorded test data is continuously
towards improvement as training data is increased, with a slight fluctuation in WER at 600 sentences.

Next the system is tested with a new set of read data to see its response to new speech.

6.1.4 Test Set – 2: Part c Read Speech

In this experiment the system trained with the 708 sentences of read speech is tested with 100 utterances (nearly 10 minutes) of test data that is completely separate from the training data set. The sentences are from newspapers and other sources of print media. The statistics of training and test data are shown in Table 21.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>708</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>70</td>
</tr>
<tr>
<td>No. of words</td>
<td>10101</td>
</tr>
<tr>
<td>No. of unique words</td>
<td>5656</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>42289</td>
</tr>
<tr>
<td>No. of unique Phones</td>
<td>60</td>
</tr>
<tr>
<td>Out of Vocabulary Words</td>
<td>-</td>
</tr>
<tr>
<td>Instances of OOVs</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 21 - Training and Test Data (Non-Overlapping tests)

The out of vocabulary (OOV) words in the test data were added to the phonetic dictionary of the training data. However, the language model is generated from the training data alone so it does not contain those words. As a result 28% of the test data is not represented in the language model. The WER achieved was 53.50%. The main reason for the poor WER is the presence of a large number of OOVs and also that the LM generated from the read training corpus are not representative of the natural grammatical and syntactic structures of Urdu speech. The 46.5% recognition can be attributed to the well trained acoustic model. The language weight used in the experiment was 8 and the beam width was fixed at 1e-500.

This experiment clearly shows the need of a language model which should represent the Urdu speech and its structures more precisely and should be large enough to model good N-gram probability estimates.
6.1.5 Test Set – 3: Spontaneous Speech

This third set of experiments is designed to analyze the performance of the ASR when it is trained with spontaneous speech only and is tested with spontaneous data. The training and test data are in 80:20 ratios and the trigram language model is obtained only from the training spontaneous data corpus. As a result there are a lot of out of vocabulary words. The spontaneous speech corpus is far from being sufficient for providing a representative language model yet, it is the best that is available for now. The statistics of training and test data are shown in Table 22 and it can be clearly seen that the OOV instances comprise 10% of the test data. The good thing is that the training data provides a good phonetic cover and is phonetically balanced as well as was shown in Figure 42 (right). This is due to the simple reason that all this speech has been spontaneously spoken by a native speaker. The duration of training data is a little short of one and a half hour and should provide good enough training as a start.

<table>
<thead>
<tr>
<th></th>
<th>Training Data</th>
<th>Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>2466</td>
<td>800</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>87</td>
<td>22</td>
</tr>
<tr>
<td>No. of words</td>
<td>21034</td>
<td>4623</td>
</tr>
<tr>
<td>No. of unique words</td>
<td>2032</td>
<td>750</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>72700</td>
<td>16442</td>
</tr>
<tr>
<td>No. of unique Phones</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Out of Vocabulary Words</td>
<td>-</td>
<td>212</td>
</tr>
<tr>
<td>Instances of OOVs</td>
<td>-</td>
<td>471</td>
</tr>
</tbody>
</table>

Table 22 - Training and Test Data (Spontaneous Speech)

All the tests results shown in Table 23 are results of tests with a fixed beam width of 1e-700. This was done to ensure a good enough Viterbi search space. The tests have been conducted to finalize the appropriate language weight. The language model was smoothed using Witten-Bell discounting that has shown the best results for the tests so far. It took around 1.5 hours to train the system for the 87 minutes of speech and a further 45 minutes (approximately) for running each test. The tests were conducted on a Toshiba Satellite (model number: m115) Laptop computer with a 1.6GHz Dual Core processor and 2.5 Giga bytes of RAM.

117
<table>
<thead>
<tr>
<th>Language Weight</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>24.9</td>
</tr>
<tr>
<td>8</td>
<td>22.9</td>
</tr>
<tr>
<td>9</td>
<td>23.5</td>
</tr>
<tr>
<td>11</td>
<td>22.8</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 23 - Spontaneous Speech Test Results with fixed Beam Width of 1e-700

The results indicate that better WER values are obtained for language weight values of 8 and 11. Overall the results lie within ranges of 22 and 25, which is not bad considering the large number of OOVs and a language model derived from a small corpus.

6.1.6 Test Set – 4: Mixture of Read and Spontaneous Speech

The final run of tests was conducted to find the optimal spontaneous to read speech training data ratio that would give the best results for recognizing spontaneous speech. The intuition behind these experiments is that the greedily generated read speech should provide enough phonetic cover and balance for a good acoustic model. In addition further training with spontaneous speech should not only provide better modelling for acoustic model but also a good overall language model representing the spontaneous speech of Urdu.

The experiments involve 87 minutes of spontaneous speech training data and 70 minutes of read speech training data. The test data consists of 22 minutes of spontaneous speech entirely separate (non-overlapping) from the training data. The statistics of the two types of training data and the test data are mentioned in Table 24.

<table>
<thead>
<tr>
<th></th>
<th>Spontaneous Training Data</th>
<th>Read Training Data</th>
<th>Spontaneous Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of utterances</td>
<td>2466</td>
<td>708</td>
<td>800</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>87</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td>No. of words</td>
<td>21034</td>
<td>10101</td>
<td>4623</td>
</tr>
<tr>
<td>No. of unique words</td>
<td>2032</td>
<td>5656</td>
<td>750</td>
</tr>
<tr>
<td>No. of Phones</td>
<td>72700</td>
<td>42289</td>
<td>16442</td>
</tr>
<tr>
<td>No. of unique Phones</td>
<td>60</td>
<td>60</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 24 - Training and Test Data for Sp:Re Ratio Experiments
The experiments were performed using two different types of language models. One (which will be referred to as spontaneous LM below) is derived from the 87 minutes of transcribed spontaneous speech only. The recognition results obtained with this language model are shown in Table 25 along with the details regarding number of unique out of vocabulary words (OOVs), the number of instances of OOVs in the test data and the number of occurrences of words in the test data which are not present in the language model. The language model in all cases is a trigram language model with Witten-Bell discounting generated using the SLM Toolkit. The tests are performed on systems trained with the two types of training data mixed together in different ratios. The recognition results are summarized in Figure 49. Figure 50 and Figure 51 depict the relationship between WER and OOVs and WER and OOV instances for different training ratios. In all tests the beam width used is 1e-700 and language weight of 8. Hence, all other factors except the spontaneous to read ratio are maintained constant.

<table>
<thead>
<tr>
<th>Training Data (Spontaneous:Read)</th>
<th>WER Spontaneous LM</th>
<th>OOVs</th>
<th>OOV Instances</th>
<th>LM OOVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>22.9</td>
<td>212</td>
<td>471</td>
<td>212</td>
</tr>
<tr>
<td>100:25</td>
<td>23.1</td>
<td>182</td>
<td>410</td>
<td>212</td>
</tr>
<tr>
<td>100:50</td>
<td>23.4</td>
<td>168</td>
<td>347</td>
<td>212</td>
</tr>
<tr>
<td>100:75</td>
<td>23.8</td>
<td>154</td>
<td>324</td>
<td>212</td>
</tr>
<tr>
<td>100:100</td>
<td>23</td>
<td>136</td>
<td>279</td>
<td>212</td>
</tr>
<tr>
<td>75:100</td>
<td>23.9</td>
<td>151</td>
<td>329</td>
<td>212</td>
</tr>
<tr>
<td>50:100</td>
<td>23.9</td>
<td>174</td>
<td>384</td>
<td>212</td>
</tr>
<tr>
<td>25:100</td>
<td>26.8</td>
<td>209</td>
<td>445</td>
<td>212</td>
</tr>
<tr>
<td>0:100</td>
<td>75.3</td>
<td>297</td>
<td>826</td>
<td>212</td>
</tr>
</tbody>
</table>

Table 25 - Results with Spontaneous Language Model
Figure 49 shows that using the spontaneous speech language model the error increases slightly as read speech data is included into the spontaneous speech data. However the WER reaches a satisfactory number 23% for a 1:1 ratio between spontaneous and read data. After that however, it starts ascending much rapidly then it fell to the valley. As the spontaneous data portion becomes less in the mixture the WER increase ultimately ending on a high 75.3% for read speech data alone. Therefore it can be concluded that including read speech to spontaneous speech while the language model is being derived from spontaneous speech alone does not improve the recognition results. However, this can be a result of the non-overlapping words between the read and spontaneous corpora which means that those words will not be present in the language model either and hence will have a very low probability towards recognition.

A second point to be noted is that while increasing training data (as we moved from 100:0 towards 100:100) the recognition results constantly became better (except for the initial 22.9%). This may mean that the system is still in need of more training data for better training. The apparent valley of WER obtained at 100:100 may become better if the amount of speech data is increased. This, however, can only be proven by further training and testing iterations.
Figure 50 and Figure 51 show the relation ship between WER and OOVs. It is clear that with the exception of the initial 22.9% WER for spontaneous data alone, the WER directly proportional to the OOVs. The minimum WER of 23% aligns with the minimum OOVs of 136 and minimum
OOV instances of 279. The cross correlation between WERs and OOVs gives a 0.86 and between WER and OOV instances gives 0.93. Hence, it reaffirms the strong dependency of OOVs on WER. The sharp peak of 75.3% WER at 0:100 ratios between spontaneous and read data correspond with a sharp rise in OOVs and hence explain the reason for the sudden increase in WER. However, it must be mentioned that this OOV amount just reflects on the acoustic model and not the language model which is a constant factor during the tests with a fixed OOV count of 212 and OOV instance count of 471.

The second set of experiments was performed using language models derived from the actual training data (which will be referred to as training LM below). Therefore, the LM varies from test to test as the ratio between the spontaneous and read speech varies in the training data. The recognition results obtained with this language model are shown in Table 26 along with the details regarding number of unique out of vocabulary words (OOVs), the number of instances of OOVs in the test data and the number of occurrences of words in the test data which are not present in the language model.

<table>
<thead>
<tr>
<th>Training Data (Spontaneous:Read)</th>
<th>WER Training LM</th>
<th>OOVs</th>
<th>OOV Instances</th>
<th>LM OOVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>22.9</td>
<td>212</td>
<td>471</td>
<td>212</td>
</tr>
<tr>
<td>100:25</td>
<td>21.5</td>
<td>182</td>
<td>410</td>
<td>182</td>
</tr>
<tr>
<td>100:50</td>
<td>21.0</td>
<td>168</td>
<td>347</td>
<td>168</td>
</tr>
<tr>
<td>100:75</td>
<td>20.3</td>
<td>154</td>
<td>324</td>
<td>154</td>
</tr>
<tr>
<td>100:100</td>
<td>18.8</td>
<td>136</td>
<td>279</td>
<td>136</td>
</tr>
<tr>
<td>75:100</td>
<td>22.1</td>
<td>151</td>
<td>329</td>
<td>151</td>
</tr>
<tr>
<td>50:100</td>
<td>23.7</td>
<td>174</td>
<td>384</td>
<td>174</td>
</tr>
<tr>
<td>25:100</td>
<td>29.1</td>
<td>209</td>
<td>445</td>
<td>209</td>
</tr>
<tr>
<td>0:100</td>
<td>58.4</td>
<td>297</td>
<td>826</td>
<td>297</td>
</tr>
</tbody>
</table>

Table 26 - Results with Training Data based Language Model

It can be observed that the LM OOVs change from test to test as the training data changes. The language model in all cases is a trigram language model with Witten-Bell discounting generated using the SLM Toolkit. The tests are performed on systems trained with the two types of training data mixed together in different ratios. The recognition results are summarized in Figure 52. Figure 53 and Figure 54 depict the relationship between WER and OOVs and WER
and OOV instances for different training ratios. In all tests the beam width used is 1e-700 and language weight of 8. Hence, all other factors except the spontaneous to read ratio are maintained constant.

The results for the training data based language model show a very nice trend and very clearly depict the effects of the ratio on recognition results. It can be seen that the WER starts decreasing as the read speech is introduced into the mixture of training data hence increasing the over all amount of data as well. The WER reaches a minimum of 18.8% for the 1:1 ratio between spontaneous and read speech and then begins to climb rapidly as the spontaneous data becomes limited in the mixture. Finally reaching a high WER of 58.4 for read speech based training data. The results are very similar to the ones obtained for the spontaneous speech LM only better. However, the hypothesis that the system is still in need of more training data in term of duration and amount is reinforced as we can see that we obtained the least WER for the maximum amount of over all training data.
Figure 53 and Figure 54 show the relationship between OOVs and OOV instances and WER. The direct proportionality relation remains valid here as well. The correlation between WERs and OOVs gives a very high 0.92 and that between WERs and OOV instances gives 0.96. It is also...
notable that now the OOVs also mean that the language model does not contain those words either. The sharp peak of WER 58.4%, again corresponds with the highest OOV and OOV instance value. The WER is relatively less compared to the spontaneous LM tests. The explanation for this behaviour is the large non-overlap between the vocabulary of training data and the language model that existed in case of spontaneous LM when it was tested with 0:100 ratios between training and test data. No such non-overlap exists here as the language model is being derived from the training data and hence the results remain overall better. This fact points towards the importance of matching between training data and the language model. The high correlation between word error rates and out of vocabulary words indicates that a further decrease in WER may be achievable by decreasing the OOVs, which can be accomplished by expanding the corpus for training data and language model.

6.2 Comparison with previous work

With all the different types of speech recognition systems available and under development for different languages it is not an easy task to establish an exact comparison. There are speech recognition systems designed to recognize different types of speech ranging from simple isolated-digits based recognition to spontaneous speech recognition with disfluencies. The environmental noise varies from microphone based quite studio recordings to busy street noise based cell phone speech recognition systems. Then there is great variation regarding the amount of training data which ranges from few minutes of training data to several hundred hours of speech data used for training the ASR systems. Then another factor introducing a lot of variation is the amount of research done on a particular problem regarding some specific language and the stage of development at which a system currently is.

With all these variations an exact comparison with our speaker specific, spontaneous speech recognition system for Urdu is not possible. However, to get things into perspective and have a rough idea of the performance of our system a comparison is shown with some of the most closely matching system, which were explained in detail in the literature review section. It can be seen that in this comparison with respect to the WER this system shows performance next only to the transcription system for Arabic Broadcast News which cannot be categorized as purely spontaneous. Secondly, all other systems mentioned in the table are the results of
improvements by using different techniques. The 18.8% WER shown by our system is only the simple and unimproved performance, which may be improved further simply by adding more training data. Aside from this table we know that the WERs for the best available spontaneous speech recognition systems are around 15% for broadcast news [35] and [36] and 40% for meeting and telephone conversation transcription [37].

On the other hand, all other systems shown in the comparison are speaker independent, which is one aspect that our system has not been trained and tested for. In short, it can be said that this system has shown a promising performance for its initial run and may improve further by applying simple techniques (some of which are suggested in the Future Directions).

<table>
<thead>
<tr>
<th>Paper</th>
<th>ASR Engine</th>
<th>Type</th>
<th>Best WER %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soltau et al [37]</td>
<td>GALE ASR</td>
<td>Transcription of Arabic broadcast news</td>
<td>14.9</td>
</tr>
<tr>
<td>Our System</td>
<td>Sphinx-3</td>
<td>Speaker specific Speech recognition system for spontaneous Urdu Speech</td>
<td>18.8</td>
</tr>
<tr>
<td>Digalakis et al [22]</td>
<td>SRI’s DECIPHER</td>
<td>Greek Dictation System</td>
<td>19.27</td>
</tr>
<tr>
<td>Raškinis et al [27]</td>
<td>HTK</td>
<td>Speech recognition system for Lithuanian on an isolated word phonetically rich corpus</td>
<td>20</td>
</tr>
<tr>
<td>Gauvain et al [32]</td>
<td>LIMSI</td>
<td>Speaker independent continuous speech recognition system for transcribing unrestricted American English broadcast news</td>
<td>20</td>
</tr>
<tr>
<td>Gauvain et al [32]</td>
<td>LIMSI</td>
<td>Speaker independent continuous speech recognition system for transcribing unrestricted American English broadcast news</td>
<td>20</td>
</tr>
<tr>
<td>Anumanchipalli et al [25]</td>
<td>Sphinx-2</td>
<td>Tamil, Telugu and Marathi landline and cellular phone based continuous (read) speech recognition system</td>
<td>23.6</td>
</tr>
<tr>
<td>Takaaki et al [34]</td>
<td>-</td>
<td>A method for paraphrasing spontaneous Japanese speech into written style sentences</td>
<td>24.2</td>
</tr>
<tr>
<td>Frank et al [36]</td>
<td>-</td>
<td>Transcription of continuous broadcast news data</td>
<td>29.3</td>
</tr>
<tr>
<td>Jacques et al [30]</td>
<td>ESAT</td>
<td>Spontaneous English Telephone Calls</td>
<td>29.6</td>
</tr>
<tr>
<td>Vivek et al [35]</td>
<td>-</td>
<td>Disfluent repetitions in spontaneous speech</td>
<td>42.1</td>
</tr>
<tr>
<td>Nedel et al [38]</td>
<td>Sphinx-3</td>
<td>ASR for spontaneous English speech</td>
<td>49.3</td>
</tr>
</tbody>
</table>

Table 27 - Comparison of ASR systems

6.3 Conclusion

The aim of this thesis was to develop a speaker specific speech recognition system for spontaneous and read Urdu speech. The main hurdle was the lack of speech corpus and transcribed speech resources. Therefore, the first goal of this project was to develop a phonetically rich and balanced sentence based text corpus for Urdu providing context based phonetic (with triphoneme as the phonetic context unit) cover for Urdu speech. The corpus was developed using greedy approach with acoustic phonetic enhancements to reduce its size and to make the resulting data set more natural. This corpus was read and recorded to produce the read speech corpus for Urdu. Next a set of interviews was designed and recorded to produce the spontaneous speech corpus which was manually transcribed. Using the Sphinx-3 Automatic Speech Recognition system the acoustic and language models were trained with the mixtures of read and spontaneous speech combined in various ratios. In this way the optimal language model and mixture ratio of read and spontaneous corpora were found. The system currently gives a satisfactory peak performance of 18.8% Word Error Rate for a 1:1 ration mixture of read and spontaneous speech, which is comparable with the best word error rates of most of the recognition systems for spontaneous speech available for any language. The systems shows a potential for further improvement and promises to be a nucleus for further work and research in Urdu speech recognition.
Chapter 7

Future Directions

7.1 Size of the training data

The experiments clearly indicated that an increase in the training data resulted in a proportional decrease in the word error rate. This implies that the training data set is not yet saturated (as it was derived from a speech of 140 minutes which contained 114990 phone occurrences of 62 phones only). Therefore, the first thing that needs to be done is to increase the sizes of the read and spontaneous speech corpora. For read speech, this will provide a repetition of the sentence corpus which will result in better triphoneme models. In case of spontaneous speech, the additional data will come from more interviews, and will also enrich the vocabulary of the system from the perspective of trained words. Only after finding the peak of performance (with respect to WER) should more tuning of parameters be done.

7.2 Phonetic Transcription of Speech Corpus

In order to simply the task we relied on the phonemically transcribed lexicon for transcribing the speech corpus. Since neither the corpus nor the lexicon has been completely diacritized this gives rise to two main sources of transcriptions error:

7.2.1 Diacritization Errors

These errors result from the fact that Urdu relies on diacritics for its short vowels. As the native speaker of Urdu can easily guess the diacritics from the context therefore, the written text is hardly ever fully diacritized. While this has no negative impact on the readability of the material it may affect the performance of the training system. A word for example أَسُ or أَس which are both valid entries in the lexicon. This means that such words must be disambiguated to accomplish an error free training of short vowels. However, to achieve this goal, two things must be done. The training corpus must be fully diacritized (as much as is required for disambiguation) and secondly, all
the diacritized entries must be made available in the lexicon with proper phonetic transcription. This can be largely handled by the Letter to Sound mapping utility.

7.2.2 Mispronunciation Errors

These types of errors result from the mispronunciation of phones done habitually or by mistake by the speakers. The reason may even be the accent of the speaker or some disability. In any case the sounds actually uttered will not match the phone sequence given in the lexicon. If such a problem is either habitual or a result of some disability or habit, the speaker may be asked to repeat it. Otherwise it may be removed in the quality assurance phase. However, if it represents some valid (or widespread) version of the word (or sound), then it must be detected and added to the lexicon as an alternate phonetic transcription. This may require careful analysis of the spoken data while the transcription is done.

7.3 Large Vocabulary Transcribed Corpus for Language Model

The experiments clearly indicated the requirement of a large vocabulary speech corpus that can be used to build the language model. During our experiments the language model was simply being generated from approximately 140 minutes (2 hours 20 minutes) of transcribed speech data (with a vocabulary of 6693 unique words and 31135 tokens only). This is a poor and insufficient representation for the spontaneous and read speech of Urdu. Therefore, one of the primary goals of the future work on Spontaneous Urdu Speech Recognition should be the development of a large vocabulary transcribed spontaneous speech corpus, so that the language specific constructs and grammar of Urdu can be sufficiently represented in the language model.

7.4 Boot Strapping with Hand segmented Speech Corpus

We have used embedded training throughout the training process. However, it is advisable to start with at least some hand segmented data to boot strap the system and then use embedded training in the remaining training process. Embedded training was used to save time as the ratio between the duration of recorded speech to the time it needs to be hand segmented and labeled is roughly 1:400 [1]. However, for the project this process can be followed for some initial data which may improve the acoustic models.
7.5 New Romanization Scheme for Roman to Urdu conversion

In Urdu the letter to phoneme mapping in many cases is many-to-one. Therefore if the CISAMPA based romanization is used we face the problem of homophones when roman to Urdu conversion is done. For example ِزَن and ِضَمَن are two different words in Urdu which map onto the same phonetic construction /z ə n/ ([Z A N] in CISAMPA). Since in my romanization scheme the words are romanized by converting them to CISAMPA first that is the romanization of both these words will be [Z A N], in CISAMPA. Similarly letters like ِطَمَن, ِذَمَن, ِضَمَن will be mapped onto [T_D] and ِزَن, ِضَمَن onto [Z] etc. The problem therefore occurs when such words are converted back to Urdu and a stochastic method like the N-gram language model has to be used to weigh the contextual probability of ِزَن vs. ِضَمَن in the roman to Urdu converter. However, there is an easier solution to this problem by which it can be automatically solved by the language model based prior probability $P(W)$ used by the ASR in the decode phase. That can be accomplished by modifying the romanization scheme to differentiate these two words by giving them different roman representations.

This requires a grapheme rather than phoneme based romanization. An alternate representation was developed for the romanization as shown in Appendix B. This scheme maps every Urdu letter to a new ASCII symbol. While it results in a lack of readability in the romanized text, it solves the homophone problem.

The work however, should be continued to develop a more readable romanization scheme and a better language model to disambiguate the Homophones. However, the actual solution to will be the introduction of Unicode support in Sphinx. In that case there will no longer be a requirement for a romanization scheme and we can deal with Urdu and other Unicode script based languages as easily as plain text.

7.6 Speaker Independence and Training for Telephone Speech

In order to make this problem a feasible one to solve in a year's duration the simplifying assumption of speaker specific system was made. Otherwise, the job of corpus development
coupled with the interviews and transcription etc. as explained in the methodology section, would have been too large a task. However, now that the system has been successfully trained for a single speaker and the basis and procedures for all the work have been established it would no longer be a hard job (although it is certainly time consuming) to train the system with data from multiple speakers. Secondly, according to the requirement of the project being done by CRULP, the next phase would be to obtain the training data simultaneously on microphone and telephone channels so that the system should be trained and tested for spontaneous telephone based speech. The primary changes would be the channel characteristics introduced by the wideband phone channel and the features introduced by the VoIP protocol required for the digitization of the speech.
Chapter 8

Bibliography

[56] “Sphinx-4 frequently asked questions.” http://www.speech.cs.cmu.edu/sphinx/sphinx4/-sphinx4-1.0beta/doc/Sphinx4-faq.html#learn_jsgf.

Appendix A

IPA to SAMPA and Case Insensitive SAMPA (CISAMPA) Mapping

<table>
<thead>
<tr>
<th>#</th>
<th>IPA</th>
<th>SAMPA</th>
<th>CISAMPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>2</td>
<td>pʰ</td>
<td>p_h</td>
<td>P_H</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>bʰ</td>
<td>b_h</td>
<td>B_H</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>m</td>
<td>M</td>
</tr>
<tr>
<td>6</td>
<td>mʰ</td>
<td>m_h</td>
<td>M_H</td>
</tr>
<tr>
<td>7</td>
<td>t</td>
<td>t_d</td>
<td>T_D</td>
</tr>
<tr>
<td>8</td>
<td>tʰ</td>
<td>t_d_h</td>
<td>T_D_H</td>
</tr>
<tr>
<td>9</td>
<td>d</td>
<td>d_d</td>
<td>D_D</td>
</tr>
<tr>
<td>10</td>
<td>dʰ</td>
<td>d_d_h</td>
<td>D_D_H</td>
</tr>
<tr>
<td>11</td>
<td>t</td>
<td>t’</td>
<td>TT</td>
</tr>
<tr>
<td>12</td>
<td>tʰ</td>
<td>t’_h</td>
<td>TT_H</td>
</tr>
<tr>
<td>13</td>
<td>d</td>
<td>d’</td>
<td>DD</td>
</tr>
<tr>
<td>14</td>
<td>dʰ</td>
<td>d’_h</td>
<td>DD_H</td>
</tr>
<tr>
<td>15</td>
<td>n</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>nʰ</td>
<td>n_h</td>
<td>N_H</td>
</tr>
<tr>
<td>17</td>
<td>k</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>18</td>
<td>kʰ</td>
<td>k_h</td>
<td>K_H</td>
</tr>
<tr>
<td>19</td>
<td>g</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>20</td>
<td>gʰ</td>
<td>g_h</td>
<td>G_H</td>
</tr>
<tr>
<td>21</td>
<td>η</td>
<td>N</td>
<td>NG</td>
</tr>
<tr>
<td>22</td>
<td>ηʰ</td>
<td>N_h</td>
<td>NG_H</td>
</tr>
<tr>
<td>23</td>
<td>q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>24</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>25</td>
<td>f</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>26</td>
<td>v</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>27</td>
<td>s</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>28</td>
<td>z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>29</td>
<td>ž</td>
<td>Ž</td>
<td>Ž</td>
</tr>
<tr>
<td>30</td>
<td>ʒ</td>
<td>ʒ</td>
<td>ZZ</td>
</tr>
<tr>
<td>31</td>
<td>ʎ</td>
<td>ʎ</td>
<td>X</td>
</tr>
<tr>
<td>32</td>
<td>ɣ</td>
<td>ɣ</td>
<td>ɣ</td>
</tr>
<tr>
<td>33</td>
<td>h</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>34</td>
<td>l</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>35</td>
<td>p</td>
<td>l_h</td>
<td>L_H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>r</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>37</td>
<td>ɾ</td>
<td>ɾ̊</td>
<td>ɾ̊h</td>
</tr>
<tr>
<td>38</td>
<td>t</td>
<td>t'</td>
<td>RR</td>
</tr>
<tr>
<td>39</td>
<td>ɾ̊</td>
<td>ɾ̊h</td>
<td>RR, H</td>
</tr>
<tr>
<td>40</td>
<td>j</td>
<td>j</td>
<td>J</td>
</tr>
<tr>
<td>41</td>
<td>j̊</td>
<td>j̊h</td>
<td>J, H</td>
</tr>
<tr>
<td>42</td>
<td>ŋ</td>
<td>t̊S</td>
<td>T_SH</td>
</tr>
<tr>
<td>43</td>
<td>ʘ</td>
<td>t̊S_h</td>
<td>T_SH_h</td>
</tr>
<tr>
<td>44</td>
<td>d̊</td>
<td>d̊h</td>
<td>D_Z, D_ZZ</td>
</tr>
<tr>
<td>45</td>
<td>d̊h</td>
<td>d̊h_h</td>
<td>D_ZZ_h</td>
</tr>
<tr>
<td>46</td>
<td>u</td>
<td>u</td>
<td>UU</td>
</tr>
<tr>
<td>47</td>
<td>ū</td>
<td>u~</td>
<td>UUN</td>
</tr>
<tr>
<td>48</td>
<td>ɔ</td>
<td>ɔ</td>
<td>OO</td>
</tr>
<tr>
<td>49</td>
<td>ò</td>
<td>o~</td>
<td>OON</td>
</tr>
<tr>
<td>50</td>
<td>ɔ</td>
<td>ɔ</td>
<td>O</td>
</tr>
<tr>
<td>51</td>
<td>ɔ̃</td>
<td>ɔ̃</td>
<td>ON</td>
</tr>
<tr>
<td>52</td>
<td>a</td>
<td>A</td>
<td>AA</td>
</tr>
<tr>
<td>53</td>
<td>â</td>
<td>A~</td>
<td>AAN</td>
</tr>
<tr>
<td>54</td>
<td>i</td>
<td>i</td>
<td>I</td>
</tr>
<tr>
<td>55</td>
<td>í</td>
<td>i~</td>
<td>IIN</td>
</tr>
<tr>
<td>56</td>
<td>e</td>
<td>e</td>
<td>AE</td>
</tr>
<tr>
<td>57</td>
<td>ɛ</td>
<td>e~</td>
<td>AEN</td>
</tr>
<tr>
<td>58</td>
<td>e</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>59</td>
<td>æ</td>
<td>ə</td>
<td>AY</td>
</tr>
<tr>
<td>60</td>
<td>æ</td>
<td>ə</td>
<td>AYN</td>
</tr>
<tr>
<td>61</td>
<td>t</td>
<td>ɾ</td>
<td>U</td>
</tr>
<tr>
<td>62</td>
<td>o</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>63</td>
<td>ə</td>
<td>@</td>
<td>A</td>
</tr>
</tbody>
</table>

Rare or no longer in use

References: [45], [53]
Appendix B

Grapheme to Roman Transcription

<table>
<thead>
<tr>
<th>#</th>
<th>Letter</th>
<th>Roman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ﻫ</td>
<td>Y2</td>
</tr>
<tr>
<td>2</td>
<td>ﻲ</td>
<td>Y1</td>
</tr>
<tr>
<td>3</td>
<td>ء</td>
<td>U4</td>
</tr>
<tr>
<td>4</td>
<td>ء</td>
<td>U3</td>
</tr>
<tr>
<td>5</td>
<td>ﻩ</td>
<td>U2</td>
</tr>
<tr>
<td>6</td>
<td>ﺵ</td>
<td>H2</td>
</tr>
<tr>
<td>7</td>
<td>ﻥ</td>
<td>N1</td>
</tr>
<tr>
<td>8</td>
<td>ﺖ</td>
<td>R1</td>
</tr>
<tr>
<td>9</td>
<td>ﺔ</td>
<td>D1</td>
</tr>
<tr>
<td>10</td>
<td>ﺠ</td>
<td>T2</td>
</tr>
<tr>
<td>11</td>
<td>ﻱ</td>
<td>U1</td>
</tr>
<tr>
<td>12</td>
<td>ﻲ</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>ﻰ</td>
<td>V</td>
</tr>
<tr>
<td>14</td>
<td>ﻫ</td>
<td>H1</td>
</tr>
<tr>
<td>15</td>
<td>ﻥ</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>ﻣ</td>
<td>M</td>
</tr>
<tr>
<td>17</td>
<td>ﻋ</td>
<td>L</td>
</tr>
<tr>
<td>18</td>
<td>ﺩ</td>
<td>G</td>
</tr>
<tr>
<td>19</td>
<td>ﺔ</td>
<td>K</td>
</tr>
<tr>
<td>20</td>
<td>ﻰ</td>
<td>Q</td>
</tr>
<tr>
<td>21</td>
<td>ﻟ</td>
<td>F</td>
</tr>
<tr>
<td>22</td>
<td>ﻬ</td>
<td>G1</td>
</tr>
<tr>
<td>23</td>
<td>ﻉ</td>
<td>E</td>
</tr>
<tr>
<td>24</td>
<td>ﻰ</td>
<td>Z4</td>
</tr>
<tr>
<td>25</td>
<td>ﻰ</td>
<td>T1</td>
</tr>
<tr>
<td>26</td>
<td>ﺪ</td>
<td>Z3</td>
</tr>
<tr>
<td>27</td>
<td>ﺪ</td>
<td>S2</td>
</tr>
<tr>
<td>28</td>
<td>ﺪ</td>
<td>X</td>
</tr>
<tr>
<td>29</td>
<td>س</td>
<td>S</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>ز</td>
<td>Z2</td>
</tr>
<tr>
<td>31</td>
<td>ز</td>
<td>Z</td>
</tr>
<tr>
<td>32</td>
<td>ر</td>
<td>R</td>
</tr>
<tr>
<td>33</td>
<td>ذ</td>
<td>Z1</td>
</tr>
<tr>
<td>34</td>
<td>د</td>
<td>D</td>
</tr>
<tr>
<td>35</td>
<td>خ</td>
<td>K1</td>
</tr>
<tr>
<td>36</td>
<td>ح</td>
<td>H</td>
</tr>
<tr>
<td>37</td>
<td>ج</td>
<td>C</td>
</tr>
<tr>
<td>38</td>
<td>ح</td>
<td>J</td>
</tr>
<tr>
<td>39</td>
<td>ت</td>
<td>S1</td>
</tr>
<tr>
<td>40</td>
<td>ت</td>
<td>T</td>
</tr>
<tr>
<td>41</td>
<td>ب</td>
<td>P</td>
</tr>
<tr>
<td>42</td>
<td>ب</td>
<td>B</td>
</tr>
<tr>
<td>43</td>
<td>ء</td>
<td>W9</td>
</tr>
<tr>
<td>44</td>
<td>آ</td>
<td>A2</td>
</tr>
<tr>
<td>45</td>
<td>ا</td>
<td>A1</td>
</tr>
<tr>
<td>46</td>
<td>ا</td>
<td>A</td>
</tr>
<tr>
<td>47</td>
<td>ن</td>
<td>W8</td>
</tr>
<tr>
<td>48</td>
<td>ٛ</td>
<td>V1</td>
</tr>
<tr>
<td>49</td>
<td>ه</td>
<td>H2</td>
</tr>
<tr>
<td>50</td>
<td>—</td>
<td>W7</td>
</tr>
<tr>
<td>51</td>
<td>ٞ</td>
<td>W6</td>
</tr>
<tr>
<td>52</td>
<td>ٞ</td>
<td>W5</td>
</tr>
<tr>
<td>53</td>
<td>ٞ</td>
<td>W4</td>
</tr>
<tr>
<td>54</td>
<td>ٞ</td>
<td>W3</td>
</tr>
<tr>
<td>55</td>
<td>ٞ</td>
<td>W2</td>
</tr>
<tr>
<td>56</td>
<td>ٞ</td>
<td>W1</td>
</tr>
<tr>
<td>57</td>
<td>U+200D</td>
<td>U5</td>
</tr>
<tr>
<td>58</td>
<td>U+200C</td>
<td>U6</td>
</tr>
<tr>
<td>59</td>
<td>ٌ</td>
<td>U7</td>
</tr>
</tbody>
</table>
Appendix C

List of Sentences (Complete)4

\begin{itemize}
\item Developed by the team of researchers of the Center for Research in Urdu Language Processing (CRULP), working on the project entitled Telephone-based Speech Interfaces for Access to Information by Non-literate Users, from the phonetically rich word list generated by the greedy set cover algorithm
\end{itemize}
روضہ کی دیسی ساختمان، فیبرکس کا ذریعہ انسداد میں د رج پر
موناس سفر میں یہ جگہ بہت سہلی اور ملکی رہی
اخونزادہ دی ساتویں سنجری نے طریقہ اور اس مقصد پر بر یت ایور ہو گیا
ایکسشن کے اسی موشون میں انسکی کی تحقیل میں گھس کر گونجش کی
بویشرا کا روہیہ سینکیان علیا اور ساز و باریکی اور جزین ملگر انداز کی بین
نیاً ملی مئارین بی بوجوچ ایپ کا تعاون مفت نئی بو سکتا
وفاق میں منظم آتشندگی پر جھیل سے بااصول ملازمہ کا استف支撑 بالکل جذب
علوم بیہ مجد صاحب کا نس بھر مربہ یک اگر انہل پہل بو گا پر
گانگرس اسی کوہ میں انسان کی مورون دقویں کے طبر کری پر
عادہ ایسی جھک کر بھیچ اور برتانوں کی بعد اس کی کائات بی مستغنی بو جا ل یہرے بیہ لوگوں کو جھوٹی اور نئی الافاظ بی سنتگاری نکری
بما را پیعا میں یہ ہے کاہل کا ہور اور اپی่อน غول مک ل کی صرف کرو
خضاب کی میں بلوں حال کسی علیا جوڑی کر یک لی جھیل اتھلا یک چھکزہ بین
ویسٹ کی لب میں پلور جھکی چھبی زیمب کو جھاکنے رہا ار رن کئورا ربا
کانگرس حکومت کی پورا قومیا نیا خدوخال اپیرون اور بلوں میں دھی میس
جیوڑیا کا جھلس کر برصوی لاتش ب ن جا سلامت با روزہ کی کوئی پر
نیم بحران موری خی کے رج جس ایک خواستگار کی توبن پر
ایذونی میں گیر لگانا گھوڑے دوزان پر آس کر سیف سمجو
رگا گمن یہ دو مرل پر سنگیا ب اگل تچہ آہنکلا کر پہدکا بوا ہوران آ کیا
شیتہر کو پنجوں کی شوکنسن کی پچاہن پر
بیوھی نوہل شیرنگ ایمولینس کے چنک یک لی پر پچھما ساعت پر
بیوزون کی لی نل کی دیکیہ بھال ایک تذل نہ اپور واقابل افرود پر
میرے مطابق یہ یقینی نہیں آپ کے خاصی ہے کی پورا کری اور تین پیہ بھیج دیئن
میم میں دھومن پے چیزہ ہی کے کھال بہت بری بیو گی پر
شہید کی افریقا نہیں کیونک گولری میں پین یار باریمنہتر گمشہدی تمم ذہونی میں پر
شکار کی لی ارتعمہ سی بوجوچ تو چلدہ چونچہ پس
مشراح کی کیس میں لگلا یک پر توجیہ بوسن میں جھم رپپ پر
شاہان کی گوہنہ اچھی پر بھر چوکھبل پر بچھی اپ کھچہ دشبہ میں بیتلا پر
لکی سسیا کی پچھم غیر مجبوب یک گھوٹل اتفاق کی مدافعت پر بات کی
قلح میں پہل یہ ہونا یا دو گھوٹن بانی ذالک سی بوجہ نوی بزتا
سنج ذوالفقار کی کی شانہ بیٹھنگ میں پنشرون سی ناجات فیض یاب پر

142
بیچیہ بر معرفت سنندجنس 8 کوارذینیز اور امپائر کو براساس کی
ریگل برہنے اس مرحلہ سونا تاکلیف کا لی عناوت اک عمل بلند کا
مواضعات میں بینگالی مندری کا تبدیل اور سونہ پینج جابا کر ہو
پھونک سپسیسیس کا مجنون ہی سرخ قدرت ہومنت بودی
صححوں میں گھوڑا آئکا مجنون جو جس حق کہلم بین
وعید و بعید کا بعد شوکت کی نمک خواجی رانگان جانا بیلطف پی
dتیز کو روز سے فرستان بھغوان اور درد ہیہ پی کوکش کر
دوجا شخص جونجو پپ نے سڑا کا لی یہاپسی تامزد کو
گیش گی اور گانی پریز، مسیوس نزینون جی
نتیم جمنا مل کیمیونزی ایک توضیحات بر بختنا پی
tعم دار بنش یا انگلی سی نہوئیا جگ میں گھول کر لز
ناخور مصداق 8 سرحد میں انسابوان نیشن مرغابی مینجمنت براجیکت منعقد کی
باران رحمت میں اپورفہت 8 ہڑونی ہاتون نکھ گئی
اوجھی کیمپ یا لی خلیت نگنہاکت معرضی سمجھ
اختی 8 خم بھوی اور داتی امر جاگہ سی ملخ جو بیا
مفع 8زودحی اور اوجھی ایکصوم اور فصل حسن سے بین
اب دونوں بجنوردی صاحب کے سماہ جنہیں اور غزبیناں کی بیانی تصقید کر
دلخلاد۔ میں ویڑنگ اینڈونزی ہورذ معرض وجود مین آیا
zلزلہ 8 طرفین میں ساری گاؤن بسماہد نہاین
مغز لیچ ویبری 8 بریپری اور روئژر میں نهذا جادوی کنواں استعمال کری
صوف 8 داتی گھوم کر منجع ہیگوئرن 8 دوجبلیکم ہراس یا
ایدیشنت جہون 8 طویل اداناگی سیئس بینک منافون 8 اینگ اعداوشنمار 8 جدول ریلیز گر
دیگ گئی
tبخوا کے بعد جیب اور جسم تھر کرتا 8سجھائی نئین دینا
مداحون 8 روشنی میں کیلاڑی 8 اچھے کھل 8 بر گفت دیا
اتوسمانت بر مدون ضمیم دستاوارۂ مشاورت کا لی سائیٹ لیبارتر میں بین
بیان 8 بیسیکھر 8 برندونوں کو تناکدل دیچ ہو بھنر ذوق کی درخشاں قدسی شروعات ہے
کسکھ این ہیزور شعاعی 8 حور وحدت شنازی اور مطابق 8 نتم پی
قادیشی گاندھی ور گتھری اس لاثم عمل میں مردادزم 8
ڈیپتانن 8 ذهبنے 8 اکثری چار پہنئنی دوب گنین
روہ اپنبرس 8 افراش کرتا 8 بر اور تعلیم 8 چراخ ہی
کرامت نے اپنے زمین میں برادھتی بوسی اور پھر تفاوت ختم کرکے لیے شیرادی کی نذر کی ہے، میتی کے بیٹھے کافی تذیب کے ساتھ انھیں اور کیا گیا جو کہ لچھی سکتی ہے۔

سکولیں میں میت لگا گئی اور کیا آپ اسکول میں تعلیم حاصل کیا جا رہا ہے۔

اتخوانسیہ سے گلیشاں سے یہ نقل کریں کہ اس کے واقع کا اچھا دیا ہے۔

بہوت ہلا ویلہ ہے اور برون گیا ہے کہ شوقی یکا فوہیا ہے۔

کوئی بلندیاں چلد میچھ سے دفاع کی پاداساری کی بنگام خیز بھیکشک ہے رکھ کر

سوہوں صفحہ کی نظر چھوٹی بر فرض کا اوقات ڈیکھے میں میں میں

متعصب ہے۔ چھوٹی سے سرخواروں بر پینکزی بھی رہا ہے۔

ایمگریشن کا لیے نویل برانگم کی اڑپسی روہیت میں باواضبل گزر و فکر موجب پہنے

کئی درسےاں ماں خوازی کی کاپی کی پاپ اور باب دیگی بر فوئیت رکھیں بین

اطفالی میتمان اور سیاح مین نیلو اور کامیڈی اجرا دیکھے رہے۔

ندی آئشورنڈس کا انتخاب گزشت ہے کا تفرقوں اور میناق کے مذہبی حدود میں رہنے

محافظن اور عیہدیداروں کا نرغ مین بی بچینوں تو اشرف کے ہندی بہو اور زادہ فیصلہ ہو

نئے طریقے تراوہ کا

ایہوں کا جامہ اور انہاں گھنٹیاں نے میں پھوٹی اور اسپال اور افروزدی مین بی کو دے

دسلدہ ۔ جنگل ۔ اور بے جو پروپریسی فارمولا ۔ کا افہاد کو جوش مین مسترد ۔ کیا

پہچا جبکہ ایک استویز ۔ ارشد علوی کا یہ لیا جائے کہ لیا جاوے لاوے لاوے لاوے لاوے لاوے

دلدر آتشیں جو گیا آریڈیشن ۔ کا بعد سیلی بوان نے بر مہرجون اور دوسروں ایماندہ ۔ کی مصروف سی

نیلور کو گویسیاں کی مجنی دیکھے اور یہہری بن دو شیوں کی ۔ پر کہ کوری کارا ۔ یہ ۔ اینہنے ۔ سہ جاواں ۔ کا یہ ۔ بی بی ۔ شیوی عورہ ۔ حکمتی اعانت اور سائلی بن بلاخوف

کہ ہے

حسین عفیل رندها ۔ یہ اصل مین درجنی مین ابتدیہ ۔ بیکھر ۔ یہ ۔ وج نہ ۔ پر ۔ تیرنوز ۔ سیفی انسولیشن

سب مذکرات کی

سوخن گردن ادبیون کی ملفوٹیں مین جاوشی بنوز اشاعت سیم محرور پہ
ماده‌ی لیزر اور کاندله‌ی جلویی ناشت و والو که خلاف پرده‌های کو زیرعنوان گه‌وس‌ت فارداد دی گونه‌که کک‌دیدی من صحیح ک او که‌ه‌کلا آسره غرفه‌نه تیرن که گرد ب کی کیا گی قصورار صیاد کا داغدا نوح جمعا غنودگی سپرگر جوین که تنظیم آزادی که جلسه من مهافونک ک زنارت کا سی‌بان کا گا این آنگی که باعیون بین پی‌که ک باطلی بوشنمتشین بالا ابوان من جاگیداران اور وذیرون کا پرتوانتانیت کا معاده اور معاوضون بر بات کی ایجیشکن اور نشر‌وشااعت من برهانی اور آسترینلوی مدقبال بین نوآبادیکان کونسل ک انگریگتو اری لگا ک نیگنالوی کی قدام کو برقرار رکها ورالذکب ک اقوا کا افسوسکا ناو اور انگخت بیچ کا اور دنیا من شکت کچ بیدار کا ریحان ع رفاصلون سپرچا بیش شروع کیم ریاب طقفی کل غیردشمندانن فصله در دبنگان ک توقعات اور جدایت کو پزمده کردیا بدقسمی سی شگاف نین سوو گلای من تیبل بیبیا گی چرا لیا ایپ بند کرواو شواید ک مطابق اطفالا کا لی بومویتیک ک تدابیر بهونی اور بس جونی سی بین بوشیون حانیک ک لینته بسی‌سر حانیک سی غیر شجوع ممالک به بنوستون بوزری ک انجزنر اور ناپد جورون می نیسی به بوریا ک تجاویس نین لونگ ک باغون کو پیانا کبیر برهنی کا شهره اور فیم‌ی اسکی معجشید کا برهوسه به کا پروفیسر طیب اور لانبریون کی پرونیسی من مینیکچک ایکوینی کا عمق معانیتم کا بعض بارونیخ که بیل کر قدوقامت می پر به اندازی اور رایگر ایک سپاسدم چ رک معجشیات کا معلم سنجیده لگا پی چودهران بیز بوته ماجیک رساو کو افضل کی عادات ک چا بیهمچی کا سرجا ازیک ضرورتمال بر ایک ریس کی قیام مش کا ابتسکن اور مالدار بین گی عالی‌شان وزارت کی حفیظ خیلیو کو نسابی بیز نگه آلود یا دیا منفرد ناول می‌دهیگی مشی اور تشذد کی برعکس منشور اور مقصود سی معجزت کی پیداپندن وی می خواجه دلون کو خودسر اور جنگجو بی دنیه پی جمشید کا خیابن ویسی بی آدمه کچ می بین چگی حالانه بمارت ب جوی می‌نیا جمن معنی منظور شده متون‌واژه کا انگلور نورز ذریع سی سه‌سیم کا گا طاغوی مواداکا کا معاهده‌ن طرز‌نکر مسلسل ذرایست اور اجاز دیک کی رپا دیب‌مان می بجرت اور ایذز چیسی به‌مان اور ذراوی نرسی ایل‌بمنیری رونیداد درج پی صیغه انت‌فرزیتی کی دی‌کاری‌شین نام‌موفر کو دیا اور رزخی کی داجوئی کی
روسی انتیلیجنس میخالیس وولر کے متعلق عملی رقیب تھے کروزون ذیرانیوں نے سیاست کی بیسمست کے مغز کی سازارسی ہے۔ لاہنگ بیرو لوک جرمنی گرو جیسے کے ہونے کو آئدم کھلی محققین نے مختلف نظریے کے سروشی۔ باوری اور نیکشیاں جگلافت مقبول ادیب کے لیے برشاں بین والدین کی محبی فیصلے کا لیے تقویت کا موجب ہے۔

آج گورنار صاحب عربی اور تنگدیسی کے بانٹ ایبائن کریک وولی کو رعائی دین گی مولوی میثی بخاری عجلت میں قیموں کے ساتھ ہم کم افغانستان سے ملی۔ شادی صاحب کی دلخواش اور مولنہ تازہ کو قبول کی۔ کریک کیا اگر دفعی دانشور کہلاو نے تہرین تو شہریون کا احتجاج فتحی بہ موجوہ تہی بیعت لینگویج اور شرعیات میں وجدان اور صداقت کا باعث بنی۔ مولانا خالد شمسی لیوبویتے کے عنوان پر تاریخ اور سبلاح بر لگتی بنی موجودہ ایوویو بلونج کے زیراستعمال پر جوشکست اور بول سیل کے کاروبار میں مستغرق بنی متحرک پروین میگن گردنی دنیائی مدرسے کے ہر باردو کی درست بنی رفعت لعابی موسمیات اور سیاست کے مسائل پر شدید بیان پر ارگنائزیشن کے چیئرمیں 8 بدعادار شناخت پر احشر طلب کی وزیراعلی کے ائتمک کے متحدہ کوئی محل بالنخصوص دیاگرام کی وقائع بنان کی گازی بورس کریک کے لیے میں شیک اور ہمیشہ میں زرمیادا۔ کا ذهنہوا لاپتنت کا مراج پر اطاعت کے ورزن میں سیونگ کے درخواست جوہریا کی نظمن سرگر نے کے بعد سرداراً میں رکنیہ دستاویزی مومنت میں رفیقی ذیرت اور میوانہ بہت حقوق کی نئیویے بہ کہلیں گی ناقب محرر کے تھہورے کی مدد کی بھرپورا سیستم میں زنگ آلود بہت کو مصروف کا اے ضرفان کیکشاون کے لئی لوگو افیوس عقور اور اسی ایک کاروبار اور صرف بولی 8 کہ تک پر سبکا گھروں کا رنی بیوہا جسی کی لیز عجبی رازکا نے جمعہ کے راوہ اینگو سکو کا انتہائی وان صدر حاجی کئے نریم تجویز اور مشورہ پر سوچی لگا پہ ایسے عدیدے بزرگ صحافیوں اور لکھن والوں کی لیں دکھاؤ ج گے کھیر اور زبردی ترقبی گے سوگات بہ مزید اس موقع پر بلون کے کریک میں گھوست اور متاحین پر پورے مفاہی کے لیے کہا غير سرکاری انتفاشم فوئس کی شمول کی جهانی اور کھوست کردار دیجیجیا جسکے گیمیز کی دلشاں گر مشگل جلد پچھنے نیز ذیبی رجوع کے نتائج دیکھی عزت افلک رخشنہ کو ذیککے کسی کچر کا اپنی مہارتیں زیجی سنتر پنچانس آسکیجک کاربن اور دیویو 5 کے اواب پر سوچی اسے بھید پر جدید عیندی سیکبیہانی کس کھو جاتی ہے۔ سلطان زرفاوی ذه گا اور موسالہادار دعائی کین
تحلیق کی لو ایک رنگیدہ خاطر میں اٹھا اور فوراِس بیشین کا آغاز پہنچا ہے۔ پریمرم میں پچھنگ گر چھتیسی فاصلہ فنی زیرفیدادی روزگار کی لہر تک نصبت ہیں۔ ملت ہے، بر ذریعہ اور میمن کے ساتھ خون پر رہی مفرط گی۔

سست مرجشن ہے برجانہ ویب پر یہ نیتر فائڈر یہ صلاحیت خزان رہسیدہ بوہنگی۔

جن کلنج کی فیشنیٹی رہی ہے وہ کمشن کو تسنیم بنی ااجاز انشکار کے تعداد اور گزار کی بیزو پر اوپنی شاگری کے جہانگیر ایک تحفہ بین

آگرہ ہیروش دک کے کندھوں بر نہیں پچھنا تھا ہر تبآی اور طفان میں تانائی بار سپائل گئی روزانہ نبوی دورانیہ میں انضمام ورک توشادہ میں کائنات، لگھوا کر دوردار کیا کیہاں میں رکھوا دینا۔

کعبیو اور گھاڑاکا کے پھیلی بر رنگن کے اوپاواش کھیو کر گھیو سیہ بنھ جدے زیے

تاون میں جہاہم کے لی مہلکنہ بهیجیوں تو انہاون فخش مصنوعات آپ کو یہ لوگ گئے

دیوندہ مین گوش حسینی کی مراعات میں شاپوراگاڑ کے نگین گوش نوعان کروا دیا گو شعر اور انشکار کے مجموعہ ونڈوز سے بچیں لینک سوپریکسی ری ہائی پہشہ ہونگ

میل کل ظاہر فوم کے سوہن من کرکانیّ چٹنڈر بانچھی نے بہو شیخ کھیس ہزکھتہ پہنے آتن یہ فرض ہیروشی نسمنا کے دماغی پہلی پہا یہ

خواصی کے نل رونٹاری یہ بہتلا صغری کہ چھیش قہدی ماجاں یا ناچہ مین یکا پنھان پہنے

بدصرت باسنے کی ایشالوں میں سیلار کی برستر کی برُس گراں نخرب نچھری تیغ

وہدی اور وہڑنگ کی بقاتا جر گاتری یہ اپنی پہلوں غی بلوج کو مدعو کا

لنبریکی کے مجموعوں میں ایک مجموعہ گرومولیوم اور نورو قبائیش پر پہنے

چھھیر اورن سیہ جون بھی مین ایک مشاش غلدان پر یسش شاندر گھاٹو پہنے

چھاوشان مرچی یا اوسی تقویش اور جادگان پرگھیش روپرگا کا مخرج پہنے

گاراون جاسوسی وہد کے کارخیر کے متمین کو رانجن چنشی کے خانی اذہرس پر بھیجا

آپ چونہ قصیفھا سوپریکسی پیچھی لکھیبین نہیں مین آپ کو محقق بنان

دوگاں سانج کے رقصوں میں سٹر گور طعبی چچھائے مین مخلص نگ نگ

رجل سنہرہ نگارین بھیڑا ہو تھا نہل کے مذهبوں میں جمع جمع کچھؤدے ہوھدی

ستھورس گھنٹے مین ہبلا ہیں ہبرت ہاہمہ کی چھھونگ کے جشن اور شفیق تھریر پر سوچ جا رہی نگئی

فسیس گھونکت مین یہی نیوی ریادادی مین کھپان کی پچھنگ اور پھول چھانٹے میں نگئی

بیدضی اور مفوع بیماری سے جناب سانس مونر علی نوری کا ہنگ مسیر اور بھورا یہ گیا

میرہب کنیا شعار با وسیع نبک دعا اور گیمینگ کر گرددی اور پہلے ایک چیئ پہ

شن کے نہدیب بے ماحترم توسیعی خرگال کو تفسیر میں ایک عبرت اور تحریر غالب پہ

لیئے یا ائنج کی آب جانے نشсталی نگا پرچھاڑ کس دورانیہ نے رس کا بیلگا یہاں

اسجد کے مئلوں باتھنے سے لہڑک کر سوپریکسی ہیل کے دونوں تھے ہم باولنگ بھیجو
سوئیونی کی جوزوان نہیں کا جھگرا لطفاں ک کچھ مین بدل گیا ایشاپزی کونک دیشک و لس علاقونک د کوئن جدیات مین محبوبہ پر نازان اوّر گزارے لگنک والی بین نوٰور برچنیاتنہ رویہ۔ آفراہدی کی لیٰ نصیحہ اور سمجکی چوّہ سبیہ پر بین ازدھاہ کی جھلک منظم اوّر فعلیات مین پنچ کرنا ملکک انہ اوّر نفیف یں سیکھ لئی ہے۔

ناتھروجی نے اوّر نوشیروان براجکی درست مین بندھ گئی بھی استعمال بھی مطعوبہ۔ افسین مین کر تھنہر جاجہ پاً لوپننا بن کر بلاک بوگا ہو چھیچ نما جنگی دیا نازع راجی سبھا مین۔

یہ لوگ شعل مین ندتر فجور کی جس پر ذیلی گھیراؤا کا اجرا ہے فاضل کی پانہ نوٰر بھیم پی دانزیکٹ لگاً بوول کر آزو اوّر لوٹیلی ملحوظ رکھتا ہے

ذیمو اوّر کوجنکا گوگھا تو عمر سانلو جیونش کیندرنہ سروئی چوّہ بریشاں کلا پہنچنک کم پہ

حسین ملاح پر ذیوئزی ناٹریکنک کی طرف سی رعایت بھیمل کی نھیچ تفنیسات اوّر مہربانیون کی جولانی۔

یہ تحصیلون مین مذہبی فلکنی کی متعیتی خواہیدی قدرکنی تکف کی بھرچال فراوان صورت پر جوً جوش جو چڑھا دینگ چاڑھندی انگی کو بیو نک رہا رکھنڈ مرغوب اوّر بغاینہ بو جانا پہ جادوگر کیچی بھی رچھا اور ہیژنک کے لیٰ وڈ کی کہگی گولوزی گڈی مین نہس رکھتا

بسانہ کی کس جور کی کاکھ کہ لنک کیرالقیہ یوپرلوشنن جمعہ کہ یہی موئنیہ سمجک کہ ذیمو ماہنذ ذیچن کو دی لیٰہ آپ فاروہ پہ بیوچہ کر ہیتی کی شادی مین چڑھی عام تشریف لائیس

تعصب بالله حشر ایک گنجیک فیہے پہ بلکہ پر تو مینون گا بجاوی کا دن پہ

اوّج اوّر فرخندنگ کے دھ جھغال مین مغروری شخص کا حامل بیلا مہذب برپسین مین دیکھا

فندز یا روچ پی دیلبروی یزہاتنو سو سانسدنوں کا پریشان اوّر ترقبیات لاپاکا کردلی مین چڑھند بین ایرانی قدرنو مین بندوک کی روایت نہس نہپ اسپان اوّر حورنن کا انشو پہ

لاشونکی تدفین کے بعد شاء جوان محظونک کا نوی جمگہنی دیکھ کر گھا نوچندی بجاوتی مین رانیانہ جاجہنک پر میف اوّر ناریشی سپنک کا صمحد اعہدہ نہس بو گا

جمح شربید یہ مین بھگا کر نومولوکن کے مین مین رکھنی آپ ہنتراتسبرنہ پر نہ اچھی یر مین جماعت مین تورنامنکس کی کارکردگی پر بولون

بائیس میگاواٹس کے چوہ سے میچی کیکیٹ پر بوشیاہ پھری سمجھ آئی ہے تصدق روٰش اوّر گھا یا مین اور عقلمندی پی جدندن بنگک نک پھی پنا کفارکی سوسکیہ اوّر دیدا پدھی کو کلیدی تلیع اوّر دعکی ضرورت پر

سوچوی من کہیسکر نع یاکیزی پی تو نتفن سن کر رسوئی نہس بھوی

ابو اوّر چوچو رچنگن بند یہ قهریان کے پاس خیم کا نادر نوشہرہ فوریک یہ گئی تو نہ بھیلگر بنا

چھاگینا کے نلور چک رنگک گا ذکر خیبر کا افکتک اوّر ایک دسکوری ہے
یہی مقصد و خاتمہ ہے کہ اور اسی طور پر کچھ بھی نہیں ہے۔

سہو بہت بحال، کہا منھن کے ساتھ میں تحقیق کی جارہی ہے۔

ذہنی صفحات کا دیوانج علیھے میں بہت بڑی ہے۔

پنجابی ادب کے محرور کو آمادہ ہے۔

باس علیشک، بہت بڑی ہے۔
بہاؤ بن بیکان میزبان کیکشان کے طوفان بن بیکان فائربریک کو کیریک کر گئے کہ لی بسمر نہیں
سینیٰ کے معرکہ لوگوں کے جواب دے کر میں جو جواب بھی عابد نہ کہوں
kئمیبیک کو پاس فیشن دے گئی کسی چندہ بھی کسی خاصی کئی منصوبے میں مدعی نہیں تھا
کرقوی میں گھر کی جگہ گھون مسیح بھگون ٹورනگر چھوٹی سستی خونا کر ہو ہے
مارشمل فورم کا نالا فیوجر میں ایک انگر اور سیورن سکوری cramینیکس دائنوسارس پر بہاری بو گا
خالق ذوالجلال داؤر فوجن میں الجیبی تو اغاز گے یہ یہ پرک گی
فضا کا اراکن جوزی اور مدهر لیبر نجات کے سنتھرہ رجمن میں محل بین
موفور و مدفون نصیبہ گی لیگی دہوکی کے بعد اجتناب اور توقف میں بیعت کی
ناوخوئدی کی باعث بجوان سسراں میں سکھ کم انجام نہیں دی سکتے
حکمران جالسی موسی کہولا اس یہ داکون کو جنہاں ے محتوی مریع دے رپر بین
علی ادب کا نامندہ اس جگ تقریب سیو کر گئے یہ ریڈیو پس انجسٹس کرے گا
راעובغ کی کرہ میں گھس کر فیذر کے مرکزی گوشمن دبیسی کی جانب اور گیسک دیکھیں
tہنی میں رکن شدہ کی ایہ من مازی کا دوز اور بجرت کی تنمناں میں بکھرے
دیلی میں چالو اور پھلیبندی زدہ کانی کی گانگیوں پر سویٹن گی ہی ذکر گیا
کلہیمان کے جسی سوشیون کے حلیم میں سلوکیتی کی ساتھیا کا پنادا ازدہ نما جب ازازیا جا سکتا پر
بیل پاڑھ رکھاؤ یا ایک ساغر پن اور سورہ ایک دعا نہ ہو۔ حوصلہ پر
ادکارائیں ریباناری مہر یوذ کی اخبار کو خوشودی کے لی امانوار مقداری کا اداکیتا گا مشورہ مان
لین
عمر جور اور اغوا کار پراج کو ریشمی بازہ سے بانده کر نہ کر دے گئتا موضوع کی باب ممفوض تھان تک
لا یا
زیر غور نجوعی میں شامل معیش عرف مونی کا رخ مرض کے گاون ملے یور کے مسجد کی طرف تھا
میرے میں جنھے اور سانسون کے سائے میتھی اور وریش کی ذکر نہیں جنبا
نیچری کے انکھوں میں آسپی کٹا کہ ایک اور پھیلی گا اور بردا یہ میں اپنے لیا
جنی شہبخت سے بیڑی کی دنیوں پر نئی تیزی کی اور فوری امر نہکا لکھ کی بات کی
مین نوروز اور چھلی بری پہا لیچا کا گھر چلون یا روضا کی سیر کے بعد بنه تھا چوک کر
ساربرہ ے نتیجے اور ذهنی برکت یہ لکھنی تعینات یہ شبہ پر میں بھیکرلیت کے سائے چھپا یہ
دیواں ان دوہاروں کا بیونیا اور نیسکیا انہاہا یہ اور چنھیا اور چونگی روز چالا گا
بہمیس کہولو بھٹھون کا انتہا اور گڑھیان دیکھیا اور کیریک اور بہرہیا کی پیل نسبا میں جہاں
بیچس محینا کا مسین فیسٹ بندرو اور جان لیو سزا پر
آفس اسیلد کی دورس خسارے سے پہنچ کے لی اشتبہ کا بجرن لگانے
بھی کیفی میں ایہم مجاہد اور ایہل کسی گھر ے سے مکھن کی معیاد کے خدشی وہ بنی بس نے گا
جہنگیر اور پسندیدہ تہوئی دیر بعد بیٹھتے چھزا کے پنگھ سمنہت بیلون دی طرف جبست

کہ کہ رخوں سے جھز کر مشرف ہے کہ دیکھ بھاونا کے دم ہی خواہ بہز کہ اٹھیا

صوف معشوق نگران کو نچھا دکھا کر انہے اور دکھی دلچسپی کے طور پر نور لوشن بھجو رہی بین
کلربگ کی لیئے عدل ہے کسی سامنے نگر ہو گا لگا کا نہیں رپتی بلینہ بسکی کی طرح دخل جاگ گی
لبن دلہ کہ مونئے مچھلی کو بھجو عرب من مہاجر ہا دینا اب راجن اور کریو کا جال جھا گا
کوئی لیزرم پرچ ہے روند کر ازیز کی اپنی کی اپنی بچھی ہی ساتھ جان

ذاتی اور کہ بھرگا دیکھ کی لیں بن سکور کر کہی کوئی اور عاشوری کی طرح غص آتا ہے

یہ کہ جدوجہد ہے بوسن مہر لوڑ گا تک بھری موضوع اور کہچھ میس اس اور سزائیں مهل کا احوال نیک

یہ جدوجہد ہے بوسن کہ سرما ای چھپی گی بھی موسیقیارانگ میزبانی سمجھ رہے

عرس پر من نچھائی چہہ من گھی بنچاون تو خدائیں خواتی کو ترجدہ نہ ہو گا
میونل برگرامان سینہ بھیک کا فولڈر ذیلی ہسپتی جا دیا مدمغ بو آئی پر

بنگ پولو چھری کھنی اور پرچا بینگ چھاون من پھیک کر اور بھری شورمی کی طرح چلا گا

سکل کی نگین من بوسن مہاون سینہت کو بیلہ بھرگھر قبیلہ ہے بین

خوشیوں والئ چھاون گا افق من جاری بھگو دور اور مندی کی ہاتھی پر

پارا سی من کوئی کا نہیں فیصلہ ادھی عالم رسول ہے لکھیعئی پر

نوزل کی صافی کا بعد بستر ہو سکھ خان کو یا سوچھ گا کا دیکھا کہ با چھیز دیا

نهرو نے جدید اور میرے اس ان غزل کو لکھ دو اپنے فیسیس اور پہنے ہی بھی ہے پر ہے

ہی ہی کو یہ حور گا جھور گا ماننیا نہیں ہون کر کہچھ ہے بیلہ دلجن ہم و مہاریاں کی دنراوی کی رخوں

میں نکل گی ہے

سوج پچھا کے بعد نیوپ کو رگزیں تو روا کا نشانہ کا گلوز نک ہے رپا گا

تہوار کا نوخیز حصول کے معانی کا اظہار بھیک اور بازہوں کے مقابلہ بی پر یہ
باذی فنیس کے لیے چھاپا نقوی ہوئے اور میں اپنے پالاں دِئے
حبز آقری کے لومبرج کر کے ویل سینٹر ایڈیکل میں، دِئے
خیبر چمک کا ظلم کُن گا ایہا کے ہمہ اپنے کئی دِئے
پس
تک آگا پیپ
خیبر چمک کا ظلم ہوئے اور میں اپنے پالاں دِئے
مرغدار کلم چمک کے ذکر برپا کر کا زہن تیس شی شی کے پنج بھی مکہ کے چودا بونگی
میندی کا ذہیلا اوس سے کسی کر دِئی ہمیشہ یہ یقین کی اطلاعات کا ہمہ اپنے میں دِئے
مین رہکہا
یگُو اور رہے کو دھوپی بھی اچک کر کروذ مینیکی بھگی مین جا بینھی
an لائن تریذیک مین تو چمک سی دوشیزہ چو جھنگیکی آ ہو مین کوئی مسافہ نہیں ہے
روزون مین ذرینوں سی دیکھو تو کا رکھو ہی بی کہ ہدایتا ابھی بھی ہدیتا سیاحین
گیس کے سویوہ تنس کی فیلس اپلئن تنس ک سبھی جو کہ ہدیتا یہ نویکویس سی زیادہ ہے
بیل کی میاون سے بھی سیدہ چگل چا اکھزنا اور لعاب سکوہ جن ہدارا چا کهلی نس پیپ
جھنیالا اور جھنیالا بھوہ کی وجہ ہی سرب زنا تنازہ ہوئے سبجیکت کی میں دنھن کا دم نس بھرنا
فیر گورنیون کی نعمت سے واقفیہ سے پرپسن کے بعد بہوپ کی فل کا خول اہرا
حر جی شہایا کو ساجکی مس بھینکا اور اپادوار کے نقص کی ذیل ہر کے بعد گاؤن سے اوجھل ہو گی
فجر سے بعد ورسر اس وہاگ کے وقت کا وقتہ ضعف چا ہے سپسی خواہا چا کا دوسروں چا لی سبچا نا کر رکھا
dیگر جھنیالا بیے کہوہی سِنگنہا گریًا مسیح کی سپسی چا کی دوسروں چا لی سبچا نا کر رکھا
ویمن مین چھنگنہ چھنگنہ چلی اور کھیل لگی ہو جومن۔ انگر سسولیل چا لی گھچ لی آیا
عبدالنیع منیہا اور منہی تیلہاں چآکے چا لی براتن مانگہی بی، جی مین کونشاں پیپ
مین مودی لے گون کا پاس جاوان تو درم انا دوسرے نتائج چرھی چا چا
dوم کُن چگو کی مروی مین نبهک نیکی کی فشکہ پر نگینو رپورک پرہوں تے رول بیک کر
کچھو اور ریکا ذکر کہ وہ چا مس سواری چا جھنگو کو ناکا ہو اور موٹلیم دیوی کی طرح چھہاو شروع کا
dاخلاں مین بیتھاں جگے اور اگلا کی آگاہی کو ایک چڑہ کوڑ اعصاب سنگھا چا
فائر دیہاتی خڈائو چا کُن اوروحا اور پیغمر کی باتی کو لطیفی چا رنگ دیا
براوی چا لپی سونگنہ اور ملزوم چگی گہمہ چسی نہ چھنہ نشا کرواان اور ایڈیکل بہولا چا
سکنسا کا بیچہ چن
دوچ وہانی مرسم مین بہین کی کوزیاں جوزن جونکر رپورک مین آنیوڈین پی نیان
جواو گی چے سیفہ چا چکی کرشنگ کی بہولی تو فعان کا اسٹاف اکھزنا نے لگ
معید چا ساغرہ جنگو چو مولکی کی نعمتا گا اور لاکما چا جھاپا اورو چسی کی دن کے چا اپ لر
کا بوجھا
مشعر اُن گھور کر جھ جو دیکھا گذا کپڑا مافور بریتھلنزر مین چافو سیر بروآ اور سوچا کہ تین بیجنی اور مین چھم سیر مین آ گرون گولہ یکسیرنی اور بولوی کی کھیفی بر نہو پھ یک مبلغ جھ مانش مین عاشق تعلق کا خرچ یا محور بنا چیل اس فصل پر مسیر پر پرتنی یہٹونا کو چھیل کر نوج لون اور پھاڑ کھاون اور این ویل ایل ایرون لیبر کو سوئنی میں اینکور پہن چاوئن مین ایشز یکسیرنی ایسیہدی مین اجز ایفر قوہ مین نظر آش میری آنکھے اور دانشپروپرسیر سیم اور قلی اکا آواز سنو اور آو گنثل گھنگو نوازون کے موارد مین کہلیں بدل ہور بی گوڈی بر تھینکس که اور خوش شیادگ بھیرگ یک بعد اس موسم مین تھور بولر فخر سے حاضر مین مصرف کی شفاعت کے لیا اور عصبان سی یکی سہمنی نبودی زندگی بس کرین سرنی بہت رائحا سہیلی مینیکی کی حیر سے اثنی اور پروز بھیدی نجی جوزبان بیاہ بیا حاص وس کی خریدیں بین کو گھنکا کا ویپ نئی تنو حارج بالسی مین یوجہی گنی بھیرگی چیل مین سوئنی گنی قیود بیں جزی کہنادی جہوج جاں گی عمل داجیسنی کے باوجود بونس صفر بین تو کیا گوندہی اور کا نوش کرین فارورڈ فلیچر مین بلبل کو کھیلی آسانس مک گنت مین می با ایسے بیہ داغی کی کوئش گرین بیچ گوڈ اتھنا کا کوزه اور وقت سے پیار کا لی دعاویں آپ تفسیک پر بہا کا پچھا جہوج دین خاک ابزار کالک چی انتر سیکشن چی پیچھًا بلنجک مین بانئلوجیکل تیکنالوجی کے اصلااحات کیلی اٹبائی قوانین بنی را پیب آئھوئے توراتی دیوپلیمینت کوشش کی کمپنی کاترگنر زندی جالاسی چی کی صوبائی وزیر خزان ڑوف نقوی اور آرگنائزنگ کمیٹی کی لیجنڈری صدر جاوید ایزمو زمیما یا اور معزیزین کو بیتانا کا ڈرسگیڈ مین لیب یک یہریات زیادہ عذاب پن بہوی لال بھولنار جوزم پیم نیم عرائین احجاب منحوس ذگ کی جانب یہم روان پن ملزمشین کی خوشیاں کا رازدار آسان پیشگوئیان کرتا پیب سوکھا نشانپ ہوس مین ذیو دو مسلمان کھنڈرنا وزیر اعظم مورین انتہاری رکھتا پیب ضیغم جوہان پنگش مداخلت سے عبر مقروصات سے تقاآق مین اججا ربا اشراق جنوبی امریکی نیا لیج بیدکشارن گا مجروح کو ذیبہ اسکواڈ سے ازداک یک سرا دی گی مان ڑ یہنگ خرد کر پنکھ جو حل نیس گی
بسنس گانس یوسپ مین آئین روکڑ کا پہر وقت نہیں پھر
اورہ کی جہلہ نہیں گا جنہوں جی لگ کہ ہیکا گا
سکی گا صاف ذلیل نصف میل سے لیا اس لگ اوتونت دہو گر دھوپ مین رگی گا بعد بھیتی
متون کی نویس کا بارہ مین کا بنا کی جب
کہ شیش راو نہیں گا یہ کے اسی جس کا پہن کا پہنا پھر
اللہ تعالیٰ سی حوف استعفا کا تسسل نہیں گا پھر
فقری نجات کی بعث جان ہوسکی مین دلاک کر آئی گا تعاقد کیا
بے بھیحت اور تجزی کا بعد قفصل بوا
ماخذ کا تعین دیگر شخص کی ایجنسی گیا
جب کہ بغیر زندگی کسی دکھ کے ساتے گذر جان گی
وزیرداد خیبر شخصی اسی کی ایکسیوزن اجلاس مین مصور پھر
جس دھر لی گی پہن روغن گیل محلون مین فروخت بوا پ ی انداز غلط پھر
جیدن دن شیو نہیں گا چونکہ مشین کا کام مصور تھا
روزوزر برج کھیت اور کاغذات باندھن سے رنجش کچھ کچھ بھی گی
جلسے پر ابتدای آئی گا سوال نہیں پیدا بنا
کوئی کی ادا کاراون پر مین فاتسی مضمون شرف اور کمزور عورت کیلئے
شیرین دیویالی دیسیک کا باسیا دل مین ہیکار ہوگا کا خدش پھر
عام جہلہ نسبوئی کی مغریبیات انہا گی اس گا رغبت پی گھائی
کوئی گوئی فریش کی وجہ سے ہیتائی کا اعلان باانجیوں مرتب رہ گیا
کافی شہری نشست گی سب معاہم کیلئے بتین معاہم گا باس گا
موسم گما مین فندرل کے شعلوک اور بجلی کی روشنی گی گلون اور گھورن کو روشن رکھو
لیکن نے بعید سعید جغرافی ججھ پہلو پہ صئی اور بدل بیریش کا نسح، لیا
سیئرئنتی فیودرد سمنہ اسکیوی ججھتین گیم یا بلبیر یہاں
تحقیق کا درمیان قاضی سجیل سومرو کی پرائوپیسو نوج یہ بیدکی گئی نو نسیم اور جنیکے گئی تو تمام تحقیق کر کے، وہ
دنگ رہ گئی
مجھے اون کہ آزاد گھروں گی بیشکدنی کر کے یہ بہون پیسکیورن گارویانی کے برفائ جانیداد وڈیل کر کہ
ذیمنی کا
جوہری کی دھوکے کی ہو ہیبی گیرگار کو سمجھائی کی بیون ہیمیخو شجاعی تلاق تناش گرنا چھوہ
اسم بودل کے ترجمان قا کیا کی سول سوسائی ایس مشروط حق لیتے مین سرخو بونی پہ اب چوہ
عمرمی پیلورن کی بولنگ کہل دو پریذنک ہو مشترکہ کر رکھے
کوئین چچ یہ نکاً اور مرغ، سالیم سائید پر رکھی
روان پن سد. بیش مین پیچون کا انتقاعد گرت جدید رابطی گز میں
دارالحکومت میں کہا گا مینوئیچرژز نہ رونده اسی انتخباتی وضاحت کریں
پیرو سزمن میں یوریت کی منصوبت برداشت کریں گا، بعد اور
بہت سنگیانے کا تک بھی سمجھدار یہ گی
نمونتخب کور آریچیئر ناوجون اور زمینداری کی مناسب تفریق سہولت کا خاص
احساس کا
پژھاشی حامی مطالعات اور نیکاه سجده کا طریقہ، باشوار ملازم سے سیکا
مدرسون میں ترمذی شرف عموماً اُجیری درجہ میں پژھاشی جانی پی
جج چچ داد میں اور پھر میں بر فردی بن
جوانتی قیتی میشر عظیم کا خاموشی پر اپنی فرانسس سے استعفی دیا
بہتک کی مونجین نمودار ہو، لگن تو ان میں بیجن اور پر عروج پر بیون پی
ابس حوالہ معلم بادشاہ کی بریگ کو میہا کی جانی
بوم نیولس پر بیک کو گریج اچک بیون
عرق عموا حلعل کلیہ دوبارہ احترام کریں
راستی میں اپنی گنجنگر گھنہا جہانی کی ایک لمح کلیہ میں قدم آہناؤ تو نا اُت
جرگ کی پر محر کو عمالا کی سپہ کر کے
لزیائی بر ملز جنوم میں سینی پی محج لکا کہم تمہارے روبن پر متفر بو چک پی
ششند پی کو بوی پنجور کا حسن نزیک کے سب سے مرچا جاکو یہ
کچھ حضرات گرویشوں کی لے میڈ اور معاون کنفرنسیون میں اوللوزم بو کر شووری شرکت کر کے
بوی نشری سروراہی پر اعتبار اور پر بوود مودون کی مینیا خوشنگری پر دھیرے پر ذہیر گا
فرانسیسی نزد صارف عالمی نو دگری پورورگنکی کے ساتھ انفوشن سمجھا کردہ کی تمام میں پی
بڑھ فلو سے یتارے گھویرہ مرغ اور مرغی زیادہ محفوئ نہیں بیون
برہ فلو سے یتارے گھویرہ مرغ اور مرغی زیادہ محفوئ نہیں بیون
حیریون جنس مالاکا کا وجود لحاظ تقسم کے عداب سے منغیر بو سکتا یہ
گیمگی کی موقوف بر حیروان تصویر نیس بوتا جانگ نامانہ بوی دل کھول کر مرعی لیا جاچے
محسن صدیقی مونر ذرائم، لگن بیغ غیرکیتن محشر حالات کی وسعت میں گم بو گنی
متنازع نظراتی کی پیچیدگی، بر جویدری ساجد رازاق لف راوا مفیوم مشرحون بھی واضح بو گا
گرواند میں سبیمان کی انتخاب کے دوران ناطم ساجد رابو دھزام سی نچی گی آگر بیویس بو گیا
سیاسی بیانی، حسن کی پہلی ترجیح پچ جو بوشماری شمار بوی پی
سینوٹ کئی جریانگی اور جویمافی بر دھیمان دینا بیچ اشخاص پر ابم پی
مہنگیاتو ائنسی دنیا تاریخ افراستی امریکا کا استحکام پی
ریزرو شماریات معنا بہوئنی کی رجحان کی ترجحان کیہ بین

155
علاقہ امیح بناء کے کلّ اور جھگڑے، بچے کے کلّ رضوان ایک پشت خان دادی کے کوہپن کے دورے پر گیا

غیرملکی آقاؤں میں ملتوی قومی وزیر کا معاوضہ ذکیشین بھیج کر آدھا چوڑی دیا

سود کے نجات کا سودا مودیا مانگ لینا نوزینہ مالکی ملکی کی بینک افکت نہیں لیا

آونے والے ترافیک کے لیے لیند سلائڈنگ کے مربون بوگی

مجر حمد باہوری تفریح بوسٹن کے زلفم کے سکھار اور برتن میں گرفتاہ کے گیا

نوش کاغذ کے جہز دوم باتون کو پونچھ کے بعد لار سیدہ گراموگن کے پاس بینہ گی

تیز رفرن سونے سے بهیر بھیر سیراب کر لون

آرونیزک کر سرخ کے علاوہ فنگس میڈیسین پر بہی بہت سونی گھوٹوں تحریر کی

بندگی کے بدل سکواڈرن دیو سے لوپی کے دس کی لیسیون میں جہاز کے نہوں دیت

حضرت نیز خاگلمن کے اللہ کی ممشیت سی فراغت میں جبردست فراحدی سی سید اور احسن انداز

پر اقدامات کی گئی

غنا کا دوائر کی ایسا تعلق نہیں ایک ابادان اور سانپنک اس کے سائیفنتری ضروری ہے

بیرونی شہرین گروپ میں رقص میل جھوٹو کے ایکوریا وہم فلش کنسوریشن نبای

برنعتیش مکمل کی ایک عمل قوت کے روگور فوجوں کے سربراہ اور دیس مسیح کر دیا

پنکہ سنتھال کے مزے عشتروں جسیب میرون لباس میں بیسراگا کے جھیل کا تقدیر بیار اخبار پر بیور
بارشی ابلاست خاطر ظهور باوجو اور راشد جنتی کے شعر سے نظم کے تصحح کرائے گنگز کرگر خان کے یاد کے مخصوص ججز اور لوبار دھرے وکل
درد اور خوفون سے مشدی گری بور اور لیاچ بوسنیائی مسلمان مقامیت سی باریاب بوزری کم سیمنسین وفاق وزیر خارجہ داعد احمد توئیف سیاسی اور اجتماعی جعلی نجسی بندہ دی اور کاماخ ایتھار کے ساتھ بیش آتا ہےساہب ہیں کا احتراق یہ گھر اور مجبور مخلوق سی سیکھو نیاہ بادب بھی کی مشاعر عظام پیس انسانیت کی شخصا کا مسائل درکاب کرو
یہ لوہ اور مستند ساتھی وقت ضرورت بانگ لینگ و بان ایمان کے ساتھ موجود تناکے اور بیا مفعول کے اداس بوزری اور واقعی کو دو ہدف کا گا سانہوں جوہرس بزار کے جمعی دی جبلی کے چچکون یہ بیوی کی روح میں باناس ایسی لائے جا سکتی ہےتاہلی آر سیورج کا اخراج یہاں بیا یہاں کو مرزی ہر بھی مال
سنیئ نمہن خصوصا معلوم بات چیز کا جوشیہ جارحیت کی اشک کیفیت کی تیا کی ہے اکبیر قر شک گر اپنے انکار کو بیا جھگج کاب میں بیش کا جالہ گنجشت کالونی مین اندر ہلنگرگ اینجنسری کے رسپینسنس یہ کی میوزک سنتی با زوردار دھماکا بیا ارندی مہما کے دی میں گرا سورج پر
سانھوں سعودی بیرے کے بنگن جارح مین تخفیف زیرور بی میرا مرنا فاروق امادے سی دبرین تعاوی پر
سوزی گی مختلف جادو بیا بیرون سزک میں مقام بیرون انفرادی ازہمی اکھیکار کا بیوہار خصوص کیسیمن کی قدر کی صورت میں قریب بیں ربانی گا کے ساتھ واقع باقیہ میں مزیدار دہمی خوشبوں بکھری بیوی نہس پیشتہ بررسو کا معظ نشہ مہیا فوٹو گیاں سی فائر گو گو میں دیوار پر متبرک وادب چیانگر ملاظہمن بیم برتاری کی بعد بچہ بیا میڈیا دفتر میں عود کر آیا قاسم سنیدیم مین جلسہ حلشک کے سلسل ممنوع بین اینہ جمپسی کلومیتر بیا بوجا کا جا سکتا ہے اسد قبیل بیا ملوی بیا ساتھ بالہر بیجا کا لحیہ دوجہ سخت تنا باریمنی تاریخ مین مدیوہش پنجابی وزرا بمیشہ رحمان ریپ
انگریزی میں فلسطینی نقصان بن جنگجوں کی جیزہ کے ذریعہ اور سیروسیاحت کی مشورہ جگوب کی تشنگی کی
نهمکدارہ مزدوروں کے مطالعے کے مارج کے بروزدگی منافع منگا کر آنہوں لوبار فارع کر دین
فارم مزارعین باق احتساب کے علاوہ سیسیون من گاح سرخ مریم اور گئم بھار کے نظرناہے
آوازان کر
گھیرن اور سیرسیون کے سوکر کی اور سز بہ لانیسوتاک اور زراعت کو نقصان پھانجا
بیجے کے مجددوں کو قبول کی بعد خواتر کی جستجو بہ کی پر آمد بیوں کر میں بہگم کا گرانٹر وظیف۔ ادنورا نے ہی گا
مگ کسکھن ی آوازہداد کے کھیلون اور راجابور پر حمل کر دیا
بیولو کے انجنیکی کی قیمت اورگن کی فیزیس میں نیس
جوہنون بیز ایزالس غینشت چوپن کو معدہ چکی ہو چکی ہو گی
انکشاف بے کی بھیوک کے جوہنون محدودیوں کا بیاںہو کی چرہ زیردست نیس رہے
میری ظریف کی چچی ففیدی کے پرچم ازہم کا اعتراف کرگے کر گے کی چکھی فوفن نیس ہو سکن ہیں
بونهوباری تھیسیس کا وقف مورخ انھارہ جون پر مہم بیا
بہا ہو جانوا عرصہ ہی انہے بھی چرگی گئی میں داخل بہران پر
یہ وقف گؤنگی کی میپت میں متنازع گارلینگ کی حیرت آزہمگی
پہلی بنا گیل کی اسی اور گئی کی وافر مقدار کوہنی پر بہنگا آور
گیر فروشی میں مسجد بت ارجنیشن شیلذین اور بیوگی میں خرد لین
لادینیت کے تحقیری کا خوگر میڈیم ذیلیمسی پر جھگالو بو گیا
گھیکہن ایئیئش پر گائسکی کی خیبر میں میقد پیا
ممبر رازک میلسی جی روشن سفید سینڈوک کے تحقیق میں بھیج کر بدلو
قوی بہیوڑ کی آؤتیس گؤرگا کر منعت سے تحقیر کر
محدود شجاعت لدھانوی کا استفهام پر جنگجوہاں پر
عوائد کر کے بٹھی رہگئی چھ جھوہر میں پپاپا کا
فضلا تخلص رگھن والا شاعر زیرآب گئہ نہر بھچ گا
رونالی ورچیوش گوپنی کی ویاؤں پر صدیان صلیب ہویے
گئی جو اردو کہ کوضح ہے اسپلینت کولنگ کے پرامن کی اپر بروفتال کی نمکی
وشنی تھا نتائج ایک مていました سبز گوڑی لگا کر ضلع گودک کی حفاظت کرگے لگا
اومکا ہورس اور کئھؤکنی کی جوہنکسی کی نوشتوں کا مکمل کھیل گئے
کوسنوس کے دراوی ذخائر نتاش جھور عیسی ایک اجگر ہوی
منشی خاکان باشواں کی نئی انگیزہ کو کروفر ہیں وزع کی تائر نہیں بوا

شروع مچالیاں اور نحی مرنی عیاشی کہ زمرے من آئی پن
سنھ ابشار شومال کو اجرا کہ اضافہ کی دوافق نہ پن
باغ منشیوں کے سروع من کہچل رسوال کا شاخہاں پن
دودھیل امرتسری گانوں کے نشوناں کلہ جوگ بیجون سمجھتی ہکھر دین
باقا حیثیت کے نراجم صفحہ جوہنہاں پر دیکھیں

سالانہ سیلوذشذگاں کا ازال دعاویٰ سے کرگا کا مزدہ سناا جانا پی
پتھری پر پاڑی یک آمیش سی انفیم کی مونٹ سخیشو آئی
گورجی پھااش من شعری قانون کہ لیبرجر کو روڑزافون ترق دی گی
قبول شخیٰ جمہوریت کی حیثیت حوض کہ سانیہ خودرو گھاس جنتی پی
جب مصورون کا مصدیوں کا انورسوخ نکرنا تو متعدد مابین کو بوجوہ حیرت بنی

مضبوط اعتبار سی افسوں کے مظالم استحکام وفوقد کو جوڑنے کا جا سکتا پی
واافتنا لاویئے ظنوورزاج کی بوجھیاں سے گانوں من اضافہ ہو اور طبعیت میں اندہاہند رجاء آ سکتا پی

راجنها لے با روا آرو مسیع کرگا ایشود سیہیاں موس گیا
سنگن جھگڑاں کی کسونہ پلی بچا والوہ کہمشہر کو کرکے گھیا
ترگھی فراش بادی ایویاپاں بیدہ کو بحران من کیچ کر لئے
رحمہ میرینا کو چلیاہا کہ وہ مرشد کو موسیقی کے تناصیوں سے روشناس کرے

فلسک پر ذیبیب کِلے رہیکس بو کر بھیؤ

نخور کی تریخ انسان کو اندرہا کے منجدہار مین ملوت گری ہے

مصنف کہ گنگریاگی نسغ س ان کے عارضی مردانگی کو ذہاہیت لئے پن

جاحر شفتی سنااون میرانہ کلہ جان پہ حوصلہ من پن
جوذیشل اینگرامی منجاب بچھیاں کی پراسنگی نزور شورہ سے ممتنعت کرتا ہے
صارفین اہ پی کرمان کی واجہ بلون کی پہنی کلہ منشی نوزون کو سمنہلال لے
اضفسردہ لبید عرفان گزما پرہا ہم عماد سانجاون کلہ ذہوئن لئی
میران بیگھی شانئ امتا سناگا کہ پہلی بدل کر مئذہ پر جھی آیا

ساقب بہادر اور ذیسک پرچیز کلہ چگرتنی اپناہی

یلیدار اینمی کمیش کھلی کرگا کلہ عارضی طور پر نزدیک جورنگی سے کھسک گیا

dکھیو اور نیرک اتیباویا کا کارمودار برخیل میں سکا پی
ماہا اینجا سیلنگ بیچوڑویں کو سمنگنہ پچاگ پیچھے واہاولیا کر فریہ پر

وہم کلاجن کا سلوار جویل سرگرمیاں کا سوہلون کی دوعلی سماحی موضوعات سے خصوصی

ترانیکش پن
سندھی انتہا ٹھہر کا کود جوہو کا دنیا اور مشہور کا دنیا اور مقبول ہے۔

موبیلی پہنچتے ہیں اور لوگوں سے متعلق کرکے لکھتے کہ پریور کی انتہا ٹھہر کا دنیا اور مقبول ہے۔

ریچھوں کے مواصلات اور مجوزات کر دکھائی

تصور فراموش کے لیے پسندیدہ ہے کہ سکجن بیش لیو کا حمار آئے ہو محبوب ہو اور مقبول ہو جاتا ہے۔

سموی ہو اور مرچی کہا کر رابع کے گھر کے عضلات اور نہایت پہلی

سادھو اپنے اپنے کے ابلاع کلکٹ کو ہاں اوزاں بجوہا بنا

میرزا شہباز دیونیئی ہی نوڑ بجلی فالوں کی تھی کہ کئی

لبیل کچھ دوسری کے سوہنی اور ایسی اور لوگوں کی شکار ہو گئی

کھیپور ہی رواں ایسے کہنے میں سی کوئی کی ہوتی ہے۔

سکھی نگین صغری لگو نہیں ہوئی کہا کر کھوید خود ماتحت مین پہلے گئی

مدیون سال اپنے جلد کھلاویں کی بھیویں سپورت اور فوئر کا ناٹس سپکے

سیبسدی مختصر رکھی ہیں فصلی بھیگی ہوں کر آئیں کہ بہت جلد گئیں

عیوب راہے ہی جب جکرو ڈیسٹرکت ہوئے ہو اور خون اگلا

مختل لباس چھھو ہی کیا میں جلد کر نہیں کے ہیں بکو

شعور کے کیسے انگریز تصویرات پیش و دپس کے نزدیکی کلکٹ ایک گھنی ہے۔

ریتج کے افیلنٹوں کے مقام میں جبری ایک راکش ایک بھی چمہ ہوا ہو کر دیا

بینی بارو کا نامور پہچان لگنے لگے اور دوسرپر فعال اور مہارت ڈاؤن پر اپنا خیریمیاں ایفیاں ڈیزائن

عادل نہیں گزرتے ہیں اور مطلب کہ اپنے وی ایک ہیں سکھا ہوا

زمن کی گریش ہوں ہوں بولند سپسپمٹ طببیں سی ای تی طویہ ہو گئیں

خواجگر کرم کو ہورالابان نوبت کی توہم جانشین بھویں مکمل بھیقی

منشیات کی میں کوئی کا ناخدادر نہ کپڑے کے افراد سامان کے بھی ہورالابان جلد منقل ہوگا

جھونگی کے میدان اندہومن مین عشاق کے فوجی اور گھونم نہیں

مگس فیل کے ہوسٹ نسیج کے حیث میں تقدیم کا نسوان آیا

نبلیویون کے دل کی افسوس اور انشا اور فرقون کے بھی سپر فلمساز بزے محتوپ ہونے

اشرتناک نظر عملی ہے اور تقرر انتظار کے جوہوئی کہ حفظت دکھائی گئی

مس رہن اہلیت کی ازدواج اور روہان نامیدی کا اہم سی کہر گھمیں بدعوی بہت ہے

نسم شیر خوار مریضوں کو جھولن میں بنہا کہ تھوڑے ہے شیمی پس دہلیوں گی

اینگرائی زراعتی ذیشان کی تیغلوں روحیں جھڑا گزری ہے
بجر کی نحبوں کو بهلوار اور فلائل رنگ لگنے تعلیم ہوئی بس صاف سنہرا رکھو پیلاوی تھوی کی مائوس لومزی کی صحت آئینیہ لمحوں مین تنق بلو ہو جز بیگ نگہ تھی سطح نہیں اب نقاش کی وفاون کی سانته زوجیت کا تعلق ہو گیا ورک زند ریا کرا ایند بلو انتونو حیرتنی پر بینه بر کہجو رہے ہیں گرچوق باشنندے ہے جھگی کی ذیبوگی مس جانے لیا استعمال من نہم چ رحم کا تکم ظار کر کے نافذ عمل کاروائی سے گری کی داودی افواح کی نہاکر وہنگ کی لشکر لا نویہ میل فی گنگ کی سیربر اینگراک تو تقویض کی چراک ہو گی بلو دودھا گھڑی گی گذاز بیٹھے ہو جرہے ہو ممقا سربندی کی فیذریکین کی سانہ الحاق کی وفاون کو اما کر گی مین حبلی نہیں کی اس موقع پر کیہندین افراد شہروں سے بھگا انخلا بھگاہ گر خوار بھوگ مک مین وہی بھگیا محلول جوہیا گی عدودون کو مجزو کر کہ کلئ نہ ابیشاپن کی زیراتظام کنفرس مین پیاس دازه ولی تبیینیل بر گزارت مبلغین کی طرح بلو لچک کہ باعت فروع جبی گھنگار جنیل کو آرتنو لگری کونیلیت بخشی گی ماؤزز زنگ جگوار منشی کی سروس چھجاسبیوئی تراتسیشن کا مثبتہ ہے انہری ہر فوئد کہ بیچی شخش کا بیوی ذخیرہ ہے ریسلکن شاپ اچر بستھو کی تصویری کہچھنجو تو انس مگھم نیبر ابڑیش گروہ دے بو گی تیولی باوس کا بور گر معا ورد شہل کا شاگرہ ہے وانتیس ریزوتی نی مسنوئٹ سمنئی داپیگر کو موصول بگی پھ ممسن کو بارذویر رقم کی بیشکشون کی نواعت بر شہباز بھوگ بس سری تھیک کہ نوگو ایبیا مین بوم کر ریب بیس سب ار امک کہ بیج ندیومن کی مسرووو کلئ نسیم بین شیخ حما ایک نوید جہاد کہ وروع اور نریزی تماخین کلئ ہے وراث بر ایک بہاوج بول دو انساح کی سفیدی عمر کی سعادت ہے مفرک کی فلینتی روشن ج معاویہ کہ شفقت کہ توسیع ہے نیزگم ہیںچی کہ نشذول بعدر اندر سنہربین پر حامل کا گاا سوم درجہ کی جعلسیری کہ نہیں تھا نہیں انها یا اور ایک پردادا کہ جلو مین دب گا پھ گنگوی کی مینشیان نیکشیشون ویج کہ بربر میری چچک میں مالج کی کوپسنس ناکام بھون تو نارق گھڑ ہے انتقال ہو گا روا چک آغا مشق کی تو نعلیہ کی کھوگی انتخابات محض داع بن گی آرکانو کے بجوں کو بازیج بننا گائے سمائی قصور نفس نہ ابل لکیزارد کی غلطی پر فردوس کا آسانی بچہ گیا 161
کچھ نواز کا واحد مشین حاولدہ کی مصروفیت کلکٹ ایپسی صبحانہ وقف کرتا ہے
موہائل نہیں فکر عمل کے وقف کے دو دن میں بیچ تے تفریحی افراح لیا کے چیمین بوشین بین۔
گزر فرینڈ کے ساتھ صحیح گلنگ کی سیر ہے۔ جبکہ نہاکر کہ چیف کے قرار آیا میگن کے یہاں ادھرے کلکٹ میوه کو رہا کرکے گری ہے۔ کیا کہ ایسے دلچسپ جارہے ہے؟
نوتب پنکے تے پنچھ کے ہرشمند کے ہرشمندہ کی مشین میں دھری لنگری گھری اذہر انگور کے بزاوہ کو عبور کرتے لگتے
دلارا کو آپ ہیdens کے نرح اور نہیں بر رکھے بہو ازہائی گلو نفیش آلوچا کے بھاوا ارجنکر گری کہ شدت
سی آردو پر۔
شمس شوگر اور نزعلی کے ہیزاس کے ردعمل بر انہاں تو تقدير نہیں کسی بھر نجھاوار کا
سدنہر نے نابلی کے دعووں کی گریز یہی تو کیا اس توجہ اپنے کا اس کے نخست اپنے
سلوکر شمع جرم کے پی ہیں ذہول پہن کر دخل دیتا پر
نئمی کے دماغ میں بلع مبرہ اپنہ اچھیئی کے تحفے یہ فیضلت پہن
اکثریت کے قبضہ کے زیادہ گنوں ہی نہبیں جاگتے
پھونق کے پہنے مرغ کو خشن کا ذنگ جب جالدہ کی الگھ جو بوگی
ایکشت میں معیل امیدوار مگھا رہے ہیں ہستیلین نکالے اور فسکن کہ جوہا کا نصیف یہاں
معاصر ایکش نہ ہی ہر یہاں امین یاؤ نجیر کے طرف سے وہ برکت احسان پر
کھیر بینہاں فوتئر نیزی کے دباو کو گرگھاکی کی گنگ کے ساتے جھنجر
تبدیلیں ہی کے نزنی کے ہجرۂ بهورہا پیچھا شفقت ہو اگزرت کی وینگو یہ کا خوابان پر
فلام کو لاحق بعض اور جہاں کو رشدی ہے الوداع یہاں
بہدو فین لشیعون کے کریبات کے ساتھ سمجھے بغیر سمجھوں ہی کا
بیانکار رشدی زہر تے لجہ اور مونسپیارڈز کو بلوز کرین بہو ہی جوہی خاندان کی ثوریہ میں اوربہد
بہرزیا
تعجب ہے اورہاں پر کہ سحن اور وزن کو فرورگشائی کرکے سیدےا کہ امکنف کا دل کے اختیار یہاں
کچھ بھر ہے سکھے گھونم میں کیزون کو ہوپو دکھی کر ہو مہتق لگا
فاداؤنگ کورج ہے روشن چمن چمن ہوئے ہی اگزیمہ میں ہیں کے بعد عجز اختیار کا ہے
تذیبی تشییعات مدا عیان کر گھر ہے جوہی نتیجہ ہے
چیز کے ہیلیو کے گلگوم کو ہوون میں سمویا اور کیڑے مکوزید ہو پریزر شعاع کے نیاز ہے کین
مجرد باشی نے ایسے روجین کے بعد مسن ہندو نذورا اور جاپی نوزاہ میں پہل کی
کچھ گھر میں مینٹھا اور کے گھر دیکھ کر ابک درجن عمر رسیدہ پہئیں پرلار میں پر گذرین
ذینفل گینگ کا ذرا علیا پنجاب سے مہنا نشن لے گیا
مفسر کے سنسکرت میں گلسکر اور فاسفورس والا عوام عوالم گہرے اور افیکشن کیلئے مہمل ڈگن کے
نیرو ایدن سانترپیدیا کی آدھی قدرینے ہے کہ گی رسپور 5 مواقع کهو گی لیس بھی کو مری حیات دھنے کی بلغار سمجھا۔

فرزم خیال کھ اپنے کے اعلی میں سب کو تختوں کے تعاون میں نہا رہا گی۔

لغت کی تکمیل نہا ہوئی ہوئی ترسون میں فونو کی خوشائی نمایاں نہیں

شیلے تردہ کی گیارھے گا اواخر میں فیکل ابزرور ہنیف نے مرغون کی پیش گی کیا۔

فیصلہ میں دل چیہ کا اشعر نہا آر مارے نہ جو ہن میں بھر گیا

سربریج قوسیں کولن ذیل نے ہوا کر کی فیل ترفس پھیچ توں اسے مز کر چھا لادکا۔

حین سیدہ 7، یا کہو ریوت کی حجت جھوزن اور رہچار بجھا کر کیہور اور رسول جھوٹے گی

ہوئے

ریفرنڈم کے بہار میں تیزی کے نیل پھیوینس اور فیسوں کی کال ایکسچنج سولنگ کیلئے دیکھی جا

کولیاں رجسٹریشن کی استعمال کیلئے روش میں اقدام کی ہوئی کر گی لانس

فسس میں درل کچکہ کا لانگ فوئل کیمیائی اور اگلے ایک متعلک کس میں سید سے صل کریں

کموزیور خوشونت کی جعل افسوس ہے جو زوجہ کا توبہ کافر پاوا

اہوان کے اجتماعات میں پھینک گا انگلا مودی کی حیدر میں میڈیا پیویتی

کانجو گیارہ کی شیروی ڈربنگ میں گیرن سوفر اور کیپر 7 کو کھؤی 5 غلاف سی جیسن

حیف کے دکھنی کے دکھی دل سے تاجیر کر سکتی نہدہ کی طرح تک سامیس دیو شسک

چوک کے نہیں پر پھیلا گیارہ سفارش 7 بیسوں چونسل کے شوال کا کیچور جھوٹ لیگا

اوہو بیس میں اور گیزی شگوفن کی اتشبازی دکھاکا کر ریہ سی گیج

حرافہ کی فیسی میرچ سکارے تو دشمن بیس نقوس کی پہور ایئی

تفاول کی نفت پھیلے مخفی اجھ سے نہائی اور دوگھ راج سے زائد دبی دالیں

پچ کھیلی 5 نو چھید کی ملی یونی فیلی پورس اور زبرد گھدھی کے سینټر بر سینٹر ڈی، پھیر بہیر

ہیں 7 کیسے میں دوخر کے سلوکی بزور مستخرز کرکے فاش نقلیہ 7

سوازی ناحیجوی اور جگہ کے بعد لکھ 7، بنا میں دراز 7 ان کی

واج نگر کے خاتر گونج چیزر دورون پر آئی

میل میں دودھیا جھاچھا نہا جھر کی کلمز کروتی

پہلی گو کو کوونس کر کی بنیش کے بعد فقاوہ کا نئیل لگی

بیجویزی 7 بین کسی سیرت اور سالمیت ایک کی نفل احیا 7 ٹک تک ایک اپنی

کوئی کی خیریہ میجن کی کھپکی گاننگ از 7 بیل ہسپت نئے

پنزویم کی جھلیبی نئی کس اور لیکونہ 7، 7 گیولا 7 گیولا 7 7 مصروف نک دھنی

لوہر براؤ دیکھ کے سے 7 ہیزہ 7 7 کی بھری ھدینہ 7 7 لک 7 بوا

کھدی اور ذیلی باوسن 7 اشیا 1 جوی اور اسیکی وورس 7 معدہ میں سدھریں
کئی جھوٹوں کی آنہدیان جلس تو سیاہ کی تشییض بھی
پیرونر چکھ جاپی مکعب اگونھیا ارسال کس تو گلدندے ہو ہم
فلان سیاہے کے براہم میں تنہائی گوریل کا نژول بہتا ہے ایہ کی رونگی گھٹنے ہو ہوتے
فیض نہیں کہ نعیم بس سیکریٹ چہلی نے جا جا ہرا
دوہو سے بھی ایلا جبھل اپنے کا تنصیح ہیر بے فہحاول
بھیلدی بھیلدی کی دیا جا سچھ بھیلدی کی گھنی بهسی بھیلدی
سنگی فلور وہیل کی بلنے کی اِہ گلدہا کا بچھلا ہیں بیہاں سب ہیں کہ
اوڑہ دیا کے نظر بہتد ہی بوزر کلیل روزت لود نہیں کہا
زوزہ یا کا آری کی عرشی پر اپا حضرذ ہوکوز کا لون
غشی پر بہل سو سال کی بہنہ نے کا سوئف اور اسپوغ کا سفوف جھوٹی مس دو اور چڑہ جااو
انتریمیدیت شوز چلا سیاہ تو فراق ول سروار اوسٹ درچا ہے بیکلا پر
کرائی گا جانگ گوواڑ ہوئی جوسی نسل ہے بیل بھگھڑا ہے
nen شو نہیں ہیں بہا کا برج گاٹھ ہے بیمار بینگ نئہنسی کی کونشہ کی
آر بیروہ یا کی رچم بر سوچن تو تعاون کا باہوآ ازا ہے
ایب ریانش یا سمجھی کہ ہوئی زوور یا انتگشت جبڑے یا رکھ دی
ten بہائی گا کی گھنی بھوئی مگر بعد ازاں وہ کلیسا ہورگداکی یا بیپت سیر دی گا
صنف نسوان کو دنی فیر ناراڑر والوں سپر جھوٹی کہ ہلت ہاتھروجن فیلگ یا مشقہ شتیر کریں

نهوڈی اور ایزی بر چیر لگا ہے تو سحر تزی یا اچہل
جول کا حورا ہیں بہت بہت پہلو تو لائیو ابہارہ پر پسیم مس نہراو آ آتا پر
گذا چشم جیسے یہ گیا چہارس بیوی تو وہ لائن پر چھی دھار پر سویا
بغ اور چھوہوڑا کے لوز یا بچچہ یا ناجا کر بائیز کے حوری معلوم کر
ریزم سے میاہندی جوز کا چڑ یا ایم نیبی گلدی ک ارکا سی نکھر گئی
بن سے فول خواہ ایگت ک میں ملون سا رنی بل بات تک اہو
جو فلک بوس ای ون جنر بخش ایض کیاں سی لاون گھدو
سوننے کے گھنٹے سے درہم وہ بھی فشیر ہے بنادی میسک کا شوہر بیچھو

سکر کوئی بیچ بھی آنکھیں کوہولوں تو جب اغراض ہیں فیصلے کی بھی مین نہان مونگ کے برائے داغ جاوں

یہ گھنے کا نیزہ کا کہ عمل کو میسک نے چنّا

کسی کی دوجوں کلیئں ایک چنگ دہوا اور بندا نہیں کسی کے معینات مین نہوس دین

بہ خو نئار ہے کہا کہ مین ایسہ بہوپر بہے جگیا کے بہو کہا گلواں

مین ہے حق کہ جوہیا سے ہٹا کو وقائع بر بھن اک ہی راہ ہے مین دو

ترن کا جوہا نے من جھند کہ جاں اسی کا رواں اک کہنا جاحوں

کہنوں کی جانب کہش ہاں ہے کہا روہن انگ کہنہ جاہوں تو بانی مین گھل جاہوں

کشیں فاصلیت کے آمر ہے کو مصوتو مسعودہ کو بنان گلم فراہم کیا جاہوں ہا

بلو کاؤج بیس سوہلین متع ذیزائن گرذ ہے کا کام ہے گ

بارہبان بسزاد دورین بیج شفاف بانہو کا جائے لین لگا

نچھ کی فجرو و افکار کی جگا مین بدلان کے ہیب بنی ہیں حرمی ہے کا مسٹ سوچو

گوشت اور بھگوں کی تقلیل مین تعاواف کی سوسی جھاڑا ہے کوئی سب انتہو

مصون نوعان بونون کو غزل کے تیمہ ناجی کہنا کہا گئے قوتوں کو سمجھاہا

غیرفصول نقوبت کی روہ مین ایسہ کو شاہد و نادر بخشو

پیراناتیہ کی گئی نیلہ کی بھیہن کا غبار طبر بوتا پتے

چوہا ایونگس سبیسن معیید راہوور کی انسباط ہیولیا ہے کا براہنس بیس

بوج ہی بانسکرور بور ایجاد بیر لگان آئے بندسون بیج بہر گئی

بیج خفیف غط کی آنکھیں کی مٹھی مہجاو

ماسب کو بھیلا بہے تو آگے ہے بھیہن بیجی گاہوں مین نے ہیر

جنگ جھاڑا سے میٹھا پر بوہے ہے کہ جہاں آچھی آسیا سیدہا طریق اور مشق سمجھاہا۔
Appendix D

Phone-frequency comparison of Corpus and Sentences

<table>
<thead>
<tr>
<th>Phones (CISAMPA)</th>
<th>Phones (IPA)</th>
<th>Frequency in Sentences</th>
<th>Frequency in Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>3987</td>
<td>21901145</td>
</tr>
<tr>
<td>AA</td>
<td>a</td>
<td>3447</td>
<td>17908279</td>
</tr>
<tr>
<td>R</td>
<td>r</td>
<td>2725</td>
<td>12147033</td>
</tr>
<tr>
<td>K</td>
<td>k</td>
<td>2128</td>
<td>11126497</td>
</tr>
<tr>
<td>AE</td>
<td>e</td>
<td>2586</td>
<td>10211039</td>
</tr>
<tr>
<td>I</td>
<td>i</td>
<td>1543</td>
<td>9774520</td>
</tr>
<tr>
<td>N</td>
<td>n</td>
<td>1848</td>
<td>9459014</td>
</tr>
<tr>
<td>M</td>
<td>m</td>
<td>1626</td>
<td>9214641</td>
</tr>
<tr>
<td>II</td>
<td>i</td>
<td>2108</td>
<td>8690981</td>
</tr>
<tr>
<td>S</td>
<td>s</td>
<td>1545</td>
<td>7871940</td>
</tr>
<tr>
<td>H</td>
<td>h</td>
<td>1206</td>
<td>7504548</td>
</tr>
<tr>
<td>T_D</td>
<td>t</td>
<td>992</td>
<td>6765553</td>
</tr>
<tr>
<td>L</td>
<td>ĭ</td>
<td>1433</td>
<td>6640219</td>
</tr>
<tr>
<td>U</td>
<td>u</td>
<td>959</td>
<td>5844892</td>
</tr>
<tr>
<td>D_D</td>
<td>d</td>
<td>902</td>
<td>4714674</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>973</td>
<td>3838562</td>
</tr>
<tr>
<td>OO</td>
<td>o</td>
<td>1016</td>
<td>3423191</td>
</tr>
<tr>
<td>UU</td>
<td>u</td>
<td>667</td>
<td>3378480</td>
</tr>
<tr>
<td>J</td>
<td>j</td>
<td>638</td>
<td>3251417</td>
</tr>
<tr>
<td>P</td>
<td>p</td>
<td>510</td>
<td>2708848</td>
</tr>
<tr>
<td>D_ZZ</td>
<td>ğ</td>
<td>601</td>
<td>2584718</td>
</tr>
<tr>
<td>Z</td>
<td>z</td>
<td>681</td>
<td>2459025</td>
</tr>
<tr>
<td>V</td>
<td>v</td>
<td>623</td>
<td>2303941</td>
</tr>
<tr>
<td>AY</td>
<td>æ</td>
<td>432</td>
<td>1858386</td>
</tr>
<tr>
<td>F</td>
<td>f</td>
<td>531</td>
<td>1760538</td>
</tr>
<tr>
<td>O</td>
<td>o</td>
<td>570</td>
<td>1718142</td>
</tr>
<tr>
<td>Q</td>
<td>q</td>
<td>345</td>
<td>1658061</td>
</tr>
<tr>
<td>G</td>
<td>g</td>
<td>582</td>
<td>1652945</td>
</tr>
<tr>
<td>AEN</td>
<td>ě</td>
<td>589</td>
<td>1624624</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>SH</td>
<td>ʃ</td>
<td>563</td>
</tr>
<tr>
<td>31</td>
<td>AYN</td>
<td>ə</td>
<td>70</td>
</tr>
<tr>
<td>32</td>
<td>TT</td>
<td>ʈ</td>
<td>274</td>
</tr>
<tr>
<td>33</td>
<td>X</td>
<td>ʃ</td>
<td>329</td>
</tr>
<tr>
<td>34</td>
<td>T_SH</td>
<td>ʧ</td>
<td>407</td>
</tr>
<tr>
<td>35</td>
<td>OON</td>
<td>ӧ</td>
<td>322</td>
</tr>
<tr>
<td>36</td>
<td>E</td>
<td>ɛ</td>
<td>152</td>
</tr>
<tr>
<td>37</td>
<td>DD</td>
<td>ɖ</td>
<td>299</td>
</tr>
<tr>
<td>38</td>
<td>K_H</td>
<td>kʰ</td>
<td>217</td>
</tr>
<tr>
<td>39</td>
<td>RR</td>
<td>ɽ</td>
<td>249</td>
</tr>
<tr>
<td>40</td>
<td>B_H</td>
<td>bʰ</td>
<td>123</td>
</tr>
<tr>
<td>41</td>
<td>T_D_H</td>
<td>ʈʰ</td>
<td>157</td>
</tr>
<tr>
<td>42</td>
<td>IIN</td>
<td>ɪ</td>
<td>87</td>
</tr>
<tr>
<td>43</td>
<td>7</td>
<td>ɣ</td>
<td>201</td>
</tr>
<tr>
<td>44</td>
<td>NG</td>
<td>ŋ</td>
<td>161</td>
</tr>
<tr>
<td>45</td>
<td>T_SH_H</td>
<td>ʧʰ</td>
<td>135</td>
</tr>
<tr>
<td>46</td>
<td>AAN</td>
<td>ɑ̃</td>
<td>125</td>
</tr>
<tr>
<td>47</td>
<td>UUN</td>
<td>ū</td>
<td>59</td>
</tr>
<tr>
<td>48</td>
<td>D_D_H</td>
<td>ɖʰ</td>
<td>105</td>
</tr>
<tr>
<td>49</td>
<td>TT_H</td>
<td>ʈʰ</td>
<td>126</td>
</tr>
<tr>
<td>50</td>
<td>D_ZZ_H</td>
<td>ʤʰ</td>
<td>92</td>
</tr>
<tr>
<td>51</td>
<td>P_H</td>
<td>ɲʰ</td>
<td>54</td>
</tr>
<tr>
<td>52</td>
<td>RR_H</td>
<td>ɽʰ</td>
<td>57</td>
</tr>
<tr>
<td>53</td>
<td>G_H</td>
<td>ɡʰ</td>
<td>62</td>
</tr>
<tr>
<td>54</td>
<td>DD_H</td>
<td>ɖʰ</td>
<td>33</td>
</tr>
<tr>
<td>55</td>
<td>ZZ</td>
<td>ʒ</td>
<td>18</td>
</tr>
<tr>
<td>56</td>
<td>Y</td>
<td>ʔ</td>
<td>9</td>
</tr>
<tr>
<td>57</td>
<td>N_H</td>
<td>nʰ</td>
<td>7</td>
</tr>
<tr>
<td>58</td>
<td>ON</td>
<td>ɔ̃</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>R_H</td>
<td>ɽʰ</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>V_H</td>
<td>vʰ</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix E

Interview Questions (Sample)

<table>
<thead>
<tr>
<th>Part-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>- What is your name?</td>
</tr>
<tr>
<td>- What is your gender?</td>
</tr>
<tr>
<td>- What is your height?</td>
</tr>
<tr>
<td>- What is your place of birth?</td>
</tr>
<tr>
<td>- What is your date of birth? Please answer using the format</td>
</tr>
<tr>
<td>- Which is your current area of residence?</td>
</tr>
<tr>
<td>- Which, if any, are some other areas of your previous residences?</td>
</tr>
<tr>
<td>- Which school or schools did you attend?</td>
</tr>
<tr>
<td>- Which other educational institutes have you attended, if any?</td>
</tr>
<tr>
<td>- What is your current profession?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Explain the route you took to get from your home to this location.</td>
</tr>
<tr>
<td>- How long does it take to get to work every day?</td>
</tr>
<tr>
<td>- What are your responsibilities at work?</td>
</tr>
<tr>
<td>- Describe a normal day at work.</td>
</tr>
<tr>
<td>- How did your day go yesterday? Describe with timelines if possible.</td>
</tr>
<tr>
<td>- Describe a memorable day.</td>
</tr>
<tr>
<td>- Describe a funny experience.</td>
</tr>
<tr>
<td>- Describe a scary experience.</td>
</tr>
<tr>
<td>- Describe an interesting experience.</td>
</tr>
<tr>
<td>- What is your greatest fear?</td>
</tr>
<tr>
<td>- Which places would you like to visit and why?</td>
</tr>
<tr>
<td>- Describe an accomplishment that you are proud of.</td>
</tr>
</tbody>
</table>
- Do you have any brothers or sisters? Are they younger or older than you?
- Tell us about your friends.
- Name some of your closest friends.
- How did you become friends?
- Tell us about three of your favorite childhood memories.

Extension to Part-II (In case the answers are short)

- What do you do in your free time?
- Where do you normally go for dining out and why?
- What is your favorite food?
- What is your least favorite food?
- Do you enjoy watching films?
 - What types of films do you watch?
 - Which are some of your favorite films?
 - Describe your favorite character from one of these films.
 - Which is the last film you watched?
 - How was the last film you watched?
- Do you enjoy reading books?
 - What types of books do you read?
 - Which are some of your favorite books?
 - Name some of your favorite writers.
 - Which is the last book you read?
 - How was the last book you read?
- Do you enjoy listening to music?
 - What type of music do you listen to?
 - Who are some of your favorite musicians?
 - What are you listening to at currently?
- What is your favorite television channel?
- Which programs do watch on television?
- Which is your favorite program on television?
<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you interested in cricket or any other sport?</td>
</tr>
<tr>
<td>Describe a cricket match which you cannot forget.</td>
</tr>
<tr>
<td>Which newspaper(s) do you read regularly?</td>
</tr>
<tr>
<td>Describe your favorite type of weather.</td>
</tr>
<tr>
<td>Where do you go to shop?</td>
</tr>
<tr>
<td>What are your future goals?</td>
</tr>
<tr>
<td>Describe any interesting news that you saw on TV lately or read about.</td>
</tr>
<tr>
<td>Name an event which you consider was a turning point in Pakistan’s history? And explain why you think so.</td>
</tr>
<tr>
<td>What was your reaction when Pakistan won the world cup? What were you doing then?</td>
</tr>
<tr>
<td>What were you doing when 9/11 took place? What was your reaction?</td>
</tr>
</tbody>
</table>
Appendix F

Report and Frequency Files Generated by Sphinx Files Compiler

Sample Report File

<table>
<thead>
<tr>
<th>Description</th>
<th>Training File</th>
<th>Testing File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Report Generated on:</td>
<td>Sat Jun 27 04:01:19</td>
<td></td>
</tr>
<tr>
<td>No of Sentences/Utterances in the training file:</td>
<td>1685</td>
<td></td>
</tr>
<tr>
<td>No of Sentences/Utterances in the testing file:</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>No of words in the training file:</td>
<td>10677</td>
<td></td>
</tr>
<tr>
<td>No of words in the testing file:</td>
<td>313 i.e. 2% of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Data</td>
<td></td>
</tr>
<tr>
<td>No of Unique words in the training file:</td>
<td>1284</td>
<td></td>
</tr>
<tr>
<td>No of Unique words in the testing file:</td>
<td>125 i.e. 9% of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Data</td>
<td></td>
</tr>
<tr>
<td>No of Phones in the training file:</td>
<td>36998</td>
<td></td>
</tr>
<tr>
<td>No of Phones in the testing file:</td>
<td>1172</td>
<td></td>
</tr>
<tr>
<td>No of Unique Phones in the training file:</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>No of Unique Phones in the testing file:</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>No of Unique overlapping words between the</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Training and test data:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of Unique overlapping Phones between the</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Training and test data:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of Unique non-overlapping words between the</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Training and test data:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No of Overlapping Words occurring in the test</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>data:</td>
<td>1172</td>
<td></td>
</tr>
<tr>
<td>No of Overlapping Phones occurring in the test</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>data:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Phone to Frequency for training File written to:</td>
<td>Sphinx\Test1\TrP2Fr.txt</td>
<td></td>
</tr>
<tr>
<td>Phone to Frequency for testing File written to:</td>
<td>Sphinx\Test1\TeP2Fr.txt</td>
<td></td>
</tr>
<tr>
<td>Word to Frequency for training File written to:</td>
<td>Sphinx\Test1\TrW2Fr.txt</td>
<td></td>
</tr>
<tr>
<td>Word to Frequency for testing File written to:</td>
<td>Sphinx\Test1\TeW2Fr.txt</td>
<td></td>
</tr>
</tbody>
</table>
Sample Word-Frequency listing for Training File (Partial)

<table>
<thead>
<tr>
<th>Word</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOOGOON</td>
<td>7</td>
</tr>
<tr>
<td>KOONSAA</td>
<td>2</td>
</tr>
<tr>
<td>OSAT_DAN</td>
<td>3</td>
</tr>
<tr>
<td>SAVAALAT_D</td>
<td>3</td>
</tr>
<tr>
<td>KAHAA</td>
<td>9</td>
</tr>
<tr>
<td>VAAQII</td>
<td>10</td>
</tr>
<tr>
<td>DDIIBAEPTS</td>
<td>1</td>
</tr>
<tr>
<td>HUUIII</td>
<td>24</td>
</tr>
<tr>
<td>VUZARAA</td>
<td>1</td>
</tr>
<tr>
<td>SALAAIIDDZ</td>
<td>1</td>
</tr>
<tr>
<td>MA7RIB</td>
<td>2</td>
</tr>
<tr>
<td>MIZAAHIJAA</td>
<td>6</td>
</tr>
<tr>
<td>BAERUUNII</td>
<td>1</td>
</tr>
<tr>
<td>XUSUSAN</td>
<td>1</td>
</tr>
<tr>
<td>D_ZZAAT_DII</td>
<td>3</td>
</tr>
<tr>
<td>AD_DAA</td>
<td>2</td>
</tr>
<tr>
<td>ZEHMAT_D</td>
<td>1</td>
</tr>
<tr>
<td>TTIIDDDIJAAN</td>
<td>1</td>
</tr>
<tr>
<td>MAALKOOPAROOSAYSAR</td>
<td>1</td>
</tr>
<tr>
<td>T_SH_HUUTII</td>
<td>3</td>
</tr>
<tr>
<td>KOOSHISH</td>
<td>12</td>
</tr>
<tr>
<td>ZAEN</td>
<td>5</td>
</tr>
<tr>
<td>T_SHILLA</td>
<td>1</td>
</tr>
<tr>
<td>MAAR</td>
<td>1</td>
</tr>
<tr>
<td>SAST_DANAE</td>
<td>1</td>
</tr>
<tr>
<td>AEHSAS</td>
<td>2</td>
</tr>
<tr>
<td>ULD_ZZ_HAN</td>
<td>2</td>
</tr>
<tr>
<td>MAAN</td>
<td>1</td>
</tr>
<tr>
<td>SARRKAEN</td>
<td>3</td>
</tr>
<tr>
<td>D_DAAAXILAE</td>
<td>1</td>
</tr>
<tr>
<td>GII</td>
<td>11</td>
</tr>
<tr>
<td>PARR_HAAAE</td>
<td>1</td>
</tr>
<tr>
<td>PARR_HAAT_DAA</td>
<td>3</td>
</tr>
<tr>
<td>PAT_DT_DAA</td>
<td>4</td>
</tr>
<tr>
<td>D_DAAAXILAA</td>
<td>8</td>
</tr>
<tr>
<td>ZARAA</td>
<td>1</td>
</tr>
<tr>
<td>PAYNT_DAAALIIS</td>
<td>1</td>
</tr>
<tr>
<td>AMUUMII</td>
<td>2</td>
</tr>
<tr>
<td>BAIID_D</td>
<td>1</td>
</tr>
<tr>
<td>KAAALID_ZZ</td>
<td>10</td>
</tr>
<tr>
<td>UT_DAA</td>
<td>2</td>
</tr>
<tr>
<td>T_DAD_DRIIS</td>
<td>5</td>
</tr>
<tr>
<td>XUSUUSII</td>
<td>1</td>
</tr>
<tr>
<td>B_HAII</td>
<td>1</td>
</tr>
<tr>
<td>D_DAER</td>
<td>3</td>
</tr>
<tr>
<td>XART_SHAA</td>
<td>2</td>
</tr>
<tr>
<td>D_DAEN</td>
<td>1</td>
</tr>
<tr>
<td>D_DOPEHR</td>
<td>1</td>
</tr>
</tbody>
</table>
Sample Phone-Frequency listing for Training File (Complete)

<table>
<thead>
<tr>
<th>Phone</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_H</td>
<td>52</td>
</tr>
<tr>
<td>Z</td>
<td>469</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
</tr>
<tr>
<td>AE</td>
<td>2946</td>
</tr>
<tr>
<td>X</td>
<td>133</td>
</tr>
<tr>
<td>DD</td>
<td>77</td>
</tr>
<tr>
<td>V</td>
<td>649</td>
</tr>
<tr>
<td>AA</td>
<td>3174</td>
</tr>
<tr>
<td>U</td>
<td>522</td>
</tr>
<tr>
<td>S</td>
<td>1700</td>
</tr>
<tr>
<td>AEN</td>
<td>575</td>
</tr>
<tr>
<td>R</td>
<td>2163</td>
</tr>
<tr>
<td>Q</td>
<td>242</td>
</tr>
<tr>
<td>SH</td>
<td>207</td>
</tr>
<tr>
<td>P</td>
<td>713</td>
</tr>
<tr>
<td>O</td>
<td>524</td>
</tr>
<tr>
<td>N</td>
<td>1538</td>
</tr>
<tr>
<td>M</td>
<td>1553</td>
</tr>
<tr>
<td>L</td>
<td>870</td>
</tr>
<tr>
<td>K</td>
<td>2271</td>
</tr>
<tr>
<td>J</td>
<td>626</td>
</tr>
<tr>
<td>I</td>
<td>1239</td>
</tr>
<tr>
<td>H</td>
<td>1731</td>
</tr>
<tr>
<td>OON</td>
<td>112</td>
</tr>
<tr>
<td>G</td>
<td>318</td>
</tr>
<tr>
<td>F</td>
<td>285</td>
</tr>
<tr>
<td>E</td>
<td>166</td>
</tr>
<tr>
<td>DD_H</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>666</td>
</tr>
<tr>
<td>A</td>
<td>3414</td>
</tr>
<tr>
<td>T_SH_H</td>
<td>137</td>
</tr>
<tr>
<td>UU</td>
<td>491</td>
</tr>
<tr>
<td>RR</td>
<td>111</td>
</tr>
<tr>
<td>T_D_H</td>
<td>295</td>
</tr>
<tr>
<td>OO</td>
<td>917</td>
</tr>
<tr>
<td>RR_H</td>
<td>43</td>
</tr>
<tr>
<td>D_D</td>
<td>635</td>
</tr>
<tr>
<td>II</td>
<td>1691</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>AAN</td>
<td>96</td>
</tr>
<tr>
<td>K_H</td>
<td>46</td>
</tr>
<tr>
<td>T_D</td>
<td>1265</td>
</tr>
<tr>
<td>B_H</td>
<td>128</td>
</tr>
<tr>
<td>UUN</td>
<td>114</td>
</tr>
<tr>
<td>D_ZZ</td>
<td>509</td>
</tr>
<tr>
<td>AYN</td>
<td>172</td>
</tr>
<tr>
<td>T_SH</td>
<td>310</td>
</tr>
<tr>
<td>ZZ</td>
<td>1</td>
</tr>
<tr>
<td>TT</td>
<td>416</td>
</tr>
</tbody>
</table>
Sample Word-Frequency listing for Test File (Partial)

<table>
<thead>
<tr>
<th>Word</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>POOLOO</td>
<td>1</td>
</tr>
<tr>
<td>HUUN</td>
<td>1</td>
</tr>
<tr>
<td>INT_SH</td>
<td>1</td>
</tr>
<tr>
<td>T_DAARIIX</td>
<td>1</td>
</tr>
<tr>
<td>PEHLAE</td>
<td>1</td>
</tr>
<tr>
<td>AAF</td>
<td>1</td>
</tr>
<tr>
<td>PIT_DT_DAA</td>
<td>1</td>
</tr>
<tr>
<td>AKAYDDMII</td>
<td>1</td>
</tr>
<tr>
<td>PURAANAA</td>
<td>1</td>
</tr>
<tr>
<td>NAAM</td>
<td>1</td>
</tr>
<tr>
<td>PAAS</td>
<td>1</td>
</tr>
<tr>
<td>MAERAA</td>
<td>3</td>
</tr>
<tr>
<td>RAHAEE</td>
<td>1</td>
</tr>
<tr>
<td>JANII</td>
<td>3</td>
</tr>
<tr>
<td>AE</td>
<td>1</td>
</tr>
<tr>
<td>SO</td>
<td>2</td>
</tr>
<tr>
<td>BAYT_SHALAR</td>
<td>1</td>
</tr>
<tr>
<td>PARR_HII</td>
<td>1</td>
</tr>
<tr>
<td>RIIPIITT</td>
<td>1</td>
</tr>
<tr>
<td>KENTT</td>
<td>2</td>
</tr>
<tr>
<td>SII</td>
<td>1</td>
</tr>
<tr>
<td>AND_DAR</td>
<td>1</td>
</tr>
<tr>
<td>HISSAA</td>
<td>1</td>
</tr>
<tr>
<td>D_DASVAEN</td>
<td>1</td>
</tr>
<tr>
<td>MAYRII</td>
<td>5</td>
</tr>
<tr>
<td>T_DOR</td>
<td>1</td>
</tr>
<tr>
<td>KAAALUUNII</td>
<td>1</td>
</tr>
<tr>
<td>D_ZZAMAAT_D</td>
<td>5</td>
</tr>
<tr>
<td>T_DAARIIXAE</td>
<td>1</td>
</tr>
<tr>
<td>T_D_HAA</td>
<td>3</td>
</tr>
<tr>
<td>GARAUNND</td>
<td>1</td>
</tr>
<tr>
<td>SAAT_DVAEN</td>
<td>1</td>
</tr>
<tr>
<td>T_SH_HATTII</td>
<td>2</td>
</tr>
<tr>
<td>T_DAVII</td>
<td>1</td>
</tr>
<tr>
<td>GYRAEZAN</td>
<td>2</td>
</tr>
<tr>
<td>AVVAL</td>
<td>2</td>
</tr>
<tr>
<td>NASHAAT_D</td>
<td>1</td>
</tr>
<tr>
<td>ES</td>
<td>1</td>
</tr>
<tr>
<td>MAEN</td>
<td>21</td>
</tr>
<tr>
<td>AEK</td>
<td>14</td>
</tr>
</tbody>
</table>
Sample Phone-Frequency listing for Test File (Complete)

<table>
<thead>
<tr>
<th>Phone</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_H</td>
<td>5</td>
</tr>
<tr>
<td>Z</td>
<td>7</td>
</tr>
<tr>
<td>AE</td>
<td>92</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>DD</td>
<td>9</td>
</tr>
<tr>
<td>V</td>
<td>22</td>
</tr>
<tr>
<td>AA</td>
<td>124</td>
</tr>
<tr>
<td>U</td>
<td>7</td>
</tr>
<tr>
<td>S</td>
<td>54</td>
</tr>
<tr>
<td>AEN</td>
<td>24</td>
</tr>
<tr>
<td>R</td>
<td>82</td>
</tr>
<tr>
<td>Q</td>
<td>16</td>
</tr>
<tr>
<td>SH</td>
<td>13</td>
</tr>
<tr>
<td>P</td>
<td>28</td>
</tr>
<tr>
<td>O</td>
<td>22</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>M</td>
<td>56</td>
</tr>
<tr>
<td>L</td>
<td>49</td>
</tr>
<tr>
<td>K</td>
<td>75</td>
</tr>
<tr>
<td>J</td>
<td>11</td>
</tr>
<tr>
<td>I</td>
<td>50</td>
</tr>
<tr>
<td>H</td>
<td>49</td>
</tr>
<tr>
<td>OON</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>88</td>
</tr>
<tr>
<td>T_SH_H</td>
<td>2</td>
</tr>
<tr>
<td>UU</td>
<td>10</td>
</tr>
<tr>
<td>T_D_H</td>
<td>4</td>
</tr>
<tr>
<td>OO</td>
<td>9</td>
</tr>
<tr>
<td>RR_H</td>
<td>1</td>
</tr>
<tr>
<td>D_D</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>T_D</td>
<td>33</td>
</tr>
<tr>
<td>UUN</td>
<td>1</td>
</tr>
<tr>
<td>D_ZZ</td>
<td>20</td>
</tr>
<tr>
<td>T_SH</td>
<td>3</td>
</tr>
<tr>
<td>TT</td>
<td>15</td>
</tr>
<tr>
<td>R_H</td>
<td>2</td>
</tr>
<tr>
<td>NG</td>
<td>1</td>
</tr>
<tr>
<td>AY</td>
<td>16</td>
</tr>
<tr>
<td>IIN</td>
<td>1</td>
</tr>
<tr>
<td>TT_H</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix G

Setting up CMU Sphinx Speech Recognition System in Windows®

Disclaimer

This section describes in detail the procedure to set up CMU Sphinx trainer and decoder on an Microsoft Windows® based system. These details have been largely extracted and compiled from the tutorials, manuals and discussion blogs mentioned in the references. I have filled in the gaps and added details where required. Some of the discussed details deal with Urdu Specific problems.

System Specifications

This procedure has been tested on a Toshiba Notebook computer (Toshiba Satellite M115), with a 1.6 GHz dual core processor (T2050), 2.5 GB of RAM and 80 GB conventional Hard Disk Drive. The Operating System is Genuine Microsoft Windows XP, Media Center Edition, Version 2002, and Service Pack 3. Primary IDEs used in this procedure are Microsoft Visual Studio 6.0, Microsoft Visual Studio 2008 and Eclipse SDK version 3.4.2 (Ganymede). The system is running JRE 1.6.

Introduction

This walkthrough has been designed to facilitate setting up a Sphinx based recognition system. The material used in this tutorial has been extracted/taken/derived from different tutorials and helping materials available at ([8], [13], [9], [10], [11], [54], [55], [56] and [57]). In addition it has been tested and modified by the training and testing of speaker specific medium vocabulary continuous and spontaneous automatic speech recognition system for Urdu. Urdu digit recognition system development is taken as the design goal for this system.

Software setup\(^5\)

1. Perl

Install ActivePerl for Windows, which is available from ActiveState\(^6\).

\(^5\) Extracted from: Robust Group Tutorial, http://www.speech.cs.cmu.edu/sphinx/tutorial.html#app1

\(^6\)
2. **C Compiler**

Install Microsoft Visual C++ 6.0 for Sphinx Train and MS VC++ 2008 for Sphinx-III and Sphinx Base (I have used Sphinx3 and Sphinx4 both for decoding purposes).

3. **Java Platform**

For Sphinx-4 install JDK and Eclipse.

Setting up the data

Download AN4\(^7\) speech database (this will be modified for our own Speech recognition system). AN4 includes the audio, but it is a very small database and we are not interested in the audio as we will provide our own.

The steps involved:

Create a directory for the system e.g. *tutorial*, and move to that directory.

1. Download the audio tarball AN4 and save it to the same tutorial directory you just created.

2. In Windows, using the Windows Explorer, go to the tutorial directory, right-click the tarball, and choose "Extract to here" in the WinZip menu.

By the time you finish this, you will have a tutorial directory with the following contents

Tutorial

- an4

- an4_sphere.tar.gz

Setting up the trainer

Code retrieval

SphinxTrain can be retrieved by downloading its compressed version.

\(^6\) ActiveState: http://www.activestate.com/Products/activeperl/index.mhtml

Using the tarball, download the SphinxTrain tarball by clicking on the link and choosing "Save" when the dialog window appears. Save it to the same tutorial directory. Extract the contents as follows.

- In Windows, using the Windows Explorer, go to the tutorial directory, right-click the SphinxTrain tarball, and choose "Extract to here" in the WinZip menu.

By the time you finish this, you will have a tutorial directory with the following contents:

Tutorial
- an4
- an4_sphere.tar.gz
- SphinxTrain
- SphinxTrain.nightly.tar.gz

Compilation

In Windows:

1. Double click the file tutorial/SphinxTrain/SphinxTrain.sln. This will open MS Visual C++ (use version 6.0).

2. In the Menu Build choose Batch Build, and select all items. Click on Rebuild All. This will build all executables needed by the trainer.

Tutorial Setup

After compiling the code, you will have to setup the tutorial by copying all relevant executables and scripts to the same area as the data. Assuming your current working directory is tutorial, you will need to do the following.

```bash
cd SphinxTrain
# If you installed AN4
perl scripts_pl/setup_tutorial.pl an4
```

8 Sphinx Train: http://cmusphinx.org/download/nightly/SphinxTrain.nightly.tar.gz
Setting up the Training data

I followed the following steps for a simple Urdu digit recognition system:

1. Place all training audio files in the (an4\wav\{name your training folder}\) folder. Use either wav (mswav), .sph or .nist format. Praat supports all these formats. I used nist. Record some separate utterances e.g. AIK, DO,... and some combined utterances e.g. counting from SIFAR till DAS. Collect enough training data e.g. I collected 5 minutes of recordings in my voice for the 11 digits from SIFAR to DAS.

2. Now in the an4\etc\ folder, in the an4.dic file, define the utterance to phone mappings. You may map at word or phone level. e.g. you may map utterance AIK to a single phone AIK, or to phone AY K, or define any other useful substitute. For small vocabularies, word level mapping are preferred while phone level mappings are preferred for larger vocabularies. More than one pronunciation mappings can be shown with a (1) and (2) etc. after the word. e.g.

 AIK AE K
 AIK(1) AY K

3. In the filler dictionary in the etc folder (an4.filler), define the non-speech utterances i.e. the start of utterance silence <s>, the end of utterance silence <\s> and the middle of utterance silence <sil>. Map them all to the same phone SIL, which models silence or the background noise.

4. In the phone file define all the phones including the silence SIL as follows. There should be no empty lines

5. In the file an4_train.fileids, define all audio file ids without extensions with references to the root (wav\an4_train\) folder.

6. In the an4_train.transcription file establish utterance to audio mappings. Remember, these are not phone to audio mappings but mappings between the words in the left column of the dictionary file and the audio files. Important to note is that the files should be in the same order as described in the an4_train.fileids file.
7. In the file `an4_test.fileids`, define all test data audio file ids without extensions with references to the root `(wav\an4_test\)` folder.

8. In the `an4_test.transcription` file establish utterance to audio mappings. Remember, these are not phone to audio mappings but mappings between the words in the left column of the dictionary file and the audio files. Important to note is that the files should be in the same order as described in the `an4_test.fileids` file.

9. Now make the necessary changes in the `sphinx_train.cfg` file. My file is shown below with the modified and/or potentially modified areas shown in bold:

```perl
# Configuration script for sphinx trainer  #*-mode:Perl-*-
$CFG_VERBOSE = 1;  # Determines how much goes to the screen.

# These are filled in at configuration time
$CFG_DB_NAME = "an4";
$CFG_BASE_DIR = "E:/Sphinx/an4";
$CFG_SPHINXTRAIN_DIR = "E:/Sphinx/SphinxTrain";

# Directory containing SphinxTrain binaries
$CFG_BIN_DIR = "$CFG_BASE_DIR/bin";
$CFG_GIF_DIR = "$CFG_BASE_DIR/gifs";
$CFG_SCRIPT_DIR = "$CFG_BASE_DIR/scripts_pl";

# Experiment name, will be used to name model files and log files
$CFG_EXPTNAME = "$CFG_DB_NAME";

# Audio waveform and feature file information
$CFG_WAVFILES_DIR = "$CFG_BASE_DIR/wav";
$CFG_WAVFILE_EXTENSION = 'nist';
$CFG_WAVFILE_TYPE = 'nist'; # one of nist, mswav, raw
$CFG_FEATFILES_DIR = "$CFG_BASE_DIR/feat";
$CFG_FEATFILE_EXTENSION = 'mfc';
$CFG_VECTOR_LENGTH = 13;

$CFG_MIN_ITERATIONS = 1;  # BW Iterate at least this many times
$CFG_MAX_ITERATIONS = 10;  # BW Don't iterate more than this, somethings likely wrong.

# (none/max) Type of AGC to apply to input files
$CFG_AGC = 'none';
# (current/none) Type of cepstral mean subtraction/normalization
# to apply to input files
$CFG_CMN = 'current';
# (yes/no) Normalize variance of input files to 1.0
$CFG_VARNORM = 'no';
```
(yes/no) Use letter-to-sound rules to guess pronunciations of unknown words (English, 40-phone specific)
$CFG_LTS00V = 'no';

(yes/no) Train full covariance matrices
$CFG_FULLVAR = 'no';

(yes/no) Use diagonals only of full covariance matrices for Forward-Backward evaluation (recommended if CFG_FULLVAR is yes)
$CFG_DIAGFULL = 'no';

(yes/no) Perform vocal tract length normalization in training. This will result in a “normalized” model which requires VTLN to be done during decoding as well.
$CFG_VTLN = 'no';

Starting warp factor for VTLN
$CFG_VTLN_START = 0.80;

Ending warp factor for VTLN
$CFG_VTLN_END = 1.40;

Step size of warping factors
$CFG_VTLN_STEP = 0.05;

Directory to write queue manager logs to
$CFG_QMGR_DIR = "$CFG_BASE_DIR/qmanager";

Directory to write training logs to
$CFG_LOG_DIR = "$CFG_BASE_DIR/logdir";

Directory for re-estimation counts
$CFG_BWACCUM_DIR = "$CFG_BASE_DIR/bwaccumdir";

Directory to write model parameter files to
$CFG_MODEL_DIR = "$CFG_BASE_DIR/model_parameters";

Directory containing transcripts and control files for speaker-adaptive training
$CFG_LIST_DIR = "$CFG_BASE_DIR/etc";

#**********variables used in main training of models**********
$CFG_DICTIONARY = "$CFG_LIST_DIR/$CFG_DB_NAME.dic";

$CFG_RAWPHONEFILE = "$CFG_LIST_DIR/$CFG_DB_NAME.phone";

$CFG_FILLERDICT = "$CFG_LIST_DIR/$CFG_DB_NAME.filler";

$CFG_LISTOFFILES = "$CFG_LIST_DIR/${CFG_DB_NAME}_train.fileids";

$CFG_TRANSCRIPTFILE = "$CFG_LIST_DIR/${CFG_DB_NAME}_train.transcription";

$CFG_FEATPARAMS = "$CFG_LIST_DIR/feat.params";

#**********variables used in characterizing models**********

$CFG_HMM_TYPE = '.cont.'; # Sphinx III

$CFG_HMM_TYPE = '.semi.'; # Sphinx II

if (($CFG_HMM_TYPE ne "semi.") and ($CFG_HMM_TYPE ne "cont.")

die "Please choose one CFG_HMM_TYPE out of 'cont.' or 'semi.',"

"currently $CFG_HMM_TYPE\n";

}
if ($CFG_HMM_TYPE eq '.semi.') {
 $CFG_DIRLABEL = 'semi';
 $CFG_STATESPERHMM = 5;
 $CFG_SKIPSTATE = 'yes';
 # Four (4) stream features for Sphinx II
 $CFG_FEATURE = "s2_4x";
 $CFG_NUM_STREAMS = 4;
 $CFG_INITIAL_NUM_DENSITIES = 256;
 $CFG_FINAL_NUM_DENSITIES = 256;
 die "For semi continuous models, the initial and final models have the
 same density"
 if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES);
} elsif ($CFG_HMM_TYPE eq '.cont.') {
 $CFG_DIRLABEL = 'cont';
 $CFG_STATESPERHMM = 3;
 $CFG_SKIPSTATE = 'no';
 # Single stream features - Sphinx 3
 $CFG_FEATURE = "1s_c_d_dd";
 $CFG_NUM_STREAMS = 1;
 $CFG_INITIAL_NUM_DENSITIES = 1;
 $CFG_FINAL_NUM_DENSITIES = 8;
 die "The initial has to be less than the final number of densities"
 if ($CFG_INITIAL_NUM_DENSITIES > $CFG_FINAL_NUM_DENSITIES);
}

(yes/no) Train multiple-gaussian context-independent models (useful
specifically for forced alignment)
$CFG_FALIGN_CI_MGAU = 'no';
(yes/no) Train context-independent models (useful
for alignment, use 'no' otherwise)
$CFG_CI_MGAU = 'no';
Number of tied states (senones) to create in decision-tree clustering
$CFG_N_TIED_STATES = 1000;
How many parts to run Forward-Backward estimation in
$CFG_NPART = 1;

(yes/no) Train a single decision tree for all phones (actually one
per state) (useful for grapheme-based models, use 'no' otherwise)
$CFG_CROSS_PHONE_TREES = 'no';

Use force-aligned transcripts (if available) as input to training
$CFG_FORCEDALIGN = 'no';

Use a specific set of models for force alignment. If not defined,
context-independent models for the current experiment will be used.
$CFG_FORCE_ALIGN_MDEF = "$CFG_BASE_DIR/model_architecture/$CFG_EXPTNAME.falign_ci.mdef";
if ($CFG_FALIGN_CI_MGAU eq 'yes') {
 $CFG_FORCE_ALIGN_MODELDIR = "$CFG_BASE_DIR/model_architecture/$CFG_EXPTNAME.falign_ci.

Use a specific dictionary and filler dictionary for force alignment.
If these are not defined, a dictionary and filler dictionary will be
created from $CFG_DICTIONARY and $CFG_FILLERDICT, with noise words
removed from the filler dictionary and added to the dictionary (this
is because the force alignment is not very good at inserting them)
$CFG_FORCE_ALIGN_DICTIONARY = "$ST::CFG_BASE_DIR/falignout$ST::CFG_EXPTNAME.falign.dict";
$CFG_FORCE_ALIGN_FILLERDICT = "$ST::CFG_BASE_DIR/falignout/$ST::CFG_EXPTNAME.falign.fdict";
#
Use a particular beam width for force alignment. The wider
(i.e. smaller numerically) the beam, the fewer sentences will be
rejected for bad alignment.
$CFG_FORCE_ALIGN_BEAM = 1e-60;
#
Calculate an LDA/MLLT transform?
$CFG_LDA_MLLT = 'no';
Dimensionality of LDA/MLLT output
$CFG_LDA_DIMENSION = 29;

#set convergence_ratio = 0.004
$CFG_CONVERGENCE_RATIO = 0.04;

Queue::POSIX for multiple CPUs on a local machine
Queue::PBS to use a PBS/TORQUE queue
$CFG_QUEUE_TYPE = "Queue";

Name of queue to use for PBS/TORQUE
$CFG_QUEUE_NAME = "workq";

(yes/no) Build questions for decision tree clustering automatically
$CFG_MAKE_QUESTS = "yes";
If $CFG_MAKE_QUESTS is yes, questions are written to this file.
If $CFG_MAKE_QUESTS is no, questions are read from this file.
$CFG_QUESTION_SET = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.tree_questions";
$CFG_QUESTION_SET = "${CFG_BASE_DIR}/linguistic_questions";

$CFG_CP_OPERATION = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.cpmeanvar";
This variable has to be defined, otherwise utils.pl will not load.
Training the ASR System

Go to the directory where you installed the data.

cd ..\an4

The system does not directly work with acoustic signals. The signals are first transformed into a sequence of feature vectors, which are used in place of the actual acoustic signals. To perform this transformation (or parameterization) from within the directory an4, type the following command on the command line.

```
perl scripts_pl\make_feats.pl  -ctl etc\an4_train.fileids
```

This script will compute, for each training utterance, a sequence of 13-dimensional vectors (feature vectors) consisting of the Mel-frequency cepstral coefficients (MFCCs). Note that the list of wave files contains a list with the full paths to the audio files. Since the data are all located in the same directory as you are working, the paths are relative, not absolute. You may have to change this, as well as the `an4_test.fileids` file, if the location of data is different. The MFCCs will be placed automatically in a directory called \feat\ in an4.

Now, simply run the RunAll.pl script provided.

```
perl scripts_pl\RunAll.pl
```

One of the files that appear in your current directory is an .html file, named an4.html. This file will contain a status report of jobs already executed. Verify that the job you launched completed successfully.

You have now completed your training. The final models and their locations will depend on the database and the model type that you are using. If you are using AN4 to train continuous models, you will find the parameters of the final 8 Gaussian\state 3-state CD-tied acoustic models (HMMs) with 1000 tied states in a directory called \model_parameters\an4.cd_cont_1000_8\. You will also find a model-index file for these models called an4.1000.mdef in \model_architecture\. This file is used by the system to
associate the appropriate set of HMM parameters with the HMM for each sound unit you are modeling.

Running the Sphinx-3 decoder (Batch testing the ASR System)

There are a few problems running the Sphinx-3 decoder out-of-the-box. Ideally the process should follow after the training step as follows:

Setting up the decoder

SPHINX-3

- **Code retrieval**

SPHINX-3 can be downloaded as a tarball. It is also available as a release from SourceForge.net. Using the tarball, download the sphinx3 tarball and sphinxbase by clicking on the link and choosing "Save" when the dialog window appears. Save them to the same tutorial directory. Extract the contents as follows.

- tutorial
 - an4
 - SphinxTrain
 - sphinx3
 - sphinxbase

- **Compilation**

In Windows, if you download SphinxBase from the release system, please rename it (e.g. from 'sphinxbase-0.1') to 'sphinxbase' and then:

1. Double click the file tutorial/sphinxbase/sphinxbase.sln. This will open MS Visual C++, if you have it installed.

2. In the Menu Build choose Batch Build, and select all items. Click on Rebuild All This will build all libraries in the SphinxBase package.
3. Double click the file tutorial/sphinx3/programs.sln. This will open MS Visual C++, if you have it installed.

4. In the Menu Build choose Batch Build, and select all items. Click on Rebuild All This will build all executables in the SPHINX-3 package.

- Tutorial Setup

After compiling the code, you will have to setup the tutorial by copying all relevant executables and scripts to the same area as the data. Assuming your current working directory is tutorial, you will need to do the following.

```
cd sphinx3
perl scripts/setup_tutorial.pl an4
```

Running the Sphinx-3 Decoder

Decoding is relatively simple to perform. First, compute MFCC features for all of the test utterances in the test set. To compute MFCCs from the wave files, from the top level directory, namely an4, type the following from the command line:

```
perl scripts_pl/make_feats.pl -ctl etc/an4_test.fileids
```

You are now ready to decode. Type the command below.

```
perl scripts_pl/decode/slave.pl
```

When you run the decode script, it will print information about the accuracy in the top level .html page for your experiment. It will also create two sets of files. One of these sets, with extension .match, contains the hypothesis as output by the decoder. The other set, with extension .align, contains the alignment generated by your alignment program, or by the built-in script, with the result of the comparison between the decoder hypothesis and the provided transcriptions. If you used the NIST tool, the .html file will contain a line such as the following if you used an4:

```
SENTENCE ERROR: 56.154% (73/130)   WORD ERROR RATE: 16.429% (127/773)
```

The second percentage number is the WER and has been obtained using the 8 Gaussians per state HMMs that you have just trained in the preliminary training run. Other numbers in the
above output will be explained later in this document. The WER may vary depending on which decoder you used.

IMPORTANT NOTES: However, the problem occurs when you execute "perl scripts.pl/decode/slave.pl" as the perl script to setup the sphinx3 tutorial fails to make the “sphinx_decode.cfg” in the an4\etc\ folder. So follow the procedure given below:

- In cmd, do cd an4
- Run > perl ./sphinx3/scripts/setup_sphinx3.pl -task an4 (this will create the “sphinx_decode.cfg” in the an4\etc\)
- Now setup the Sphinx-3 tutorial again (this is just in case, I haven't tried otherwise yet).
 cd sphinx3
 perl scripts/setup_tutorial.pl an4
- Reconfigure the sphinx_decode.cfg file as before, and configure the sphinx_decode.cfg file if required.
- Now it will start giving you a lot of error when you will run the perl scripts.pl/decode/slave.pl, so copy the following to the an4\bin\:
 o sphinx3_decode.exe (from: \sphinx3\bin\Release)
 o sphinxbase.dll (from: sphinxbase\lib\Release)
 o s3decoder.dll (from: sphinx3\lib\Release)
- Moreover you need a language model in the form of a binary dump file in the an4\etc\ folder
- So, download: lm3g2dmp, from:
 http://cmusphinx.org/download/nightly/lm3g2dmp.nightly.tar.gz
- Unzip and build with VC 6. Use Project>Rebuild All
- Now in the Release directory find lm3g2dmp.exe
- This converts lm to dmp. On cmd prompt > lm3g2dmp lmFileName.lm DestDirectory
o e.g. lm3g2dmp an4.lm.\

- Now you need an lm file. So give the text corpus to the online LM tool:
 http://www.speech.cs.cmu.edu/tools/lmtool-adv.html
 If the number of tokens in the corpus is greater than 5000, the online LM toolkit will not work and the Statistical Language Modeling Toolkit needs to be used. Please see the next section.

- Save the resulting lm file and convert to dmp. Then give the path in the lm entry in the sphinx.decode.cfg file.

- Now if all went well, perl scripts.pl/decode/slave.pl, should work. See the an4-1-1.match, an4.align, an4.match files in the an4\result\.

Using the Statistical Language Modeling Toolkit to create Language Models

The SLM toolkit works only on Unix based systems. Download the toolkit and before building it, for "little-endian" machines the variable BYTESWAP_FLAG will need to be set in the Makefile.
This can be done by editing src/Makefile directly, so that the line

```bash
#BYTESWAP_FLAG = -DSLM_SWAP_BYTES
```

is changed to

```bash
BYTESWAP_FLAG = -DSLM_SWAP_BYTES
```

Then simply change to the src/ directory and perform:

```
make install
```

The executables will then be copied into the bin/ directory, and the library file SLM2.a will be copied into the lib/ directory.

To convert an ASCII corpus file into a trigram language model, with Witten-Bell discounting, place it into the /bin directory and perform the following steps:

- `./text2wfreq <Corpus.txt> a.wfreq`
- `./wfreq2vocab <a.wfreq> a.vocab`
- text2idngram -n 3 -vocab a.vocab <Corpus.txt> a.idngram
- idngram2lm -n 3 -vocab_type 2 -witten_bell -oov_fraction 0.5 -idngram a.idngram -vocab a.vocab -arpa LanguageModel.arpa

- linear / -absolute / -good_turing / -witten_bell switches can be used for other smoothing schemes. Please see the toolkit documentation for more details.

Modifying the Beam Width, Language Weight etc

In order to modify these parameters, the sphinx_decode.cfg file in the etc folder needs to be edited. Following is the complete decode configuration file with the parameters that I modified shown in bold:

```plaintext
# Configuration script for sphinx decoder                  -*-mode:Perl-*-

# Variables starting with $DEC_CFG_ refer to decoder specific arguments, those starting with $CFG_ refer to trainer arguments, some of them also used by the decoder.

$DEC_CFG_VERBOSE = 1;  # Determines how much goes to the screen.

# These are filled in at configuration time
$DEC_CFG_DB_NAME = 'an4';
$DEC_CFG_BASE_DIR = 'E:/Sphinx/an4';
$DEC_CFG_SPHINXDECODER_DIR = 'E:/Sphinx/sphinx3';
$DEC_CFG_SPHINXTRAIN_CFG = "$DEC_CFG_BASE_DIR/etc/sphinx_train.cfg";

# Name of the decoding script to use (psdecode.pl or s3decode.pl, probably)
$DEC_CFG_SCRIPT = 's3decode.pl';

require $DEC_CFG_SPHINXTRAIN_CFG;

$DEC_CFG_BIN_DIR = "$DEC_CFG_BASE_DIR/bin";
$DEC_CFG_GIF_DIR = "$DEC_CFG_BASE_DIR/gifs";
$DEC_CFG_SCRIPT_DIR = "$DEC_CFG_BASE_DIR/scripts_pl";

$DEC_CFG_EXPTNAME = "$CFG_EXPTNAME";
$DEC_CFG_JOBNAME  = "$CFG_EXPTNAME"."_job";

# Models to use.
$DEC_CFG_MODELS_NAME = "$CFG_EXPTNAME.cd_${CFG_DIRLABEL}_${CFG_N_TIED_STATES}";

$DEC_CFG_FEATFILES_DIR = "$DEC_CFG_BASE_DIR/feat";
$DEC_CFG_FEATFILE_EXTENSION = '.mfc';
```
$DEC_CFG_VECTOR_LENGTH = $CFG_VECTOR_LENGTH;
$DEC_CFG_AGC = $CFG_AGC;
$DEC_CFG_CMN = $CFG_CMN;
$DEC_CFG_VARNORM = $CFG_VARNORM;

$DEC_CFG_QMGR_DIR = "$DEC_CFG_BASE_DIR/qmanager";
$DEC_CFG_LOG_DIR = "$DEC_CFG_BASE_DIR/logdir";
$DEC_CFG_MODEL_DIR = "$CFG_MODEL_DIR";

#********variables used in decoding of wave files********
$DEC_CFG_DICTIONARY = "$DEC_CFG_BASE_DIR/etc/$DEC_CFG_DB_NAME.dic";
$DEC_CFG_FILLERDICT = "$DEC_CFG_BASE_DIR/etc/$DEC_CFG_DB_NAME.filler";
$DEC_CFG_LISTOFFILES = "$DEC_CFG_BASE_DIR/etc/$DEC_CFG_DB_NAME_test.fileids";
$DEC_CFG_TRANSCRIPTFILE = "$DEC_CFG_BASE_DIR/etc/$DEC_CFG_DB_NAME_test.transcription";
$DEC_CFG_RESULT_DIR = "$DEC_CFG_BASE_DIR/result";

This variables, used by the decoder, have to be user defined, and
may affect the decoder output

$DEC_CFG_LANGUAGEMODEL_DIR = "$DEC_CFG_BASE_DIR/etc";
$DEC_CFG_LANGUAGEMODEL = "$DEC_CFG_LANGUAGEMODEL_DIR/an4itr.arpa.DMP";
$DEC_CFG_LANGUAGEWEIGHT = "8";
$DEC_CFG_BEAMWIDTH = "1e-700";
$DEC_CFG_WORDBEAM = "1e-080";

$DEC_CFG_ALIGN = "builtin";

#********variables used in characterizing models********

$DEC_CFG_HMM_TYPE = $CFG_HMM_TYPE;

if (($DEC_CFG_HMM_TYPE ne ".semi.") and ($DEC_CFG_HMM_TYPE ne ".cont.")) {

die "Please choose one CFG_HMM_TYPE out of '.cont.' or '.semi.'; " .
"currently $DEC_CFG_HMM_TYPE\n";
}

This comes directly from reading the code. The feature definitions
aren't represented exactly by the same string in the trainer and
the decoder. Therefore, we need to map between them.
%feature_type = {
 'c/1..L-1/d/1..L-1/c/0/d/0/dd/0/dd/1..L-1/' => 's2_4x',
 'c/1..L-1/d/1..L-1/c/0/d/0/dd/0/dd/1..L-1/' => 's3_1x39',
 'c/0..L-1/d/0..L-1/dd/0/dd/0/dd/1..L-1/' => 'ls_c_d_dd',
 'c/0..L-1/d/0..L-1/dd/0/dd/0/dd/1..L-1/' => 'cep_dcep',
 'c/0..L-1/' => 'cep',
 'c/0..L-1/dd/0..L-1/' => 'INVALID',
 '4s_12c_24d_3p_12dd' => 's2_4x',
 '1s_12c_24d_3p_12dd' => 's2_4x',
 's2_4x' => 's2_4x',
}
's3_1x39' => 's3_1x39',
'ls_c_d_dd' => 'ls_c_d_dd',
'ls_c_d_ld_dd' => 'ls_c_d_ld_dd',
'ls_c_d' => 'cep_dcep',
'ls_c' => 'cep',
'ls_c_dd' => 'INVALID',
'ls_d' => 'INVALID',
'ls_dd' => 'INVALID',
);

$DEC_CFG_FEATURE = "INVALID"
 unless ((exists $feature_type{$CFG_FEATURE})
 and ($DEC_CFG_FEATURE = $feature_type{$CFG_FEATURE}));

if ($DEC_CFG_FEATURE eq "INVALID") {
 die "Feature type used for training, $CFG_FEATURE, cannot be used for decoding.
 Please use one of 1s_c_d_dd, 1s_c_d, 1s_c, s2_4x, s3_1x39,
 ls_c_d_ld_dd\n";
}

$DEC_CFG_NPART = 1; # Define how many pieces to split decode in

$DEC_CFG_OKAY_COLOR = '00D000';
$DEC_CFG_WARNING_COLOR = '555500';
$DEC_CFG_ERROR_COLOR = 'DD0000';

return 1;