

Proceedings of the Conference on

LANGUAGE &

TECHNOLOGY
 2020

Center for Language Engineering

Al-Khawarizmi Institute of Computer Science
University of Engineering and Technology

Lahore- Pakistan

CONFERENCE COMMITTEES
Organizing Committee:

Conference Chair Dr. Sarmad Hussain, CLE, KICS-UET, Lahore, Pakistan

Chair, Technical Committee Dr. Tania Habib, CLE, KICS-UET, Lahore, Pakistan

Co-Chair, Language Processing Track Dr. Miriam Butt, University of Konstanz, Germany

Chair , Publication Committee Dr. Amir Mehmood, KICS-UET, Lahore, Pakistan

Co-Chair, Script Processing Track Dr. Faisal Shafait, NUST, Islamabad, Pakistan

Chair, Program Committee Ms. Sana Shams, CLE, KICS-UET, Lahore, Pakistan

Chair, Workshop Dr. Kashif Javed, UET, Lahore, Pakistan

Chair, Demo Ms. Qurat-ul-Ain Akram, CLE, KICS-UET, Lahore, Pakistan

Technical Committee:

Dr. Sarmad Hussain Center for Language Engineering, KICS-UET, Lahore,
Pakistan

Dr. Amir Mehmood Al-Khawarizmi Institute of Computer Science, UET, Lahore,

Pakistan

Dr. Adeel Nawab COMSATS University, Lahore, Pakistan

Dr. Agha Ali Raza Lahore University of Management Sciences, Lahore,

Pakistan

Dr. Annette Hautli University of Konstanz, Germany

Dr. Barbara Schuppler Graz University of Technology, Austria

Dr. Faisal Shafait National University of Sciences & Technology, Islamabad,

Pakistan

Dr. Farhat Jabeen University of Konstanz, Germany

Dr. Hassan Sajjad Qatar Computing Research Institute, Qatar

Dr. Imran Siddiqui Bahria University, Pakistan

Dr. Kamran Malik Punjab University, College of Information Technology,

Lahore, Pakistan

Dr. Kashif Javed University of Engineering & Technology, Lahore, Pakistan

Dr. Miriam Butt University of Konstanz, Germany

Dr. Muhammad Abid University of Peshawar, Peshawar, Pakistan

Dr. Muhammet Bastan Amazon, Palo Alto, California

Dr. Nadir Durrani Qatar Computing Research Institute, Qatar

Dr. Sheikh Faisal Rashid University of Engineering & Technology, Lahore, Pakistan

Dr. Tafseer Ahmad Khan Muhammad Ali Jinnah University, Islamabad

Dr. Tania Habib University of Engineering & Technology, Lahore, Pakistan

Dr. Usman Ghani University of Engineering & Technology, Lahore, Pakistan

Dr. Waqas Anwar COMSATS University, Lahore, Pakistan

Ms. Saba Urooj University of Engineering & Technology, Lahore, Pakistan

Ms. Sana Shams Center for Language Engineering, KICS-UET, Lahore,
Pakistan

Publication Committee:

Dr. Amir Mehmood Al-Khawarizmi Institute of Computer Science, UET, Lahore,

Pakistan

Mr. Usama Tahir Al-Khawarizmi Institute of Computer Science, UET, Lahore,

Pakistan

Program Committee:

Ms. Sana Shams Center for Language Engineering, KICS-UET, Lahore,

Pakistan

Ms. Kashaf Shahzad

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

Ms. Iqra Amjad

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

M. Kamran Khan

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

Mr. Zaeem Saqif

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

Workshop Committee:

Dr. Kashif Javed University of Engineering & Technology, Lahore, Pakistan

Demo Committee:

Ms. Qurat-ul-Ain Akram

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

Ms. Farah Adeeba

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

Mr. Zaeem Saqif

Center for Language Engineering, KICS-UET, Lahore,

Pakistan

FOREWORD

On behalf of the Organizing Committee, we welcome the authors and participants to the seventh Conference

on Language and Technology.

Center for Language Engineering (CLE) at Al-Khawarizmi Institute Computer Science (KICS), UET,

Lahore, is pleased to host the Conference on Language and Technology 2020 (CLT20). As the seventh

CLT, we aim to help in the advancement of local language technology research in Pakistan and provide a

platform for experienced researchers for active engagement and interaction, and also give an opportunity

to aspiring students who plan to pursue research in the area of language and technology.

Forty-three papers were submitted for CLT20, of which ten have been accepted for oral presentation and

four for poster presentation, through a rigorous review process by the technical committee. The papers

cover multiple local languages and a number of areas including linguistics, speech processing and

computational aspects of phonetics, phonology, syntax, and semantics. This CLT also presents exciting

talks including recent research in speech processing, syntax, machine translation, and script processing.

This time, we have introduced a new demo track keeping in mind the recent advances in the area of artificial

intelligence and machine learning and their widespread applications in natural language processing. During

this session, the academic researchers and industry experts will demonstrate their systems.

On behalf of the Organizing Committee, we would like to express our gratitude and appreciation to all who

volunteered to plan and support the conference. We would like to thank the technical committee members

for their diligent reviews of the research articles. We would also like to thank the conference sponsors,

especially the Higher Education Commission of Pakistan (HEC), Punjab Higher Education Commission

(PHEC), University of Konstanz, German Academic Exchange Service (DAAD), International Speech and

Communication Association (ISCA), FabIntel and Contegris. We are grateful to the management of Al-

Khawarizmi Institute of Computer Science and the University of Engineering and Technology, Lahore, for

their unrelenting support to hold the conference.

We wish you all a very fruitful CLT20 and a pleasant stay in Lahore.

Sarmad Hussain

On behalf of the Organizing Committee

TABLE OF CONTENTS

1. A Multilayered Urdu Treebank……………….…………………………………………………..1

2. A Sentiment Lexicon for Urdu………………..…………………….…………………………….9

3. A Study of Consonant Cluster Phonotactics of English Borrowed Words in Urdu Language…...15

4. An Unsupervised Spoken Term Detection System for Urdu………………..……………………21

5. Comparison of Parsers Dealing with Text Ambiguity in Natural Language Processing…………29

6. Corpus of Aspect-based Sentiment for Urdu Political Data……………………………………...37

7. Development and Automation of Phrase Model for Urdu Speech Corpus……………………….41

8. Development of Annotated Corpus Resources of Sindhi………………………………………...49

9. Improving Time Efficiency of TF-IDF Algorithm for Dynamic Data Streams……………...…..55

10. Removing the Gender and Tense Discrepancies in Online English to Urdu Translators………...63

11. Bilingual Sentiment Analysis of Tweets Using Lexicon…………………………………………71

12. NCL-Crawl: A Large Scale Language-specific Web Crawling System………………………….79

13. Sentiment and Emotion Analysis of Text: A Survey on Approaches and Resources……….……87

14. Understanding User Search Behavior of Humkinar Urdu Search Engine……………………..…95

1

A Multilayered Urdu Treebank

Tafseer Ahmed1, Toqeer Ehsan2, Almas Ashraf3, Mutee u Rahman4, Sarmad Hussain2, Miriam Butt5

2
Centre for Language Engineering

Al-Khawarizmi Institute of Computer

Science, UET, Lahore

firstname.lastname@kics.edu.pk

 3NEDUET, Karachi

almasashraf@neduet.edu.pk

 4Isra University, Hyderabad

mutee.rahman@isra.edu.pk

5
University of Konstanz,

Konstanz, Germany

miriam.butt@uni-konstanz.de

Abstract

The paper presents the design and construction of a

multilayered phrase structure treebank. The treebank

consists of three layers for phrases, grammatical

functions and semantic roles. A small phrase tagset

(consisting of 12 tags) is used as the primary label of the

phrase. Phrase label is followed by grammatical

function (mainly inspired by lexical functional

grammar). It is followed by the semantic role label

using propbank roles. 1,300 sentences from CLE Urdu

Digest Corpus are annotated using the treebank

guideline1.

1. Introduction

 Treebank is an important linguistic resource for

syntax analysis of languages. Creating a treebank

involves choosing the theoretical model, creating the

annotation guidelines and then annotating the corpus.

The annotated corpus is used to create syntactic parsers

and other syntax analysis tools.

Urdu is an Indo-Aryan language spoken mainly in

Pakistan and India [1]. Urdu and Hindi share common

grammar. However, there are differences in script,

vocabulary and phonology.

The current work is part of a bigger project

introducing intonation in Urdu Text to Speech System.

One goal of the project is creation of phrase structure

parser for the system. For this reason, a phrase structure

Urdu Treebank is planned. The treebank design

introduces three different layers of annotation to model

phrase structure (constituents), their grammatical

functions and semantic roles. This paper presents a

description of the treebank creation task.

In subsequent sections, Section 2 presents the

important treebanks and major works for Urdu/Hindi

treebanks. Section 3 compares different treebank design

options to create our treebank. Section 4 describes the

1 The author was affiliated with DHA Suffa University, Karachi when

this work was done.

design principles and a brief description of different

layers of the treebank. Conclusion and Future work is

mentioned in Section 5.

2. Literature Review

There are two major types of syntactic annotation:

phrase structure and dependency structure. The phrase

structure analysis of sentence was introduced by

Chomsky [2]. The first major treebank, Penn Treebank

has phrase structured annotation [3]. The Penn Treebank

was inspiration for many treebanks for other languages.

Penn Treebank (PTB) has around 25 phrase labels.

Figure 1(a) shows a phrase structure of an English

sentence annotated using PTB guidelines. Figure 1(b)

has its representation in bracketed notation. The

bracketed notation is in text format, so it can be

processed by computer applications.

As different languages and different treebanks use

different set of phrase labels in design, Han et. al. [4]

introduced a common tagset after analyzing 25 different

treebanks covering 21 languages. They introduced 9

universal phrase labels namely Noun Phrase (NP), Verb

Phrase (VP), Adjectival Phrase (AJP), Adverbial Phrase

(AVP), Prepositional Phrase (PP), Sentence (S),

Conjunction Phrase (CONJP), Coordinated Phrase

(COP) and others (X).

The other type of syntactic annotation is dependency

structure. Its primary focus in not on the word order or

constituency, but it deals with the syntactic relations

between the words. A dependency structure along with

corresponding phrase structure is presented in figure 1.

The most important milestone is the introduction of

universal dependencies [5]. There are more than 100

treebanks annotated using universal dependencies [6].

2

a.

b. (S

(NP Casey)

 (VP will (VP throw

 (NP the ball))))

c.

Figure 1 : (a)

phrase structure, (b) its bracketed notation and (c)

dependency structure for the English sentence Casey

will throw the ball.

For Urdu (and Hindi), there was no freely available

treebank at the start of this project. There were earlier

works on computational grammar of Urdu (and Hindi).

Urdu Pargram implements major parts of Urdu grammar

using Lexical Functional Grammar (LFG) framework

[7]. An important syntactic structure bank is Hindi Urdu

Treebank (HUTB) [8] that has Urdu corpus annotated

using Panini style dependencies. The dependency

structure can be automatically converted to the phrase

structure. An additional layer of dependencies based on

LFG’s f-structure is also proposed for HUTB [9].

Urdu.Kon.TB [10] is another Urdu treebank that uses

a rich feature based pos tagset and a big phrase tagset.

A parser was also developed using this treebank of 1400

sentences.

3. Comparison and Design Principles

The previous section presented some important

treebanks generally for all languages and specifically

for Urdu and Hindi. In this section, we compare the

approaches used in these treebanks and find which

approach is better for the design of our treebank.

The first question is whether the syntactic bank will

have phrase structure or dependency structure

representation. The dependency structures have become

more popular due to the introduction of universal

dependencies in language processing applications.

However, our team have a bigger goal of creating a text

to speech system and using syntactic information to

predict prosody/intonation of the system.

We find that most of the work related to syntax-

prosody interaction involves phrase structure models

[11],[12] as phrase structure grammar is more

commonly used by linguists. Hence, we decided to

adopt the classical method of phrase structure treebank.

After deciding to create phrase structure treebank, we

analyzed the existing treebanks (described in previous

section) on the basis of following criteria. This analysis

recommends the design principles for our treebank.

1. How is the structure of the tree?

2. What is the granularity of the phrase label?

3. How additional information is encoded?

These criteria are discussed in the following

subsections.

3.1 Structure of Tree

There are many ways to construct parse tree

corresponding to a given sentence. There are linguistic

theories such as X-bar theory that ask for strictly binary

trees. HUTB has binary trees because they are inspired

by X-bar style work.

Other theories and traditions prefer flatter trees

having head and all its dependents on the same level.

Penn Treebank and Urdu Pargram have flat structures

having head and all the adjacent modifiers on the same

level of tree.

The simplicity of annotation scheme to facilitate the

annotator is one of our primary design policies. Hence,

we prefer the flat structures as they are easy to annotate

and many members of treebank community use it for its

simplicity.

3.2 Granularity

The second issue is the granularity of the tags. Some

schemes e.g. Penn Treebank use more phrase tags (27

for PTB). Multiple tags for the same/similar phrases are

used to highlight the difference in structure and/or

words used in the phrase. In PTB, most of the phrases

have two versions, one for the general usage and the

other for the phrases having wh-word. For example,

“my books” is an NP and “whose books” or “how many

books” are WHNP.

The phrase tagset of Urdu.Kon.TB, in this regard, is

inspired by Penn Treebank. It has 26 main tags. Some

of these tags have function subtags. The tags NPQ,

ADJPQ, QWP and SQ etc, are the tags for question

sentences/phrases. Similarly, there are four tags

3

corresponding to the verb complex i.e. VCmain, VP,

VPI and VCP.

The other schemes e.g. Multilingual Tagset, HUTB

and Urdu Pargram does not differentiate the phrases on

the basis of their internal structure or usage. For this

reason, PTB has 27 tags and Multilingual Tagset has 12

tags. So, following our design policy of choosing

simpler annotation scheme, we prefer smaller tagset

approach, and considered Multilingual Tagset as the

starting point.

HUTB also uses a small tagset. We did not use some of

its tags and the reasons are explained in the discussion

of our tagset in section 4.

3.3 Additional Information

Penn Treebank introduced function tags that

concatenate additional information e.g. grammatical

role etc. to the phrase labels. The function part is

attached with the main label by a hyphen. See the

example.

1. (S (NP-SBJ He)

 (VP left

 (NP-TMP yesterday)))

HUTB uses -pred function tag for modeling small

clause. So NP, AP, degP and NumP has -pred suffix e.g.

NP-pred. Similarly, Urdu.Kon.TB uses function tags to

encode case information of the phrase head.

Our treebank used the concept of function tag in a

systematic way (as depicted in example 2 in section 4)

to represent different layers of syntactic and semantic

information.

4. Urdu Treebank Design

The basic design principles of Urdu Treebank were:

(a) a phrase structure bank, as it helps in syntax-

intonation interface. However, a phrase to

dependency convertor is part of the future work.

(b) smaller tagsets, if possible, to help annotators. The

idea of smaller tagset is in line with the universal

phrase labels [4] and propbank [13]

(c) a modular design, so different applications may

retrieve the required annotation information from the

treebank. The encoded semantic roles are not for

immediate use. The parser will ignore this layer,

however they can be used in the semantic parser in

future.

2 This paper presents the design of the treebank and pilot annotation

of 1300 sentences. The further work is mentioned, but that is not in

the scope or not a contribution of this paper.

The Urdu Treebank consists of three layers: phrase

labels, grammatical function and semantic role. The text

is annotated in the form of XML representation. In this

paper, we show the equivalent bracketed notation that is

widely comprehensible. The labels of each bracketed

phrase encode all the three layers of the representation.

The labels of each layer are separated by a hyphen.

Following is the template of annotation scheme.

2. (PhraseLabel-GrammaticalFunction-

Semanti cRole-ChunkId

word1/pos1 word2/pos2 ….

wordn/posn)

The chunkId part is explained in 4.2.9. An example from

English using our representation scheme is following

3. (S (NP-SUBJ-Agent Casey)

(VP will

(VP throw
(NP-OBJ-Theme the ball))))

Following section discusses the details of the corpus

and the layers of annotation.

4.1 POS Tagged Corpus

We used CLE POS tagged Urdu Digest Corpus [14]

for syntactic annotation. The corpus consists of

sentences having unique ids. The corpus was manually

edited to deal the common segmentation problems of

Urdu text The token are separated by space and

multiwords have Zero Width Non Joiner (ZWNJ)

character between its components. The corpus was

tagged by using CLE POS tagset [15].

The tasks of annotation was divided in three steps.

The first step is of pilot annotation for testing and

revising the annotation guidelines. In this step, 200

sentences were annotated. Annotation scheme and

guidelines are revised according to the feedback of the

annotators. In second step 1100 more sentences were

annotated. In the third step, the whole of the remaining

corpus (around 6,000 sentences) will be annotated2.

4.2 Phrase Labels

The first layer of treebank consists of phrase labels.

We are inspired by the small tagset introduced by Han

et. Al [4]. At the design phase, a list of 10 phrase labels

are identified. During the pilot annotation phase two

4

more phrase labels are added to the list. The description

of phrase labels are given below.

4.2.1 S and SBAR. The phrase label S is used for

main/matrix/independent sentences and clauses. SBAR

is used for subordinate clause/sentence. Penn Treebank

has SBAR, SINV and SQ for different types (and word

order) of clauses, however we do not use these labels

that are designed for English syntax. The main reason

for SBAR is that the POS tagset differentiate between

coordinating and subordinating conjunctions. So we

want to keep this distinction in all the layers (if

possible). Some examples of S and SBAR are following.

4. (S vuh[he] chAhtA[want] he[is]

(SBAR kah[that]

(S sEb[apple] kHAyE[eat]))))
'He wants to eat apple.'

5. (NP laRkA[boy] (SBAR jo[who]
(S sEb[apple] kHA[eat]

rahA[progressive] he[is])))
'the boy who wants to eat apple'

4.2.2 VC (Verb Complex). The phrase label VC is used

for verbs, auxiliaries, light verbs and particles/adverbs

of the verbs. The object is not part of verbal complex as

we followed the analysis used in Urdu Pargram [7].

6. (S (NP vuh[he]) (NP kitAb[book])
(VC parH[read] hi[intensifier]
nahIN[not] rahI[progressive]

hE[is]))
'She is not reading the book.'

Urdu has Noun+LightVerb and

Adjective+LightVerb complex predicates [16] e.g. Yad

'memory.noun' kar 'do.verb' for 'memorize' and sAf

'clean.adj' kar 'do.verb' for clean. In our annotation

scheme, the noun or adjective is not the part of VC as

these act syntactically as noun or adjective phrases.

7. (S (NP vuh[he]) (NP sabaq[noun]) (NP

yAd[memory) (VC kar[do]

rahA[progressive] tHA[was]))

'He was memorizing the lesson.'

4.2.3 Noun Phrase (NP). Noun Phrase has noun and its

modifiers, specifiers and intensifiers. The CLE POS

tagset considers the adverbials like andar 'inside' and Aj

'today' as a noun because these are syntactically similar

to nouns. We use the same argument to label the

following as a noun phrase. Following are some

examples of NP.

8. (S (NP vuh[he) bHI[too])

(NP ye[this] acHcHI[good]kitAb[book])

(VC parHtA[read] hE[is]))

'He also reads this good book.'

9. (S (NP tum[you] (NP

kal[yesterday]) (NP andar[inside])
(VC AyE[come] tHE[was]))

'You came inside yesterday.'

4.2.4 AdjP, QP, DMP and ValaP. Adjective Phrase

(AdjP), Quantifier Phrase (QP), Demonstrative Phrase

(DemP) and Vala Phrase (ValaP) are usually (not

always) embedded inside the noun phrase (NP).

One of the goals of annotation guideline is to make

speed of annotation faster, if possible, without

compromising on the quality of

representation/modeling. Hence, it is decided that if the

phrase consists of a single word (e.g. an adjective only)

inside the noun phrase then the annotator will not

enclose the word with the phrase brackets and phrase

label. In example 8, the adjective acHcHI is not enclosed

by AdjP. However, if the adjective has modifier or

intensifier then AdjP will be created. For example:

10. (NP

(AdjP buhat [very] acHCHI[good]

sI[particle]) kitAb[book])

 'very good book'

The similar guideline applies for QP, DemP and

ValaP used inside the NP. If any of these phrases appear

at clause level i.e. directly inside S (or SBAR) then we

always put the bracket even around the single word. See

the following example.

11. (S (NP kitAb[book])

 (ADJP acHcHI[good]) hE[is])
 'Book is good.'

The labels DemP and ValaP were not part of the set

of phrase labels listed in the design phase. However,

the pilot annotation provides the cases for which these

labels are required. Like other pos categories,

demonstrative can also have particles like intensifiers

and focus particles. Hence we use the general rule that

if the category word has some other word attached to it

as a modifier or particle then the whole sequence is

enclosed in the phrase label. See the following example:

12. (NP
 (DMP kOI[any] bHI[intensifier])

bAt[matter.noun])
 'any matter'

The ValaP phrase is used in the constructions

having the pos vAlA (roughly translated as 'one'). See

the examples:

5

13. (NP (ValaP (NP tasvIr vAlI)

kitAb[book]))

 'books with/having pictures'

It must be noted that we introduced ValaP instead of

VP, DMP instead of DP and VC (verbal complex)

instead of VP as the later ones have their formal

definition and usage in different syntactic theories and

nomenclatures. Hence, we used longer or different

names for the new labels introduced in our design.

4.2.5 Pre-and-Postpositional Phrases. Urdu has

postpositions (that follow noun phrase). There are some

borrowed positions from Arabic and Persian [17] that

are rarely used in Urdu. Hence, the phrase labels PP

(postpositional phrase) and PrP (prepositional phrase)

are used in the treebank guideline. The examples are:

14. (PP tum[you] nE[ergative])

 'You'

15. (PP gHar[home] tak[till])

 'till home'

16. (PrP sivAE (NP mErE))

'except me'

It must be noted that neither the pos tagset nor the

phrase labels distinguish between case markers and

postpositions as distinguished in Urdu Pargram. This is

done for the sake of simplicity (at phrase layer) and

similar syntax. The functional difference between nE

and tak is modelled through the grammatical function

layer.

As described earlier, the adverbial nouns like andar

'inside' and Upar 'above' etc. are the head of the noun

phrase as in the following example:

17. (NP(PP gHar[house] kE[of])

andar[inside]))

 'inside the house'

4.2.6 Adverbial Phrase. The adverbial phrase has

adverbs as the head word. For example:

18. (S vuh[he] (ADVP bA_AsAnI[easy])

(VC AyA[came]))

 'He came easily.'

In Urdu, adverbial function is usually expressed by a

prepositional phrase or noun phrase. For example, the

following sentence has a PP. However, both (18) and

(19) will the same grammatical function in the second

layer of annotation.

19. (S vuh[he] (PP (NP (AsAnI[easy]

sE[with])) (VC AyA[came]))

 'He came easily.'

4.2.7 X. The phrase label X is used for fragments that

cannot have a phrase label from the above list.

4.2.8 Conjunction. The conjunction is modelled by

enclosing the components into a parent phrase label.

For example,

20. (NP (NP sEb[apple]) yA (NP

Am[mango]))

 'apple and mango'

We do not introduce any phrase label e.g. conjunction

phrase for enclosing the conjuncted components.

4.2.9 Discontinuous Phrases. We find examples of

discontinuous phrases during the pilot annotation phase.

The discontinuous NP in Urdu was earlier discussed in

[17]. Consider the following example.

21. (S (NP vuh[he]) (VC#1 rO[cry]
(ADVP kiyoN[why]) (VC#1 rahA hay))

'Why is he crying ?'

In this example, the VC is not contiguous. We assign the

same chunk id to all the components of discontinuous

phrases.

4.3 Grammatical Function

The second layer of treebank is of grammatical

function. As depicted in (2), the grammatical function

follows the phrase label separated by a hyphen. The set

of grammatical functions is inspired primarily by lexical

functional grammar. Following is a brief introduction of

grammatical functions.

4.3.1 Subject and Object. The syntactic subject and

object have the corresponding grammatical functions.

See the following example.

22. (S (NP-SUBJ laRkI[girl])
 (NP-OBJ kitAb[book[)

 (VC paRHtI[read] hE[is]))

 'The girl reads book.'

Universal Dependencies have three different labels

for subject. nsubj (nominal subject), csubj (clausal

subject) and npaassubj (nominal subject of passive

construction). However, we do not follow this scheme

because the information about nominal (noun phrase) vs

clause is already represented through phrase label.

6

4.3.2 Oblique (OBL). The oblique grammatical

function (OBL) is used with those compulsory

arguments that are not the syntactic subject or object e.g.

the source/goal of the motion verbs, non-canonical

second argument [18] and genitive marked argument in

N+V complex predicate.

23. (S (NP-SUBJ vuh[she])
 (NP-OBL gHar[home])

 (VC ponhcHI[reached]))
 'She came home.'

24. (S (NP-SUBJ vuh[she])

(PP-OBL (NP sANp[snake])

sE[from])

(VC dartI[fear] hE[is]))

'She fears snake.'

4.3.3 Adjunct (ADJ). The non-mandatory arguments

are marked as ADJ (adjunct). Any adverbial function,

whether syntactically realized as NP, PP or ADVP are

marked as having ADJ grammatical function. For

example, both ADVP and PP in examples (18) and (19)

in 4.2.6 (Adverbial Phrase) are marked as having ADJ.

4.3.4 COMP. The dependent clauses have COMP

grammatical function. We do not differentiate between

COMP and XCOMP for the sake of simplicity. For

example:

25. (S (NP-SUBJ vuh[he])

 (VC chAhtA[want] he[is])
 (SBAR kah[that] (S-COMP (NP-SUBJ

 sEb[apple]) (VC kHAyE[eat]))))
 'He wants that he eats apple.'

4.3.5 Predicate Link (PDL). The grammatical function

PDL (Predicate Link) is used in the copular

constructions. For example:

26. (S (NP-SUBJ laRkI)girl])
 (ADJP-PDL aqalmand[wise])

 (VC hE[is]))

 'The girl is wise.'

27. (S (NP-SUBJ vuh[he])

 (NP-PDL sadar[president])

 (vC banA[made])

 'He became president.'

4.3.6 INTJ. This grammatical function was introduced

as the result of pilot annotation. It occurs with NPs

having addressees. For example:

28. (S (NP-INJ bETI[daughter])

(NP-SUBJ tum[you]) (NP-ADJ

kab[when])

(VC AI[come]))

'Daughter, when did you came?'

4.3.7 POF (Part of Function). Part of function marks

the noun or adjective part of the complex predicate. In

4.2.2, we mentioned that these noun/adjective are not

phrasal part of the VC (Verb Complex). However these

are functional related with the verb, hence we

introduced a functionaltag to encode this relation. The

example (7), described in 4.2.2, with the grammatical

function layer becomes:

29. (S (NP-SUBJ vuh[he])
(NP-OBJ sabaq[noun])

(NP-POF yAd[memory) (VC kar[do]

rahA[progressive] tHA[was]))

'He was memorizing the lesson.'

4.3.8 Other grammatical functions. For the annotation

guideline, we introduced only the sentence/clause level

grammatical functions. The other types of grammatical

function (e.g. modifiers/specifiers of the noun) are not

part of the scheme. Our assumption is that there is one

to one correspondence between such phrase labels and

grammatical functions i.e. the grammatical function

ADJ should follow the phrase label ADJP used inside

NP and the grammatical function SPEC (as used in LFG

framework) should attach with DMP etc.

4.4 Semantic Role

Semantic Role is the third layer of treebank. We

used the Propbank roles, as these are (a) specially

designed to have a small set of roles and (b) an Urdu

corpus has already been tagged using these roles [19]

and Urdu specific roles e.g. for dative subjects, causer

and intermediate agent were already introduced. For

example:

30. (S (NP-SUBJ-ARG0_GOAL Ali ko[dtv])

(NP-OBJ-ARG1 THanD[cold])

 (VC lagi[hit])
 'Ali felt cold.'

31. (S (NP-SUBJ-ARGA Ali nE[ergative])

(NP-OBL-ARG0_MNS Ahmed sE[from])

(NP-OBJ-ARG1 sEb[apple])
 (VC katvayA[cut.caus])

 'Ali caused Ahmed to cut

apple.'

5. Conclusion and Future Work

In this paper, we describe the design of a multilayer

annotation scheme of Urdu corpus and then annotation

of 1,300 sentence using this annotation scheme. The

immediate purpose of this treebank is to create parse

trees for the Text to Speech System.

7

We used small sets of tags to annotate the phrase,

grammatical functions and semantic roles. Most

importantly, we introduced demonstrative phrase,

Interjection grammatical function and modeling of

discontinuous phrases.

As further work, more sentences are annotated and

probabilistic parser is created. However, the creation of

the parser is not in the scope or contribution of this

paper.

9. References

[1] J. E. Grimes and B. F. Grimes (eds.), Ethnologue. Volume

1: Languages of the World; Volume 2: Maps and Indexes. 14th

edition, SIL International, Dallas, 2000.

[2] N. Chomsky, Syntactic Structures, Mouton, The Hague,

1957.

[3] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz,

“Building a large annotated corpus of English: the Penn

Treebank”, Computational Linguistics, 19(2), 1993.

[4] A. Han, et al., “A Universal Phrase Tagset for Multilingual

Treebanks”, Chinese Computational Linguistics and Natural

Language Processing Based on Naturally Annotated Big

Data, Springer International Publishing, 2014.

[5] Marie-Catherine De Marneffe, et al, “Universal Stanford

Dependencies: A cross-linguistic typology” in Proceedings

of LREC 2014, 2014.

[6] J. Nivre, et al., “Enhancing Universal Dependency

Treebanks: A Case Study”, In Proceedings of the Second

Workshop on Universal Dependencies (UDW 2018), 2018.

[7] M. Butt, et. al., “The Parallel Grammar project”, In

Proceedings of COLING 2002. Workshop on Grammar

Engineering and Evaluation, 2002.

[8] R. Bhatt, et al., “A multi-representational and multi-

layered treebank for Hindi/Urdu”, In Proceedings of the Third

Linguistic Annotation Workshop, 2009.

[9] A. Hautli, et. al. “Adding an Annotation Layer to the

Hindi/Urdu Treebank”, Linguistic Issues in Language

Technology, 7(3), Stanford: CSLI Publications, 2012.

[10] Q. Abbas, Building Computational Resources : The

URDU.KON-TB Treebank and the Urdu Parser, KOPS,

Konstanz, 2014.

[11] M. Steedman, “Information Structure and the Syntax–

Phonology Interface”, Linguistic Inquiry, 31, 2000.

[12] D. Büring, “Syntax, information structure, and prosody”,

The Cambridge Handbook of Generative Syntax, Cambridge

University Press, 2013.

[13] P. Kingsbury and M. Palmer, “From TreeBank to

PropBank”, In Proceedings of LREC 2002, 2002.

[14] S. Urooj, et al. “CLE Urdu Digest Corpus”. In

Proceedings of Conference on Language and Technology

2012 (CLT12), 2012.

[15] T. Ahmed, et al., The CLE Urdu POS Tagset, In

Proceedings of LREC 2014, 2014.
[16] M. Butt, et. al., “Complex predicates via restriction”, In

Proceedings of the LFG03 Conference, 2003.

[17] G. Raza, Subcategorization Acquisition and Classes of

Predication in Urdu, KOPS, Konstanz, 2011.

[18] T. Ahmed, Spatial Expression and Case in South Asian

Languages, KOPS, Konstanz, 2009.

[19] M. Anwar, et. Al., A Proposition Bank of Urdu, In

Proceedings of LREC 2016, 2016.

8

9

A Sentiment Lexicon for Urdu

Sahar Rauf, Kinza Rahim, Maryam Khalid, Ehsan ulHaq, Kashif Javed

Center for Language Engineering, Al-Khwarizmi Institute of Computer Sciences University of

Engineering and Technology Lahore, Pakistan

firstname.lastname@kics.edu.pk

Abstract

Sentiment analysis is a data mining technique, which

measures the inclination of people’s opinions. Recent

studies have shown that the sentiment lexicon can be

developed using automatic and manual tagging

techniques. The seminal works on Urdu lexicon done so

far do not actually denote a broad Lickert scale for data

tagging and also do not cover all the open word classes.

The current study aims to develop a sentiment lexicon

and test its validity using manual and automatic

methods. The dictionary-based method is used to design

this lexicon using three authentic Urdu dictionaries. The

data was tagged on a five point lickert scale i.e. -2 to +2

using the formulated guidelines. The lexicon is

composed of four-word classes namely nouns, verbs,

adjectives and adverbs. Once the lexicon was developed

using manual tagging techniques it was tested both

manually and automatically. The manual testing yielded

an inter annotator agreement of 75% while the

automatic testing included the comparing of the

sentiments of the developed lexicon with the UCI

Corpus. The result yielded a percentage accuracy of

84%. The lexicon was validated for its accuracy by both

the results.

1. Introduction

Sentiment analysis (SA) is one of the fastest growing

fields of Natural Language Processing (NLP) and text

mining under the umbrella of Artificial Intelligence (AI)

[1]. SA measures the inclination of people’s opinions

through NLP, computational linguistics and text

analysis. Sentiment analysis has emerged from human

behavior of decision making by consulting friends or

family about their opinions in daily life.

SA can also be used to extract and analyze subjective

information from Web that includes social media

comments, online reviews and other similar text

sources. The analyzed data helps in calculating the

public's sentiments or opinions toward certain product,

people or ideas and reveal the contextual polarity of the

information [2].

Two main approaches can be used for the sentiment

analysis i.e. machine learning approach and lexicon-

based approach. In machine learning approach, the data

is classified by training a classifier on the labeled data

[3]. In the lexicon-based approach, lexical items from

dictionary are assigned positive and negative polarities.

The lexicon is composed of a defined list of sentiment

words along with their intensities and polarities [4]. The

lexicon-based approach involves the calculation of

sentiment from the semantic orientation of phrases and

words that occur in a sentence [5]

Lexicon based approach is considered as a simple and

reliable as compared to machine learning approach

since it avoids the need to develop a labeled training set.

Moreover, it is also difficult to ensure the correctness of

labeled data in machine learning approach. To develop

a sentiment lexicon, some researchers use dictionary or

corpus-based approaches. Corpus based approaches

involve the determining of the patterns of co-occurring

of words to determine the sentiments of the words and

phrases. The dictionary-based approach helps to

compile the sentiment words and use the antonyms and

synonyms in WordNet to determine the sentiments of

the lexical items [6].

Depending on the nature of the data and choice of the

users, the process of sentiment analysis can be

performed on three different levels. These three levels

of analyses are; 1) document level sentiment analysis, 2)

aspect level sentiment analysis and 3) sentence level

sentiment analysis [3]. In Sentence level sentiment

analysis, each sentence is classified as positive, negative

or neutral. Here the sentence is considered as a separate

unit expressing a single opinion.

The aim of our research is to develop an Urdu

sentiment lexicon marked on a five-component Likert

scale ranging from -2 to +2. The developed lexicon

comprehensively covers the four major word classes i.e.

nouns, verbs, adverbs and adjectives. Conclusive

guidelines are developed to annotate the data with

different polarities. The study also aims to test the

accuracy of the Urdu sentiment lexicon by using manual

and algorithm-based approaches.

The current study is organized as follows: Section 2

labeled as literature review highlights some seminal

10

research works related to the topic, Section 3 highlights

the methodology undertaken for the research. Section 4

covers the results of data analysis, Section 5 provides

the discussion of the results, and Section 6 concludes the

research and discusses the future dimensions.

2. Literature Survey

Due to unavailability of resources in other languages,

sentiment analysis in multiple languages often involves

transferring knowledge from one resource-rich

language to other resource-poor languages [7]. Majority

of multilingual sentiment analysis systems employ

English lexical resources such as SentiWordNet. A

popular approach towards SA is to use a machine

translation system to translate texts from languages into

English. The original text is translated into English, and

then English SA resources such as SentiWordNet are

employed [7]. However, translation systems pose

various problems such as; sparseness and noise in the

data [8]. Sometimes, translation system fails to translate

essential parts of the original text which can possibly

reduce the text’s original sentiments [9].

SentiWordNet assigns WordNet synsets to three

categories: positive, negative, and neutral by using

numerical scores ranging from 0.0 to 1.0 to indicate the

degree to which the terms included in the synset belong

to the corresponding category. SentiWordNet is built by

performing quantitative analysis of glosses for synsets

[10]. One drawback of SentiWordNet is that it assigns

polarity at the syntactic level but fails to assign polarities

to phrases such as “getting angry” or “celebrate a party”

which correspond to concepts found in the text to

express positive or negative opinions [11].

Moreover, multilingual lexical resources specific to

sentiment analysis are also developed. The NTCIR

corpus of news articles in English, Chinese, and

Japanese is made up of information on sentiment

polarity and opinions for sports and political news data

[12].

Different techniques can be used in the extraction and

tagging of lexicons. The extraction of SentiUnits using

shallow parsing techniques in order to create a sentiment

lexicon can be considered as one of the most authentic

method [13]. SentiUnits are expressions which carry

sentiment information in the sentence.

Cambria et al. [11] proposed a SenticNet, lexical

resource based on a multi-disciplinary approach to

identify, interpret, and process sentiment in the Internet.

SenticNet is more suited for a concept-level sentiment

analysis and can also be utilized to evaluate texts based

on common-sense reasoning tools that require large

input. It employs a Sentic computing methodology, in

particular, to evaluate texts at document or sentence

level. It performs the task of building a collection of

concepts, including common-sense concepts, supplied

with positive or negative polarity labels. Unlike

SentiWordNet, SenticNet does not assume a neutral

polarity. It guarantees high accuracy in polarity

detection with the availability of multilingual tools as

well.

Many researchers use Semantics in creation of

lexicon for performing SA. For the SA of twitter, a

lexicon-based approach is presented called SentiCircles

[14]. This approach considers the patterns of words that

occur mutually according to different contexts, get their

semantics and then update the sentiment lexicon

accordingly by updating the pre-assigned polarity and

strength of these patterns. Sentiment Knowledge is

encoded into pre-trained word vectors for improving the

performance of SA, where the proposed method is based

on external sentiment lexicon and a convolution neural

network.

Remus et al [15] worked with German inquirer, which

is a German sentiment lexicon supplied with positive

and negative labels. It was constructed using Google

translate by translating words and terms into the German

language. The words without any sentiment were

removed from the German Inquirer. SEL is a Spanish

emotion lexicon that contains 2036 words marked with

the Probability Factor of Affective use (PFA) as the

measure of their expression of basic emotions: joy,

anger, fear, sadness, surprise, and disgust, on the scale

of null, low, medium, or high. This lexicon was marked

manually by 19 annotators who had to agree on a certain

threshold for a label on the word to be included in the

lexicon. Probability Factor of Affective use was

developed by the authors of SEL to incorporate

agreement between annotators in the decision-making

process of labeling the sentiment on a word.

Mobarz et al. [16] created a sentiment Arabic lexical

Semantic Database (SentiRDI) by using a dictionary-

based approach. The database has many inflected forms,

i.e., it is not lemma-based. Moreover, the authors

reported insufficient quality and plan to try other

alternatives.

Different researchers have also developed Urdu

sentiment lexicons. An Urdu corpus, labeled with

semantic role by using cross lingual projection, is

developed [17]. Syed [18] proposed an innovative

sentiment annotated lexicon for Urdu based on

SentiUnits. Syed started by extracting SentiUnits i.e.

positive and negative expressions, from a given Urdu

text, using shallow parsing technique. Hashim and Khan

[1] developed a sentiment analyzer based on Urdu

Nouns and Adjectives for sentence level sentiment

analysis. Hashim used Urdu news data from headlines

by using a lexicon based on nouns and adjectives.

Mukhtar and Khan [19] used a lexicon-based approach

11

for sentiment analysis of Urdu blogs, using a publicly

available Urdu Sentiment Lexicon [20]. They included

adjectives, nouns and negations; as well as verbs,

intensifiers and context-dependent words. The

developed Urdu sentiment analyzer applies rules, use

lexicon and perform Urdu sentiment analysis by

classifying sentences as positive, negative or neutral.

A lot of work has been done previously on the

difficulties, strategies and the utilization of sentiment

analysis of English language. The sentiment analysis

techniques designed for English language cannot be

utilized for Urdu language due to its different script,

morphological and syntactic patterns. Because of the

different structure of Urdu language, other languages

SA cannot be employed for resolving the issues of Urdu

language. Moreover, Urdu Sentiment Lexicons

developed so far have covered the categories of nouns,

verbs and adjectives while little or no attention has been

paid on adverbs. However, this study stands out as it

proposes comprehensive guidelines for developing an

Urdu sentiment lexicon. This research also proposes a

five component Likert scale ranging from -2 to +2

whereas the sentiment lexicons for Urdu language

developed so far do not actually put forward such a

comprehensive five level Likert scale. A maximum of

three scale i.e. -1 to +1 Likert scale for Urdu sentiment

Lexicon has been anticipated so far. Moreover, this

developed lexicon comprehensively covers the four

major word classes i.e. nouns, verbs, adverbs and

adjectives.

3. Methodology

This section elucidates the research procedure,

sampling technique and the aspects of data analysis tool

and procedure.

The research is mixed method in nature and the

research design is cross sectional. The methodological

procedure is divided into two phases:

i. Development of Urdu Sentiment Lexicon

ii. Testing of Urdu Sentiment Lexicon

3.1. Development of Urdu Sentiment Lexicon

Manual tagging techniques such as dictionary-based

methods were used to develop Urdu Sentiment Lexicon.

For the manual tagging of the data, a comprehensive set

of guidelines were also developed. The established

guidelines provide an elaborative framework of tagging

various word classes namely: nouns, verbs, adjectives

and adverbs. Five point Likert scale comprising of -2, -

1, 0, 1, 2 values was used to assign polarities to lexical

items. The development of sentiment lexicon was

further divided into two stages:

3.1.1. Data Extraction. At the first stage the lexical

items to be tagged are extracted from a selected corpus

[21] and around 35 M words were extracted. The sample

undertaken for the development of Sentiment Lexicon

included around 21556 words which mark the most

frequently occurring words from the selected corpus

which were already assigned with POS tags [21]. The

extracted POS categories with their numbers are

presented in Table 1 :
Table 1 POS categories and number of words in each

category

POS Categories Number of words

Nouns 15826

Verbs 3097

Adjectives 1986

Adverbs 646

3.1.2. Data Tagging. At the second stage, the extracted

lexical items were tagged according to the developed

guidelines by a team of linguists. Three authentic Urdu

dictionaries [22] [23] [24] were also used to analyze the

lexical items. The postulates of the formulated

guidelines are as follows:

1. Assign higher polarities to the words that give clear

sense of positivity or negativity while assign lower

polarities to words that show rather vague sense.

Neutral should be only those words that do not

show any orientation.

2. Words that show some positive or negative sense

without any context should be tagged according to

their prior polarities. Moreover, words that depict

strong positivity or negativity are assigned stronger

polarities i.e. +2 or -2. For instance, the polarity of

/ تدوس / /friend/ /d̼o:st̼/ is +2 and the polarity of /دشمن/

/enemy/ /d̼uʃmən/ is -2.

3. Words having multiple parts of speech tags whose

polarities change according to the POS category are

assigned respective polarity for each tag. For

instance; the polarity of the word / محسن / /mohsɪn/

(Noun) name will be assigned a 0 polarity, while

/ حسنم / /friend/ /mohsɪn/ (Adjective) will be marked

as +2.

4. The polarity of the words increase with the increase

in the degrees of adjectives. For instance, the words

 pathetic/ /bəd̼t̼əri:n/ will/ /بدترین / bad/ /bəd̼/ and/ /بد/

be assigned -1 and -2 polarities respectively. For

adjectives ending at 'ی', orientation of the root word

should be checked and assign the polarity

accordingly. For instance the adjectives like; /قومی/

12

/national/ /kɔ:mi:/ and / /اندھیری /dark/ /ənd̪ʰe:ri:/

will be assigned 1 and -1 polarities respectively.

5. The singular words will have low polarity strength

whereas; their plurals will have higher strength of

polarity. Polarity increases with the increase in

numbers. For instance, the singular noun /مشکل/

/difficulty/ /muʃkɪl/ and its corresponding plural

form /مشکلات/ /difficulties/ /muʃkɪla:t̼/ /will be

assigned -1 and -2 polarities respectively.

6. Nouns that represent ranks, titles or respect will be

tagged with higher polarities. For example, /صاحب/

/Sir/ /sa:hɪb/ and / حضرت /hazrat/ /həzrət̼/ will be

assigned +2 polarity.

7. Words showing sense of certainty either positive or

negative will be given higher polarities and those

showing uncertainty will be assigned lower

polarities. For instance, the adverbs /اچانک/

/suddenly/ /ətʃa:nək/ and /روزانہ/ /everyday

/ro:za:na:/ will be assigned a polarity of -1 and 1

respectively since /اچانک/ represents a sense of

uncertainty and /روزانہ/ represents a sense of

certainty.

8. Verbs that convey some proper meaning as a word

will be given higher polarities as compared to the

words that themselves do not give proper meaning

and need associating words with them. For instance

 stays/ /ræht̪:/ will/ /رہتی/ study/ /pəɽhna/ and/ /پڑھنا/

be assigned +2 and +1 polarities respectively since

 has proper meaning attached to it whereas /پڑھنا/

 needs associating words to deliver its /رہتی/

complete meaning.

3.2 Testing of Urdu Sentiment Lexicon

The developed Urdu Sentiment Lexicon was tested

both manually and automatically:

3.2.1. Manual testing process. Manual testing process

comprised of two steps:

1) 10% reference of the untagged original data was

sampled automatically and marked manually by an

expert linguist according to the guidelines

2) Another linguist assigned polarities to the original

data set. Then the results of 10% tagged reference

were compared with the polarity assigned original

data to depict an inter annotator agreement between

the two data sets. A threshold of 75% accuracy was

established to check the quality of the data. The

tagged source data found below the above-

mentioned accuracy was sent back to the linguist

for the further review.

3.2.2 Automatic testing process. For the purpose of

analyzing the reliability of our lexicon, a baseline

system was also developed and the accuracies were

computed. The lexicon was tested using a subset of 500

sentences extracted from Roman Urdu sentiment dataset

UCI machine learning repository [25] .These 500 roman

Urdu sentences were then transliterated into Urdu

before being processed. Following algorithm was used

for automatically tagging the sentiment of a given input

sentence S :

a) Remove special symbols and punctuations from

the sentence S

b) Compute total positive words (tpw) in a sentence

S

c) Compute total negative words (tnw) in a sentence

S

d) Now assign sentiment to S using the following

rules

i. If tpw>tnw, assign positive sentiment to S

ii. If tnw>tpw, assign negative sentiment to S

iii. if tpw=tpw, assign neutral sentiment to S

After the application of the above algorithm, the

accuracy of the lexicon was determined.

4. Results

This section elaborates the results obtained after the

lexicon is manually and automatically tested.

 A lexicon of around 21556 words was developed.

The developed lexicon was manually tested and a 75%

inter-annotator agreement was achieved. Around 25%

data showed a mismatch of polarities due to the

subjectivity of the annotator and the influence of the

pragmatic stance during the data tagging process.

For the further validation of the lexicon, an automatic

process was also used. A sample of 500 sentences

(already assigned with a positive, negative or a neutral

sentiment) from UCI corpus was taken. Then, the

sentences were automatically tagged using our lexicon

and the marking of lexicon and UCI corpus was

compared. Through this process, an overall accuracy of

84.0% was achieved. Both manual and automatic testing

results validated the lexicon for its validity and accurate

nature.

5. Discussion

Since the lexicon was tagged on a five-point Likert

scale which implies that word can be assigned a

13

sentiment of being positive, very positive, neutral,

negative or very negative. The polarities of the lexical

items can greatly be influenced by the annotators’

subjectivity, opinion, pragmatics and contextual domain

in which the word is occurring. For instance, words

like; /حکومت/ /government/ /hʊku:mət̪/ can have

different orienta tion. If the annotator is a supporter of

the current government then he would mark it as +1 but

if he is not a supporter so he will mark it as -1.

Also, if the adjective /تیز / /fast/ /t̪e:z/ is considered then

the word would carry a positive sentiment but, in the

sentence,

 /وہ بہت تیز ہے/

vo: bo:hət̪ t̪e:z hæ:

she very cunning is

She is very cunning,

The same word would carry a -2 sentiment due to the

negative sense enacted by the word. Due to all these

subjectivity problems, it was instructed to the linguists

to not to think the contexts of the words rather mark

them in their dictionary meaning that's why three online

dictionaries were used for the analysis.

In addition to this, there were certain words whom

meaning varied by the addition of diacritics. For

instance the word سونا can either be سُونا/su:nɑ:/ desolate/

or سونا /sleep/ /so:nɑ:/. Also, the word classes vary due

to the presence of diacritics where سُونا is an adjective

and سونا is a verb. That is why, we used POS tagging and

separated the words into their different classes to mark

them easily and get the inter- annotator accuracy.

The data was also validated using a corpus-based

approach and the polarity of the whole sentence was

determined by the sum of the polarities of individual

lexical items in the sentence. The testing also posed the

good accuracy of 84%. However, there were certain

sentences where the polarities assigned by the algorithm

of the developed Urdu Lexicon and already assigned

polarities of the UCI corpus showed a discrepancy. For

instance,

ے آئے/کر ک الله الله /

/Thank God they came/

/əlla:h əlla:h kərke: a:e:/

The above sentence had a negative sentiment attached

in the UCI corpus while the sentiment assigned by the

developed lexicon using automatic means was positive.

Since, we being the Muslims attach positive sentiment

to الله i.e +2 and same was assigned in the Sentiment

lexicon. So, a mismatch was found. The reason might be

that they marked the sentence in the contextual sense but

we did not consider the context while marking the

lexical items.

6. Conclusion and Future Directions

The sentiment lexicons hold a great importance in

defining the semantics of particular lexical items. The

current study defines the development of an Urdu

sentiment lexicon. The current research can be regarded

as authentic since it consists of a wide repository of

lexical items (nouns, adjectives, verbs and adverbs)

marked on -2 to +2 Likert scale. Also, the manual testing

results yielded an accuracy of 75% and the accuracy was

further validated by the automatic testing method where

the percentage accuracy attained was 84%. The findings

of this lexicon can further be applied on bigrams

including collocations and phrasal verbs and the

repository of the words can be enhanced. However, this

data can also be further validated using machine

learning techniques in future.

The developed lexicon can also be used to create a

business intelligence system and can provide aid in the

sentiment analysis of a particular corpus, which can

include online reviews, feedbacks and twitter

comments. The opinion mining of news data can also be

executed through it. Moreover, this lexicon can be

integrated in any programming language to develop an

automated sentiment analysis system.

Since the lexicon was automatically tested and an

overall accuracy of 84% was achieved, this number

could be further improved by modification of the

algorithm and the percentage accuracy of the lexicon

can be taken to 95% and above.

Different dimensions can further be explored e.g,

polarity of modifiers, negations, pronouns and lexically

borrowed words from English can be studied. The

population of adjectives in the lexicon can be increased

to further improve the lexicon since the adjectives hold

a great stance in defining a sentiment.

7. References

[1] F. Hashim and M. A. Khan, "Sentence Level Sentiment

Analysis using Urdu Nouns," in Conference on

Languauge and Technology, Lahore, Pakistan, 2016.

[2] R. Eskander and O. Rambow, "SLSA : A Sentiment

Lexicon for Standard Arabic," in Proceedings of the 2015

Conference on Empirical Methods in Natural Language

Processing, 2015.

[3] B. Liu and L. Zhang, "A Survey of Opinion Mining and

Sentiment Analysis," in Mining Text Data, Boston,

Springer, 2012.

[4] P. Gonçalves, M. Araújo, F. Benevenuto and M. Cha,

"Comparing and combining sentiment analysis

methods," in Proceedings of the first ACM conference on

14

Online social networks, Boston, Massachusetts, USA,

2013.

[5] M. Taboada, J. Brooke, M. Tofiloski and K. Voll,

"Lexicon-Based Methods for Sentiment Analysis,"

Computational Linguistics, pp. 267-307, 2011.

[6] X. Ding, B. Liu and P. Yu, "A Holistic Lexicon-Based

Approach to Opinion Mining," in 15th ACM SIGKDD

international conference on knowledge discovery and

data mining, 2008.

[7] K. Denecke, "Using SentiWordNet for multilingual

sentiment analysis," in IEEE 24th international data

engineering workshop, 2008, 008.

[8] Balahur and M. Turchi, "Multilingual Sentiment

Analysis using Machine Translation?," in Proceedings of

the 3rd workshop in computational approaches to

subjectivity and sentiment analysis, 2012.

[9] M. Bautin, L. Vijayarenu and S. Skiena, "International

sentiment analysis for news and blogs," in ICWSM,

2008.

[10] . V. Singh, R. Piryani, A. Uddin and P. Waila, "Sentiment

analysis of textual reviews; Evaluating machine learning,

unsupervised and SentiWordNet approaches," in 5th

international conference on knowledge and smart

technology (KST). IEEE, 2013.

[11] E. Cambria, R. Speer, C. Havasi and A. Hussain,

"SenticNet: A Publicly Available Semantic Resource for

Opinion Mining," AAAI fall symposium: commonsense

knowledge, p. 02, 2010.

[12] Y. Seki, D. K. Evans and L.-W. Ku, "Overview of

Multilingual Opinion Analysis Task at NTCIR-7," in

Proceedings of the 7th NTCIR workshop meeting on

evaluation of information access technologies:

information retrieval, question answering, and cross-

lingual information access, 2008.

[13] D. Jayraj and S. Andhariya, "Sentiment analysis

approach to adapt a shallow parsing based sentiment

lexicon," in International Conference on Innovations in

Information, Embedded and Communication Systems,

2015.

[14] H. Saif, Y. He, M. Fernandez and H. Alani, "Contextual

Semantics for Sentiment Analysis of Twitter," Inf

Process Manage , pp. 5-19, 2016.

[15] R. Remus, U. Quasthoff and G. Heyer, "SentiWS-a

publicly available German-language resource for

sentiment Analysis," in LREC, 2010.

[16] H. Mobarz, M. 7Rashwan and I. AbdelRahman,

"Generating lexical Resources for Opinion Mining in

Arabic Language Automatically," in The Eleventh

Conference on Language Engineering (ESOLE), Cairo-

Egypt., 2011.

[17] S. Mukund, R. Srihari and E. Peterson, "An information–

extraction system for Urdu—a resource poor language,"

ACM Transactions on Asian Language Information

Processing, pp. 1-43, 2010.

[18] S. Afraz Z, M. Aslam and A. M. Martinez-Enriquez,

"Lexicon based sentiment analysis of Urdu text using

SentiUnits," in Mexican International Conference on

Artificial Intelligence, Mexico, 2010.

[19] N. Mukhtar and M. A. Khan, "Effective lexicon based

approach for Urdu sentiment analysis," Artificial

Intellegence Review, 2019.

[20] Athar, "Chaoticity," 14 June 2012. [Online]. Available:

https://chaoticity.com/urdu-sentiment-lexicon/

[21] M. Farooq and B. Mumtaz, "Urdu Phonological Rules in

Connected Speech," in Conference on Language and

Technology, Lahore, Pakistan, 2016.

[22] "Urdu Lughat," 2007. [Online]. Available:

http://udb.gov.pk/.

[23] "Online Urdu Dictionary," 2002. [Online]. Available:

http://www.cle.org.pk/oud.

[24] "Urdu Lughat," 2013. [Online]. Available:

http://urdulughat.info/.

[25] Z. Sharf and S. Rehman, "UCI Machine Learning

repository," IJCSNS International Journal of Computer

Science and Network Security, vol. 18, no. 1, January

2018.

[26] K. Dashtipour, S. Poria, A. Hussain, E. Cambria, A.

Hawalah, A. Gelbukh and Q. Zhou, "Multilingual

Sentiment Analysis: State of the Art and Independent

Comparison of Techniques," Cognitive Computation, pp.

757-771, 2016.

[27] M. Humayoun, H. Hammarström and A. Ranta, "Urdu

morphology, orthography and lexicon extraction," in 2nd

Workshop on computational approaches to Arabic script-

based languages, Stanford, 2007.

[28] M. Ijaz and S. Hussain, "Corpus Based Urdu Lexicon

Development," in Conference on language technology

(CLT 2007), 2007.

[29] Muaz, A. Ali and S. Hussain, "Analysis and

Development of Urdu POS Tagged Corpus," in 7th

Workshop on Asian language resources, Suntec,

Singapore , 2009.

[30] R. Tatman, "Sentiment Lexicons for 81 Languages,"

2017. [Online]. Available:

https://www.kaggle.com/rtatman/sentiment-lexicons-

for-81-languages.

[31] U. Mirchev and M. Last, "Multi-document

summarization by extended graph text representation and

importance refinement," Innov Doc Summ Tech Revolut

Knowl Underst Revolut Knowl Underst, 2014.

15

A Study of Consonant Cluster Phonotactics of English Borrowed Words in

Urdu Language

Muhammad Shaban Shoukat, Muhammad Bilal, Maria Fatima Dogar

University of the Punjab

{s.shoukat7, m.bilal4767}@gmail.com, maria.ier@pu.edu.pk

Abstract

 Whenever a word is borrowed it is resyllabified

according to the phonology of the language it is

adopted. This research paper identifies resyllabification

and discusses the phonotactics of the resyllabification

of the consonant clusters in the English borrowed words

of Urdu language. For this purpose, words having

consonant clusters were selected from Urdu dictionary.

All existing CC combinations at onset and coda

positions were determined and most common word for

each CC cluster combination was selected. The stimulus

for data collection contained the target combination

word in a sentence. The data was collected from

respondents with different gender, age and educational

background from Lahore, Pakistan. The data was

analyzed by three researchers and PRAAT was used

wherever the researchers found any confusion. It is

found that epenthesis occurs at onset position except

when the consonants in the consonant clusters have

same place of articulation and /j/ comes at post-initial

position in 2-cluster combination.

1. Introduction

English has developed an important part in

communication throughout the world. In Pakistan,

English is learnt and spoken as a second language as

communication in English is a basic need of majority of

jobs in Pakistan [13]. Due to this importance of English

language, Urdu language has borrowed many words

from English.

Every language has its own phonological rules.

English follows its own phonotactic rules and stress

patterns while Urdu has its own. In accordance to

rhythm, English is stress-timed language [14]. The

stress pattern of Urdu and English are also different.

Rehman (2015) in his book points out some interference

of L1 on second language which is English in case of

Pakistan. He argues that the difference can be seen at

two levels. One is the segmental features and the other

at non-segmental features.

 In segmental features, we see the replacement of

certain sounds with others like the replacement of dental

fricatives /θ/ and /δ/ with /th/ and /d/ or the non

aspiration of /p,t,k/. in case of non-segmental features,

we see a difference of rhythm in Pakistani English as

language in south Asian countries are syllable-timed

while English is stress-timed language [13]. This

difference leads us to the conclusion that English is

different from Urdu on Phonological grounds. Thus the

phonotactic rules for Urdu are also different from

English. Syllable templates of Urdu as described by

Nazar (2002) are different from that of English. Urdu

language has only one consonant cluster at the coda

position [11] while in English, consonant clusters can be

seen both at onset and coda positions [14]. As the

phonotactics rules of every language are different, this

difference might have effect on the pronunciation of a

second language by a non-native speaker. The current

study was aimed at discussing the study of consonant

cluster phonotactics of English borrowed words in Urdu

language. The study is specific with the resyllabification

of consonant clusters that occurs due to borrowing of

English words in Urdu language.

2. Literature Review

 Whenever cultures come in contact with each other,

they affect the languages which are seen by the

phenomenon of borrowing [7].

2.1. Borrowing

 Borrowing is the process in which linguistic items are

imported from one linguistic system to another. The

history of borrowing can be traced back to the work of

Haugen in 1950. Haugen has defined borrowing (as

cited in Hoffer, 2002) as the “the attempted reproduction

in one language of the patterns previously found in

another”. The types of borrowing can be explained with

reference to original pattern or model. If the borrowed

item is similar to the model, it is termed as import. While

if it is an inadequate version of the model i.e. the original

speaker would not recognize the borrowed term, it is

substitution. Borrowing can be discussed further by the

terms used to express borrowing. The terms used in

mailto:s.shoukat7,%20m.bilal4767%7d@gmail.com
mailto:maria.ier@pu.edu.pk

16

borrowing relate to the process rather than the result

(Hoffer, 2002).

Hoffer (2005) citing Hockett (1958) defines these terms

as follows:

Loanwords: In this the speaker may adopt the idea or

term and the source language for each.

Loanshifts: In this the native word is used in another

linguistic system with new meaning.

Loan-transation: “The native language uses an item-

for-item native version of the original”.

Loan-blends: Loan-blends consist of two elements.

One element is a loanword and the other element is from

native language [8]

2.2. Resyllabification

 Both English and Urdu possess different syllable

structure and phonotactics. Like all other languages,

Urdu also imposes certain restrictions on the

syllabification of borrowed words. Thus these English

words have become part of Urdu language after

undergoing the process of resyllabification [1].

However Trask (1996) defines resyllabification as “a

process which applies during a derivation to move

segments from one syllable to another” [15]. Usman,

Farooq, & Masood (200) in their article concludes that

words of English when spoken in Urdu, they undergo

resyllabification and are resyllabified according to the

templates and phonological rules of Urdu.

English and Urdu contain different syllable patterns [1].

2.3. Syllable

 Syllables are considered to be the basic and an

important phonological unit. The definitions of syllable

seem ambiguous but a native speaker can easily identify

the number of syllables in a word by just tapping the

fingers. This shows the importance of the syllable in the

rhythm of speech. Roach defines syllable in two ways.

He defines a syllable phonetically and phonologically.

On phonetic grounds, syllables are defined as the sounds

having a centre with little or no obstruction to the flow

of air and which have relatively loud sound. The other

way of defining a syllable is on phonological grounds.

By phonological grounds we mean as to how a syllable

is defined with respect to neighboring sounds. This

takes the review of looking at the possible combinations

of sounds in the production of a syllable. The study of

the possible combination of phonemes in a language is

termed as phonotactics. This involves the study of what

can come at the beginning of a syllable, at the centre and

at the end of the study of how many entities can come in

combination to form a part of syllable [14]. The centre

of the syllable is said to be loud and in other words more

prominent than other sounds in the syllable. This is also

termed as the theory of prominence which points out

that some sounds in an utterance are more prominent or

sonorous than other sounds. This forms the sonority

hierarchy of sounds [4]. Trask also defines syllable by

chest-pulse theory. According to which syllable is

defined as an utterance produced as a result of single

respiratory movement or a single opening and closing of

respiratory tract [15]. A syllable is also defines as a

smallest unit of speech which consists of a single vowel

or can exist in combination with consonants [9].

2.4. Structure of Syllable

 The syllable can thus have an optional consonant at

the initial and final position with a mandatory vowel at

the centre of the syllable. This gives vowel a CVC

structure. The division of syllable that is now usually

followed is the division of syllable into onset and rhyme,

with rhyme further divided into nucleus and a coda as

shown in figure 1 [15]. The following terminology is

widely used:

Onset: the opening segment of a syllable, coda: the

closing segment of a syllable and nucleus: the central

segment of a syllable [5]. The structure of syllable can

thus be drawn as follows:

 Syllable

 Onset Rhyme

 Nucleus Coda

 (Roach, 2003)

2.5 Syllable structure of English

 English follows the same syllable structure. It differs

on the basis of the different phonotactics rules.

Roach (2003) discusses the structure of syllable of

English by starting with what comes at the onset of

English words. According to roach, if a word start with

a vowel, we can say that the word has zero onsets. And

if the word has a single consonant at the start of the

syllable or we can say that if the word has one consonant

before the peak of the syllable, the consonant in the

onset position will be referred as initial consonant.

In case of a consonant cluster having two consonants

(CC) at the onset position, two sorts of combinations are

Figure 1: Syllable Structure

17

seen in English. One combination includes the

combination of s with a small set of words /p, t, k, f, m,

n/. The position of the s is named as pre-initial

consonant position and the other words are said to be at

the initial consonant position. The other sort of

combination is when we see words like /pleɪ/, /traɪ/.

These types of words begins with a set of about fifteen

consonants followed by a small set of words /l, r, w, j /

which are referred as post initial consonants.

In case of three consonant clusters, we have a distinct

number of consonants that can come at the three

positions; s at the pre-initial position, p, t, k at the initial

consonant position and l, r, w, j at the post-initial

consonant position [14].

A cluster of four consonants is seen at the end of the

syllable. If we have no consonant at the coda position,

we can say that there is a zero-coda. If there is just one

consonant after the vowel at the end of the syllable, we

call that consonant as final consonant. All consonant

phonemes can take the position of the final consonant

position except h, r, w, j. With a consonant cluster of

two consonant at the end of the syllable we can have two

combinations:

a) Pre-final consonant + final consonant

b) Final consonant + post-final consonant

The pre-final consonant position can be taken by a small

set of consonants: m, n, ŋ, l, s. The examples of words

having pre-final and final combination are /bʌmp/,

/bent/, /bænk/ etc. Similarly post-final position can be

taken by the consonants: s, z, t, d, θ. The examples of

final and post-final combination are /bets/, /bedz/,

bægd/ etc. we can have a combination of four

consonants at the end of the syllable. With a

combination of three consonants, we can have the

following combinations:

a) Pre-final + final + post-final-consonant

b) Final + post-final 1 + post-final 2

Pre-final, final and post-final combination is seen in the

following words: helped /helpt/, banks /bænks/. Post-

final 1 and post-final 2 is found in the words: fifths

/fɪfθs/, next /nekst/. With a consonant cluster of four

consonants, we can have the following combinations:

a) Pre-final + final + post-final 1 + post-final 2

b) Final + post-final 1 + post-final 2 + post-final

3

The examples of (a) are seen in twelfths /twelfθs/

prompts /prɒmptd/ while (b) is found in sixths /sɪksθs/

and texts /teksts/. [14]

2.6. Syllable structure of Urdu

 Urdu is the national language of Pakistan and

is spoken by almost 104 million people all around the

world [6]. The vocabulary of Urdu is the result of the

absorption of words and phrases from other languages

and Urdu easily modify the words according to its own

grammar [11]. The modification of these words is done

by the process of resyllabification. For taking into

account the process of resyllabification, we first need to

study the syllable structure of Urdu language. Ghazali

(2002) in his article writes that there is no as such

significant research on the phonology of the Urdu

language. However considerable work has been done on

the syllable templates of Urdu. Nazar (2002) lists ten

syllable templates that are found in Urdu language:

1. CVV

2. CVC

3. CVVC

4. CV

5. CVCC

6. VV

7. VVC

8. CVVCC

9. V

10. VCC

 He also writes that Urdu uses both long and short

vowels. He uses VV for a long vowel and V for a short

vowel in the syllable. He, therefore, divides the above

mentioned syllable templates into two groups based

upon the presence of the vowel present.

CVV CV

CVVC CVC

CVVCC CVCC

VV V

VVC VC

 VCC

 Urdu language has a simple onset having a single

consonant at the onset position. The presence of a short

vowel at the start of the syllable is less favorable. At the

start of the syllable, mostly long vowel exists. He also

writes that Urdu also restricts a short vowel at the end

of the word. The most popular templates in Urdu are

CVV and CVC. At coda position, Urdu language has a

consonant cluster of two consonants occurring together.

Even this syllable template exists a little in Urdu

language. The frequency mentioned by Nazar (2002) for

the syllable template CVCC and CVVCC is 3.2 and 0.3

percent respectively which is much less as compared to

the frequency percentage of the syllable templates CVV

and CVC which is 39 and 20 percent respectively. Nazar

(2002) declares the template CVVCC as super-super-

heavy syllable. Nazar (2002) has worked out just the

syllable templates of Urdu language [12].

Ghazali (2002) also lists eleven syllable templates of

Urdu in his article ‘Urdu Syllable Templates’:

1. CV

2. CVC

18

3. CVCC

4. CVV

5. CVVC

6. CVVCC

7. V

8. VC

9. VCC

10. VV

11. VVC

 He however discusses that Urdu only has six syllable

templates. The other syllable templates are derived

ones. He further elaborates that there is no as such

restriction on the consonants that can occur in the

template CV however in templates if the consonant in

the onset and coda position can be same if they belong

to the set /t̪ /, /t /, /l/, /s/, /b/, /m/, /p/, /tʃ/. he further

elaborates that by the reference of Hussain (1997) that

when there are two consonant in a cluster, the first

consonants is limited to voiceless fricatives or nasals

and second consonant in that cluster will be limited to

stops. Ghazali (2002) also enlists the consonants that

can take the position of the first consonant in that

consonant cluster: / l, z, r b, k, t̪ /. He also explains that

CVV is the most frequent used syllable template used in

Urdu. The possible reason that he gives to the question

as to why CVV is more common as compared to CVC

despite the fact that CVC is a complete template is the

fact that saying CVV is easier as compared to the

template CVC. In his conclusion, Ghazali (2002) argues

that Urdu has only has six fundamental syllable

templates (CV, CVC, CVV, CVCC, CVVC, CVVCC).

Among these templates, CVV is most frequently spoken

(37%) while template CVVCC is least (0.4%) used [6].

3. Methodology

 The current investigation deals with the borrowed

words having consonant clusters. A qualitative research

was considered more suitable as a research design. The

research was conducted in Lahore, Punjab where mostly

Urdu is spoken as a native language and English is

spoken as a second language. Owing to this importance

of the language, it has affected the lexicon of Urdu

language. A number of words from English language

have become part of the lexicon of Urdu language. The

population of the research was all those speakers who

speak Urdu as their native language and learn English as

second language. The sample was selected on the basis

of the convenience in University of the Punjab. People

from different fields of education were selected. On an

average, data was collected from 8 students belonging

to different educational background and four

respondents were selected from the clerical staff of

different institutes who have very less chance of

speaking English as a second language.

As in qualitative research the main aim of data

collection is saturation. After collecting data from this

small sample, it was seen that there was no difference of

results i.e. saturation was reached. The data collected

from all the respondents was same. Words were selected

from Urdu Dictionary “firoz-ul-lughat Jamiya” by Feroz

Sons and a daily Urdu newspaper “Express”. From all

the borrowed words, the borrowed words having

consonant clusters were selected for the study. These

borrowed words were selected on the assumption that

place of articulation has any role on epenthesis in the

consonant clusters. Each combination of consonant

cluster was selected according to the manner of

articulation. For pre-initial and initial position,

combination of /s/ with every possible phoneme was

selected. In case of initial and post-initial position, first

the combination of voiced and voiceless plosives were

seen with /l, r, w, j/ and one word for each combination

was selected. The same was done for all manner of

articulation i.e. fricatives, affricatives, nasals, lateral

approximants and approximants.

 The possible combinations of voiced and voiceless

consonants were seen with post-initial consonants /l, r,

w, j/ and one word having one of the combination was

selected. The same was done at the coda position. After

collecting these words, Urdu sentences were made using

these words to avoid any interference of the English

language during the pronunciation of these words. A

closed room was selected for the recordings of the

respondents to avoid any disturbance of noise. The

respondents were asked to read the phrases thrice and

they were recorded for the analysis of the pronunciation

of the selected words. The pronunciation of the selected

words was analyzed by three Urdu speaker researchers.

In case of confusion PRAAT was used in analyzing any

word that created confusion during the analysis of the

results.

4. Analysis

 The results of the research can be divided in to four

groups:

i. Consonant clusters having different place of

articulation:

 The words having two consonants in consonant

clusters at onset position showed epenthesis between

them. The words that showed resyllabification in

consonant clusters are speech, skirt, plaster, smuggle,

sweeper, brown, and glass. The resyllabified

pronunciation of the above mentioned words are:

/səpi:tʃ/, /səkɜ:t/, /səmʌɡ(ə)l/, /səwiːpər/, /bəraʊn/ and

/gəlɑ:s/ respectively. In case of “skirt” out of twelve

19

respondents eight respondents inserted a vowel between

/s/ and /k/ and pronounced the word as /səkərt/.

When the consonant cluster has three consonants in it,

consonants having different place of articulation

showed epenthesis in the first two consonants and a

syllable break after them. The words in the data that

showed this phenomenon are spring /səp.rɪŋ/, screen

/sək.ri:n/, squash /sək.wɒʃ/.

ii. Consonant clusters at onset position having same

place of articulation:

 The words having consonant clusters in which the

consonants shared the same place of articulation did not

show epenthesis or resyllabification in them. This

phenomenon was specific to only alveolar consonants.

The words selected that showed these results are: staff,

snow, slow, string. All the respondents pronounced

these words without any epenthesis.

iii. Consonant clusters at onset position having /j/ at

post-initial position:

 The words having /j/ at post-initial position as in tube,

duty, music, news, and lubrication also did not show any

epenthesis or resyllabification in consonant clusters. All

the respondents pronounced these words without any

epenthesis.

iv. Consonant clusters at coda position:

 The words having two or three consonant in

consonant cluster at coda position did not show any

epenthesis in coda position consonant clusters. The

words that showed this result are: jump, tent, belt, risk,

brand, gold, golf, conference, games, lunch, gift, script,

tax, product, thanks, accounts, next, funds, torch. In all

these words the consonant cluster structure remained

intact.

Only one combination out of the selected words showed

epenthesis at coda position i.e. /lb/. The word selected

for this combination was bulb which all respondents

pronounced as /bʌləb/. This strange result requires a

detailed study.

5. Discussions

 The research was started with the hypothesis that

manner of articulation plays a role in the

resyllabification of the consonant clusters. After

collecting the data, the data showed that manner of

articulation has no relation with resyllabification in

consonant clusters.

 The comparison of syllable structure of Urdu and

English shows that Urdu also has a consonant cluster at

coda like English. By looking at the results of the data

during the research, it was seen that at coda position, a

native Urdu speaker does not change the structure of the

consonant cluster at coda position. The structure of the

coda in the syllable of English borrowed words remains

intact i.e. no epenthesis is seen at coda position in the

English borrowed words in Urdu language. However the

results show one exception in the form of epenthesis at

coda position in “bulb” which all the respondents

pronounced as /bʌləb/. This result requires a detailed

study to find out the reason behind the epenthesis which

was absent in all combinations in words selected

according to manner of articulation.

 However the research shows that epenthesis takes

place at onset position with some exceptions. The

consonants in the consonant cluster having same place

of articulation did not show epenthesis in the consonant

clusters as was seen in staff, snow, slow, street, and

string. All these words have consonant clusters at onset

position having consonants that have same place of

articulation. It can be said that when consonants in a

consonant cluster have same place of articulation, the

tongue has to put less effort if the production of those

sounds. We then see no insertion of vowel between

consonant sounds that share same place of articulation.

Another interesting finding is seen when /j/ comes at

post-initial position, no epenthesis is seen. This research

is in contrast with the research conducted by Ahmed,

Anwar, & Iqbal (2017) where they gave the result that

an Urdu speaker always adds a vowel between

consonant clusters at onset postion [1].

6. Conclusion

The findings of the research are:

1. The analysis of the words shows that epenthesis,

which is the major reason of resyllabification in

consonant clusters, is seen at onset position e.g. in

case of words spring, skirt, shrink, etc. but in case

of consonant clusters at coda position no epenthesis

is seen like in words jump, belt, brown, glass, golf,

games, tax etc except when the consonant clusters

contains consonants /lb/ which all respondents

pronounced as /ləb/ as the word used during the

research ‘bulb’. This strange result requires a

detailed study.

2. In case of resyllabification at onset position, it is

found that

 Whenever the consonants in the consonant

clusters have same place of articulation which

is specific to alveolar position we see no

epenthesis as was seen in words street, slow,

staff, smuggle.

 The other combination where we see no

epenthesis is the combination of sounds with

/j/. Whenever /j/ comes at post-initial position

no epenthesis is seen. This phenomenon was

seen in words news, duty, music, view, and

human.

20

7. References

[1] Ahmed, S., Anwar, B., & Iqbal, T. (2017). Language

Contact: a study of syllabic change of English Borrowed

Wirds in Urdu. International Journal of English Linguistics ,

140-147.

[2] Ashby, M., & Maidment, J. (2008). Introducing Phonetic

Science. Singapore: Cambridge University Press.

[3] Collins, B., & Mees, I. M. (2013). Practical Phonetics

and Phonology. Routledge.

[4] Cruttenden, A. (2011). Gimson's Pronunciation of

Englsih. Hodder Education.

[5] Crystal, D. (2008). Dictionary of Linguistics and

Phonetics. John Wiley & Sons, Incorporated.

[6] Ghazali, M. A. (2002). Urdu Syllable Templates.

[7] Hoffer, B. L. (2002). Language Borrowing and Language

Diffusion: An Overview. Intercultural Communication

Studies XI:4 .

[8] Hoffer, B. L. (2005). Language Borrowing and Language

Diffusion: An Overview. Intercultural Communication

Studies XI:4 .

[9] Kenworthy, J. (2000). The Pronunciation of English: A

workbook. Oxford University Press.

[10] Lass, R. (1984). Phonology: An Introduction to Basic

Concepts. Cambridge.

[11] Nazar, N. (2002). Syllable Templates In Urdu language.

Annual Report of Center for Research in Urdu Language

Processing (CRULP) .

[12] Nazar, N. (2002). Syllable Templates In Urdu language.

[13] Rehman, T. (2015). Pakistani English. National Institute

of Pakistan Studies, Quaid-iAzam University, Islamabad.

[14] Roach, P. (2003). Englsih Phnetics and Phonology.

Cambridge.

[15] Trask, R. L. (1996). A Dictionary of Phonetics and

Phonology. Routledge.

[16] Usman, M., Farooq, S., & Masood, A. (n.d.).

Syllabification od English Words when Spoken in Urdu. 49-

53.

[17] Usman, M., Farooq, S., & Masood, A. (2002).

Syllabification of English Words when Spoken in Urdu.

Annual Report of Center for Research in Urdu Language

Processing (CRULP) , 49-53.

[18] Yavas, M. (2011). Applied English Phonology. Wiley-

Blackwell.

21

An Unsupervised Spoken Term Detection System for Urdu

Hafiz Rizwan Iqbal, Saad Bin Zahid, Agha Ali Raza

Information Technology University, Lahore, Pakistan

{rizwan.iqbal, mscs15019, agha.ali.raza}@ itu.edu.pk

Abstract

 Over the past 40 years, Keyword Spotting (KWS)

remained in focus by both academia and commercial
companies. However, the majority of these systems were
developed and evaluated for rich resourced languages
like English, German, etc. This is because it requires

thousands of hours of transcribed speech data to train
KWS systems, which is not available for most of the
under-resourced languages like Urdu. To address this
challenge, the area of zero-resource or unsupervised

speech processing emerged, i.e. to extract meaningful
features and learning language structures directly from
unlabeled raw speech data. This paper presents a
completely unsupervised KWS system that searches all
of the instances of an input keyword in reference audio

file(s), given the keyword present in the reference file(s),
without requiring any labeled data and speech
recognition. PRUS corpus was used to train GMM
without any supervision. Input keyword and reference

audios Gaussian Posteriorgrams were compared using
Segmental Dynamic Time Warping (SDTW). Top N
minimum distances were taken to obtain the closely
related segments of the reference file, which are more
probable to be the desired keyword. The proposed

system showed the precision up to 91.50 % and 79.20 %
for cross-speaker and same speaker respectively.

1. Introduction

Spoken Term Detection (STD) a.k.a. Keyword

Spotting (KWS) is a task of automatically detecting a

spoken term (referred to as Query) along with its

location within a continuous speech. It is on the rise due

to its variety of applications such as shortlisting of

audios from large repositories of online lectures like

Coursera [27], conference recordings (e.g. TED talks),

radio and television archives. Wake-word applications

(to activate or initiate a voice interaction with devices),

phone call monitoring and routing are some other

important applications of KWS.

STD remained a hot research topic for more than

four decades, and a lot of methods have been proposed

which can be categorized into 1) Large Vocabulary

Continuous Speech Recognition methods (LVCSR) –

used for audio indexing and speech data mining, 2)

Keyword/Filler Methods a.k.a. Acoustic Keyword

Spotting and 3) Query-by-Example (QbyE) method.

However, the majority of these techniques were

developed and evaluated for resource-rich languages

like English, German, etc. because of their reliance on

thousands of hours of transcribed audio data. For

example, in traditional Keyword/Filler models,

word/phone level transcribed data is required to train a

speech recognizer [8] [12] [21].

Unfortunately, such resources are not available for

many of the world’s languages such as Urdu. With the

recent development of the internet, media technologies

and smartphones, it is quite easy to obtain audio data

than the transcription work. It’s not only a time taking

activity; but also requires a reasonable level of linguistic

knowledge for performing annotations. This is the

reason that most of the academic and commercial

organizations develop STD systems for a few hundred

languages [26].

As we are living in a digital and communication age

in which digital media can be produced and gathered at

a pace that far surpasses our capacity to transcribe it, a

common question “how much can be directly learned

from the speech signals alone, without any

supervision”? In addition to this, speech applications

are becoming popular and available for many languages

on the cost of increasing method complexities and their

dependency on transcribed resources [23], it is difficult

to envision that the required resource collections would

cover all 7,000 human languages around the globe [2].

This makes a related query that “what unsupervised

techniques can be performed well in contrast to the

traditional supervised training techniques”. This creates

a related question “what techniques can be performed

well using unsupervised techniques in comparison to

more conventional supervised training methods”. Our

motivation to answer these two questions lead us to

explore the development of an unsupervised STD

system for a low resource language Urdu.

Urdu is the 6th most popular Asian language, the

national language of Pakistan and the authorized

language of 6 Indians states with more than 175 million

speakers all over the world [31]. As the national

language of Pakistan, most of the educational material,

radio and television programs, and conversational

22

audios are available in Urdu. This plethora of available

speech files creates a need for an efficient KWS for

Urdu language. Limited efforts have been made in the

past [17], but unfortunately, there are no publicly

available automatic KWS for Urdu.

This paper presents an unsupervised STD system for

Urdu language. To train the model from an unlabeled

speech data, a Gaussian Mixture Model (GMM) was

used to represent each audio frame with a Gaussian

Posteriorgram (GP) vector, and a Segmental Dynamic

Time Warping (SDTW) method is used to compare the

GPs of the spoken query term (hereinafter called

Needle) and the target speech utterance (hereinafter

called Haystack) [36] to find one or more occurrences

of the needle.

In addition to this, the proposed KWS system

searches all of the instances of the needle with their

locations in the haystack(s) without doing speech

recognition, given the keyword is present in the

reference file. For this purpose, a Phonetically Rich

Urdu Speech (PRUS) Corpus [37] used to cluster

speech frames without any transcribed data. Top N

minimum distances were then taken to get the closely

related segments of the haystack file with the

assumption that these speech frames are the most

probable to be the desired keyword. The proposed

system showed the precision up to 91.50% and 79.20%

for cross and the same speaker respectively, given the

needle is present in the haystack.

2. Literature Review

 STD has been a hot research area over the past 4

decades but in recent years STD has received increased

attention by both academia and commercial

communities [38]. Chen et.al [3] summarizes STD past

research efforts and encapsulates proposed methods in

three categories.

 The first category defines Large Vocabulary

Continuous Speech Recognition (LVCSR) based

methods. LVCSR based methods have been extensively

used in audio data mining and indexing and found to be

well accurate for a variety of tasks [39]. Continuous

speech files are transcribed into words using Automatic

Speech Recognizer (ASR) and then text-based

searching techniques used for efficient spotting of the

required keywords [40].

 The second type of STD methods are Keyword or

Filler methods aka Acoustic Keyword Spotting, models

the keywords and non-keywords using Hidden Markov

Models (HMMs) and spotting is made through the

decoding graphs where keywords and fillers appear in

parallel [42] [43] [44]. This type of KWS mostly used

in scenarios where keywords are pre-defined and

speech data comes in real-time. Such types of

applications are like voice commands and wake word

applications (e.g. Hey Siri, Ok Google, etc.). Ketabdar

et.al [14] proposed a system that used the HMMs

posterior based scoring approach for keyword and non-

keyword elements [7]. For each frame, the state

posteriors are combined with the posteriors of keyword

and non-keyword to identify the keyword for each

frame resulted in identifying the presence of the

keyword in the whole utterance.

 Query-by-Example (QbyE), is the third type of

techniques developed for the development and

evaluation of STD systems. QbyE is one of the earliest

KWS methods [32], have two main steps including 1)

template representation – how audio files of needle(s)

are to be represented (e.g. in the form of lattices or

posteriorgram feature vectors, etc.), and 2) template

matching – how needles are to be matched with the

haystack to find the desired needle. Various research

efforts have been over the past decades [28] [33] [34]

for unique template representation methods and

variants of Dynamic Time Warping (DTW) [20] used

for template matching phase [26].

 The recent resurgence of Neural Networks (NN) as

Deep Neural Network (DNN) gives a high rise to the

KWS research area. Recently, Abdulkader et.al [1]

proposed a model for KWS in narrowband audio, for

computationally constrained devices by making use of

DNNs, cascading, multiple-feature representations, and

multiple-instance learning. In order to reduce the rate of

false positives, they trained two classifiers on two

different representations, Mel Frequency Cepstral

Coefficient (MFCC) and Perceptual Linear Prediction

(PLP) features. Moreover, Chen et.al [3] proposed a

novel QbyE-STD method using Long Short-Term

Memory (LSTM) based feature extractor. They showed

that their presented KWS approach has low

computation cost with high precision, can be efficiently

used for small computational power devices.

 Although, all of the above described methods shown

to be very effective for the KWS task, assume the

availability of large quantities of labeled speech data for

training and testing of complex statistical language and

acoustic models. For instance, one major drawback of

LVCSR based KWS systems is Out-Of-Vocabulary

(OOV) words, which is the main reason that LVCSR

based methods best performed for well-resourced

languages [30][39][40]. Similarly, Keyword/Filler

based methods require prior knowledge of keywords

and non-keyword elements to build special decoding

graphs [3]. Chen et.al [3], to train DNN based KWS

system, 19,000 audio files from 200 individuals used as

positive examples whereas for negative examples a

repository of audio samples of various meeting

recordings were used. QbyE techniques normally take

thousands of examples of needles, decoded by using

ASR to acquire their lattice representation as templates

and make detection decisions by comparing them

23

against the haystacks. Moreover, the available

techniques are computationally expensive due to their

base on ASR. Therefore, these KWS methods were not

suitable in low-resource contexts, and the reasons

commercial firms focus on a few hundred languages of

the world.

 Transcription of the speech files, a major barrier in

producing resources for under-resourced languages

because it is not only an expensive process but also a

time-consuming task. To address this challenge, the

area of zero-resource or unsupervised speech

processing emerged, by extracting meaningful features

and learning language structures directly from

unlabeled raw speech data [9][11][26][33][35]. With

the advancements of Internet and multimedia

technologies, it is quite easy to get audio data without

transcription which makes it possible to develop speech

processing solutions for under-resourced languages

such as Urdu.

 In the past, there are limited research efforts for the

development of KWS for Urdu language. Irtza et.al [17]

reported a KWS for Urdu language using filler

modeling to compute non-keyword elements. A

phoneme recognizer (PR) was used to model all phones.

The audio input file is processed using PR and KWS, an

achieved overall accuracy of 94.59%. Another work

[45] also has been carried out for Urdu KWS task, but

was developed only for five words of Urdu and

achieved an accuracy level of 98.1%.

 As far as our background knowledge and literature

review, currently there is no completely unsupervised

publically available KWS system developed for Urdu

language because there are very limited standardized

audio dataset which can be used for the development

and evaluation of the KWS for Urdu language. Keeping

in view the high demand of Urdu KWS system, we have

developed a completely unsupervised QbyE-STD

system (using the baseline approach proposed in [26])

by using the currently limited available gold-standard

resources [37].

3. Methodology

 We have developed an unsupervised STD system for

Urdu that output all the occurrences of a needle (Q) in a

given haystack (X), provided the input keyword (i.e.

needle) is already present in the reference audio file (i.e.

haystack). Our approach is most similar to the one

proposed in [26] with the difference that we have used

this approach and tune the parameters for Urdu

language which is more phonetically rich than the

English. Instead of using any phoneme recognizer, raw

speech files were modeled using a Gaussian Mixture

Model (GMM) without any supervision and get

Gaussian Posteriorgram (GP). Segmental DTW

(SDTW) was used to compare the distance between Q

and X and generate the list of minimum distances in

descending order.

 Figure 1 illustrates the abstract level architecture of

the developed KWS for Urdu. The acoustic model was

trained, resulted in GPs of the training data. GMM was

applied to get GPs of both of the Needle Q and haystack

X. SDTW window was moved over the X and get

occurrences (x1, x2...) of Q in X. This task is done

without doing any explicit speech recognition.

Figure 1: High-level architecture of the system.

3.1. Gaussian Mixture Model (GMM)

 Posteriorgram is basically a probability vector which

is used to represent the probabilities of the Gaussian

components in a given speech frame. It is mostly used

in the phonetic posteriorgram. Formally, if we represent

speech by n frames:

𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑛) (1)

The Gaussian probability vector is defined as in [26]:

𝐺𝑃(𝑆) = (𝑞1 , 𝑞2, … , 𝑞𝑛) (2)

 Figure 2 demonstrates the process of computing

GP vectors of both Q and X. Acoustic model was

obtained by applying GMM on each frame of each

audio file in the training data, to get a raw GP vector of

each frame. This becomes a critical task when you do

not have any labeled data. As reported in [26], training

was performed by assuming that there are the same

labels on all frames of the dataset which induces a

problem of not discriminating between phonetic units in

the posteriorgrams vector. Probability distribution on a

large mass is concentrated on some dimension and the

remaining dimensions have very little probability. To

solve this problem, a speech/non-speech detector was

applied to the training data by extracting the MFCC’s

and then GMM on them.

24

Figure 2: Computing Gaussian Posteriorgrams

Vectors using GMM

 Each element in GP(s) is representing a vector

which can be calculated by using GMM. For example

any qj = (P(c1jsi),P(c2jsi),−−−,P(cmjsi),), where c is

representing the components of GMM and m is the size

of Gaussian components. In this case, there are 45

Gaussian components which clustered the training data

into 45 clusters. For needle Q and haystack X,

probabilities were computed with respect to 45 clusters

resulted in the probability vector of size 45 for each

frame. Hence, the GP matrix M size is number of frames

time’s Gaussian components (Matrix Size (M) = No. of

frames ∗ Gaussian components)

 For both audio files of needle Q and haystack X, each

speech file divided into windows aka frames of 25 msec

along with the overlapping step size of 10 msec, to

avoid missing any information of the signal at the

window boundaries. For each frame, the probability

vector of size 45 was obtained by passing it through the

GMM processor to make it GP vector. Figure 3 provides

the visualization of needle Q framing and its respective

GP vector with 45 GP elements. Similarly, the

probability vector of size 45 for haystack X will be

computed, and the visual representation of file X is

similar to Q file.

Figure 3: Visualization of needle file.

3.2. Segmental Dynamic Time Warping

(SDTW).

 SDTW is the modified version of well renowned

DTW algorithm [20], and has demonstrated its success

in unsupervised pattern discovery in audio files [26]

[45] [47]. It works by finding the distance between the

elements of both (needle and haystack) signals and then

finds a path with minimum distance between these

elements. To find Q in X, SDTW was applied to GP

vectors of both Q and X. The distance between two GP

vectors computed using equation (3):

𝐷 = −𝑙𝑜𝑔 (𝑝. 𝑞) (3)

 Where p and q are two posteriorgram vectors. As

both p and q are probability vectors, dot product was

used as a similarity measure to find the distance

between them. By applying SDTW, there is a need to

handle the following two constraints: 1) Adjustment

window condition and 2) the step length of the start

coordinate of the DTW search [26]. Fixation of the

adjustment window size will restrict the shape and

ending coordinate of the warping path, but if use

different starting coordinates then the warping path will

be automatically in the diagonal regions of the DTW

grid. Therefore, we used overlapping window strategy

and every time move window (adjustment window size)

R steps for the next search. The reason for using the

overlapping window is to avoid redundant computation

and to check the warping path across the boundary of

segments. Size of Q is fixed in this case and just need to

care about the segments of the X. Window will be

moved R steps forward in X and no of warping path (by

equation (4)) will come as an outcome, where each path

represents the warping between Q and X.

25

(𝑛−1)

𝑅
 (4)

3.3 System Flow

 Figure 5 demonstrates the flow of the reported Urdu

KWS system. The steps are as follows:

1. Raw input speech of both Q and X given to the

system.

2. Remove the silence from Q and X by using Voice

Activity Detector (VAD), because while

comparing Q with the frames of X, the silence was

also compared ended up in false results.

3. MFCC (i.e. 13 coefficients) vectors are extracted

from Q, X and training data.

4. GMM is applied to the MFCC vectors of training

data (audio file of about 1 hour speech) to make the

optimum number of phonetic clusters.

5. GP vectors (as shown in Figure 3) of MFCCs are

calculated for both Q and X.

6. By taking overlapping frames from the GP vector

of Q and X, SDTW is applied using the dot product

(cosine similarity [15]) as the distance measuring

method.

7. Results are sorted in ascending order of cost.

Figure 5: The system flow diagram

4. Experimental Setup

4.1. Types of Experiments

 Two types of experiments were performed including

1) Same Speaker – training and testing audio files are

in the voice of the same speaker, and 2) Cross Speaker

– training audio files speaker is different from the test

audio files speaker. For the same speaker experiments,

15 words (i.e. needles) were selected whereas for cross

speaker experiment, 2 words were selected.

4.2. Dataset

 For the development and evaluation of the proposed

KWS system for Urdu language, PRUS [20] corpus was

used. It is not as larger as the other available benchmark

speech corpora for English (e.g. TIMIT [48],

Librispeech [49], etc.), but for Urdu it is the only

publically phonetically rich (covers almost all of the

Urdu language sound) gold standard corpus. It contains

708 audio files in .wav format, in total 90 minutes of

Urdu speech.

4.3. Training and Testing Data

 For the same speaker experiments: for each needle,

all of the audio files in the dataset were used for training

of the GMM except for those files contained the selected

needle in the respective experiment. For instance, the

word “پاس” (occurred in 8 audio files out of 708) is

selected as a needle in experiment number 1. GMM will

be trained in those 700 audio files which do not contain

the selected needle. Now, out of the 8 files having the

needle in each file, 7 files will be selected as haystack

files whereas needle word will be extracted from the

remaining 1 audio file.

For cross speaker experiments: all of the 708 audio files

were used to train GMM, whereas 2 words were

recorded from another speaker as a needle.

4.4. Evaluation Measures

 To evaluate the developed unsupervised KWS for

Urdu language, Precision (P) was used as an evaluation

measure because of the constraint “needle(s) must be

present in the haystack(s)”. This implies that only true

positives and false positives can be computed for the

proposed system. We have P@N [8]: the precision of

the top N hits, where N is the number of occurrences of

a needle in the haystack.

5. Results and Analysis

 The summarized results of the experiments for same

and cross speaker are shown in Table 1 and Table 2

respectively, where N shows the number of needles’

occurrences, P@N shows the precision of finding N

number of Q instances in X, and P@3 represents the

precision of locating Q in those X files which contains

3 occurrences of Q. Similarly P@5 and P@10 indicates

precision of respective X files. Cells with value ‘NA’

show that there is no X available with the required

number of occurrences for that specific Q. The last row

26

in both tables shows the average precision of all

experiments.

 It is clear from Table 1 that the average P@3 (82.30

%) outperforms whereas the mean P@10 (76 %)

performed worse than all other. It can also be seen that

the average P@N (79.20 %) is comparative to that of

P@5 (80 %). It is clear from the average precision

results and individual keyword results that the precision

decreases as the number of occurrences of a needle

increases. Another possible reason for this precision

degradation could be the middle vowels, as GMM

performed best on 45 phonetic clusters although there

exist 67 different phonemes in Urdu language.

Table 1: Summarized experimental result for same

speaker.

Needle N P@N P@3 P@5 P@10

 NA 0.83 0.83 0.72 8 پاس

کیا 28 0.7 0.75 0.6 0.55

 0.71 1 1 0.9 26 بعد

ںینہ 15 0.71 0.42 0.5 0.62

 NA 1 1 1 6 جاتا

 NA 0.71 0.75 0.75 6 صاحب

ریغ 5 0.6 0.625 0.6 NA

 0.9 1 1 0.85 23 ساتھ

 NA 0.55 1 0.75 6 والے

 NA 0.71 0.5 0.6 6 پہلے

لئےیک 14 0.73 0.75 0.71 1

 NA 1 1 1 6 جانے

 0.71 1 0.75 0.73 11 کرنے

 NA 1 1 1 5 سامنے

ریبغ 10 0.83 1 0.83 0.83

Avg.

Precision

79.20% 82.30% 80% 76%

 The cross speaker experimental results are shown in

Table 2. It can be seen that the average P@5 (100%)

outcompeted all other average precisions (i.e. 91.5 %).

The proposed system located the needle “ ہیقسطنطن ”

perfectly in all settings. The possible reason could be

the uniqueness of the needle due to its larger phonemic

counts, quite unique phonetic sequence, and this word

is not commonly used in conversational Urdu speech.

Whereas the needle “بغداد” correctly spotted only when

the number of occurrences is 5 while in other settings

the performance is decreased. The shorter phonemic

length and common phonetic sequence could be the

probable reasons for this low precision.

 The proposed KWS performed better in cross speaker

settings as compared to the same speaker. One obvious

reason could be the number of needles chosen for the

experiments, which are too less in cross speaker

scenario. Another important observation for this low

precision in same speaker context, could be the length

of phonemes in each needle as in same speaker

experiments the average needle length is 3 whereas in

cross speaker settings it is 9 which implies that needles

with shorter phonemic counts are harder to locate as

compared to the needles with larger phonemic count.

It has also been found that the produced results seem to

strongly dependent upon the type (unique) of words.

Words present as substring may increase false-positive

results. For example, the word “Tania” and “Aania” are

almost the same because “Aania” is present as a

substring. Our system saying these words are the same

and that is not true. As far as our domain knowledge and

literature review, this is the first attempt to develop an

Urdu KWS system in a completely unsupervised

manner. The initial results demonstrate that there is still

a big room available to improve Urdu KWS.

Table 2: Summary of results of cross speaker

experiments

Needle N P@N P@3 P@5 P@10

ہیقسطنطن 10 1 1 1 1

 0.83 1 0.83 0.83 10 بغداد

Avg.

Precision

91.5% 91.50% 100% 91.50%

6. Conclusion and Future Work

 Availability of the large datasets is a crucial

requirement for the majority of the existing KWS

techniques as they require huge datasets to train the

model, which makes these methods unsuitable for low

resource languages like Urdu. Keeping in view the high

demand for the KWS system for Urdu, this paper

reports an unsupervised STD system for Urdu.

Without any transcription, the model is trained by

extracting MFCCs directly from speech files. GMM is

applied to the training data to make the phonetic

clusters, and generate GPs for both of the needle and

haystack. Segmental DTW, a modified version of the

well renowned DTW signal alignment method, used to

compare the GP vectors of the input keyword and the

reference audio file. Warping path with minimum score

indicates the frames associated with this path are closer

to each other. Experiments were performed for both

same and cross speaker settings, and observed that the

proposed system performed better in cross speaker

scenarios as compared to the same speaker context.

 The proposed system has some limitations such as 1)

the major constraint “given the word is present in

haystack”, 2) it reports all the occurrences of a needle

in a given haystack but, it does not tell either the word

is present or not, and 3) length normalization of vectors

27

because DTW returns different scores for different

lengths of vectors. To overcome all of these limitations

is the future goal of this work to obtain more

satisfactory results along with examining this method

on other low resource regional languages such as Pashto

or Punjabi.

7. Conclusion and Future Work

 The code and the dataset described in this article are

freely available for research purposes and can be

downloaded from https://github.com/ab-101/Key-

Word-Spotter.

8. Bibliographical References

[1] Abdulkader, Ahmad, Kareem Nassar, Mohamed

Mahmoud, Daniel Galvez, and Chetan Patil. "Multiple-

Instance, Cascaded Classification for Keyword Spotting

in Narrow-Band Audio." arXiv preprint

arXiv:1711.08058 (2017).

[2] C. Richard C. A. Rose and B. Douglas. “A Hidden

Markov Model Based Keyword Recognition System”.

In Acoustics, Speech, and Signal Processing, ICASSP-

90,, pages 129–132, IEEE, 1990.

[3] G. Chen, C. Parada, and T. N. Sainath. “Query-by

Example Keyword Spotting using Long Short-Term

Memory Networks”. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5236–5240, April 2015.

[4] S. Cox and R. Rose. “A confidence measures for theˆ

switchboard database. In Proceedings of ICASSP,

volume 1, pages 511–515, 1996.

[5] S. Das. ”speaker dependent bengali keyword spotting in

unconstrained english speech”. 2005.

[6] Samarjit Das. Speaker dependent Bengali keyword

spotting in unconstrained English speech

acknowledgement. 2005.

[7] B. Samy H. Ketabdar, V. Jithendra and B. Herve.

Posterior based keyword spotting with a priori

thresholds. In Ninth International Conference on

Spoken Language Processing, 2006.

[8] T. J. Hazen, W. Shen, and C. White. Query-by-example

spoken term detection using phonetic posteriorgram

templates. In 2009 IEEE Workshop on Automatic

Speech Recognition Understanding, pages 421–426,

Nov 2009.

[9] M. Huijbregts, M. McLaren, and D. van Leeuwen.

Unsupervised acoustic sub-word unit detection for

queryby-example spoken term detection. In 2011 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 4436–4439, May

2011.

[10] P. Matejka L. Burget M. KarafiA¡t I. Szoke, P.

Schwarz˜ and J. Cernocky. Phoneme based acoustics

keyword spotting in informal continuous speech. In

International Conference on Text, Speech and

Dialogue, pages 302–309, Berlin, 2005.

[11] Aren Jansen and Kenneth Church. Towards

unsupervised training of speaker independent acoustic

models. pages 1693–1692, 01 2011.

[12] Jochen Junkawitsch, L. Neubauer, Harald Hoge, and¨

Gunther Ruske. A new keyword spotting algorithm¨

with pre-calculated optimal thresholds. Proceeding of

Fourth International Conference on Spoken Language

Processing. ICSLP ’96, 4:2067–2070 vol.4, 1996.

[13] Jochen Junkawitsch, L. Neubauer, Harald Hoge, and¨

Gunther Ruske. A new keyword spotting algorithm¨

with pre-calculated optimal thresholds. Proceeding of

Fourth International Conference on Spoken Language

Processing. ICSLP ’96, 4:2067–2070 vol.4, 1996.

[14] Hamed Ketabdar, Jithendra Vepa, Samy Bengio, and

Herve Bourlard. Posterior based keyword spotting with

a priori thresholds. 01 2006.

[15] R. Dehak P. Dumouchel N. Dehak, P. Kenny and

P. Ouellet. Front-end factor analysis for speaker

verification. Trans. Audio, Speech, Lang. Process., vol.

19, no. 4, pages 788–798, IEEE 2011.

[16] R. Rose and D. B. Paul. A hidden markov model based

keyword recognition system. In Acoustics, Speech, and

Signal Processing ICASSP-90, pages 129–132, IEEE,

1990.

[17] Irtza, S., Rehman, K., and Hussain S. ”Urdu Keyword

Spotting System using HMM,”. 2012.

[18] I. Zaharakis S. Kotsiantis, Sotiris B. and P. Pintelas.

Emerging artificial intelligence applications in

computer engineering 160. In Supervised machine

learning: A review of classification techniques, pages

3–24. 2007.

[19] T. Hain D. Kershaw G. Moore J. Odell D. Ollason D

Povey V. Valtchev S. Young, G. Evermann and P.

Woodland. HTK Book. Microsoft Corporation and

Cambridge University Engineering Department, 3.2.1

edition, 2002.

[20] H. Sakoe and S. Chiba. Dynamic programming

algorithm optimization for spoken word recognition. In

Proceedings of Trans. on Acoustic Speech, and Signal

Processing ASSP 26, pages 43–49, IEEE 1978.

[21] Wade Shen, Christopher M. White, and Timothy J.

Hazen. A comparison of query-by-example methods for

spoken term detection. In INTERSPEECH, 2009.

[22] Gyorgy Szasz¨ ak and Andr´ as Beke. Using

phonological´ phrase segmentation to improve

automatic keyword spotting for the highly agglutinating

hungarian language. In INTERSPEECH, 2013.

[23] Igor Szoke, Petr Schwarz, Pavel Matejka, Lukas Burget,

Martin Karafiat, Michal Fapso, and Jan Cernocky.

Comparison of keyword spotting approaches for

informal continuous speech. pages 633–636, 01 2005.

[24] T. Kemp T. Schaaf. Confidence measures for

spontaneous speech recognition. In Proceedings of

ICASSP, volume 2, pages 887–890, 1997.

[25] Javier Tejedor and JosA˜ c ColA¡s. Spanish keyword˜

spotting system based on filler models, pseudo n-gram

language model and a confidence measure. 01 2006.

https://github.com/ab-101/Key-Word-Spotter
https://github.com/ab-101/Key-Word-Spotter

28

[26] Z.Yaodong and J. R. Glass. Unsupervised spoken

keyword spotting via segmental dtw on gaussian

posteriorgrams. In Automatic Speech Recognition

Understanding, IEEE workshop on ASRU, pages 398–

403, 2009.

[27] https://www.coursera.org/

[28] Ao, Chia-Wei, and Hung-yi Lee. "Query-by-example

spoken term detection using attention-based multi-hop

networks." In 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp.

6264-6268. IEEE, 2018.

[29] Chung, Yu-An, and James Glass. "Speech2vec: A

sequence-to-sequence framework for learning word

embeddings from speech." arXiv preprint

arXiv:1803.08976 (2018).

[30] Chen, Guoguo. "Low Resource High Accuracy

Keyword Spotting." PhD diss., Johns Hopkins

University, 2016.

[31] https://en.wikipedia.org/wiki/Languages_of_South_As

ia

[32] Bridle, John S. "An efficient elastic-template method

for detecting given words in running speech." In Brit.

Acoust. Soc. Meeting, pp. 1-4. 1973.

[33] Huijbregts, Marijn, Mitchell McLaren, and David Van

Leeuwen. "Unsupervised acoustic sub-word unit

detection for query-by-example spoken term detection."

In 2011 IEEE international conference on Acoustics,

speech and signal processing (ICASSP), pp. 4436-4439.

IEEE, 2011.

[34] Shen, Wade, Christopher M. White, and Timothy J.

Hazen. A comparison of query-by-example methods for

spoken term detection. MASSACHUSETTS INST OF

TECH LEXINGTON LINCOLN LAB, 2009.

[35] Wang, Haipeng, Tan Lee, and Cheung-Chi Leung.

"Unsupervised spoken term detection with acoustic

segment model." In 2011 International Conference on

Speech Database and Assessments (Oriental

COCOSDA), pp. 106-111. IEEE, 2011.

[36] Zhang, Yaodong, and James R. Glass. "Unsupervised

spoken keyword spotting via segmental DTW on

Gaussian posteriorgrams." In 2009 IEEE Workshop on

Automatic Speech Recognition & Understanding, pp.

398-403. IEEE, 2009.

[37] Raza, Agha Ali, Sarmad Hussain, Huda Sarfraz, Inam

Ullah, and Zahid Sarfraz. "Design and development of

phonetically rich Urdu speech corpus." In 2009 oriental

COCOSDA international conference on speech

database and assessments, pp. 38-43. IEEE, 2009.

[38] C. Chelba, T. Hazen and M. Sarac¸lar, “Retrieval and

browsing of spoken content,” IEEE Signal Processing

Magazine, vol. 24, no. 3, pp. 39–49, May 2008.

[39] D. Miller, et al, “Rapid and accurate spoken term

detection,” in Proc. Interspeech, Antwerp, Belgium,

2007.

[40] J. S. Garofolo, C. G. Auzanne, and E. M. Voorhees,

“The TREC spoken document retrieval track: a success

story,” NIST SPECIAL PUBLICATION SP, no. 246,

pp. 107–130, 2000.

[41] M. Sarac¸lar and R. Sproat, “Lattice-based search for

spoken utterance retrieval,” in Proc. HLT-NAACL,

Boston, 2004.

[42] A. Mandal, K. P. Kumar, and P. Mitra, “Recent

developments in spoken term detection: a survey,”

International Journal of Speech Technology, vol. 17, no.

2, pp. 183–198, 2014.

[43] R. C. Rose and D. B. Paul, “A hidden Markov model

based keyword recognition system,” in Proceedings of

the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP). IEEE, 1990, pp. 129–132.

[44] J. Wilpon, L. Miller, and P. Modi, “Improvements and

applications for key word recognition using hidden

Markov modeling techniques,” in Proceedings of the

International Conference on Acoustics, Speech, and

Signal Processing (ICASSP). IEEE, 1991, pp. 309–312.

[45] Juang, Biing-Hwang. "Recent developments in speech

recognition under adverse conditions." In First

International Conference on Spoken Language

Processing. 1990.

[46] A. Park and J. Glass,“Unsupervised pattern discovery in

speech”, in IEEE Trans. ASLP, 6(1), 1558–1569, 2008.

[47] Chan, Chun-an, and Lin-shan Lee. "Unsupervised

spoken-term detection with spoken queries using

segment-based dynamic time warping." In Eleventh

Annual Conference of the International Speech

Communication Association. 2010.

[48] Garofolo, John S. "TIMIT acoustic phonetic continuous

speech corpus." Linguistic Data Consortium, 1993

(1993).

[49] Panayotov, Vassil, Guoguo Chen, Daniel Povey, and

Sanjeev Khudanpur. "Librispeech: an ASR corpus

based on public domain audio books." In 2015 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 5206-5210. IEEE,

2015.

https://www.coursera.org/
https://en.wikipedia.org/wiki/Languages_of_South_Asia
https://en.wikipedia.org/wiki/Languages_of_South_Asia

29

Comparison of Parsers Dealing with Text Ambiguity in Natural Language

Processing

Sareya Qayyum, Nimra Aziz, Waqas Anwar, Usama Ijaz Bajwa

 Computer Science

COMSATS University Islamabad, Lahore Campus

{sareyaqayyum, nimraiftikhar1995}@gmail.com, {waqasanwar, usamabajwa}@cuilahore.edu.pk

Abstract

 Parsing in Natural Language processing is a vast domain

which serves as a pre-processing step for different NLP

operations like information extraction, etc. Multiple parsing

techniques have been presented until now. Some of them unable

to resolve the ambiguity issue that arises in the text corpora.

This paper performs a comparison of different models

presented in two parsing strategies: Statistical parsing and

Dependency parsing. The comparison has been made on very

famous Penn Treebank corpus specifically involving its Wall

Street Journal Portion.

1. Introduction

 In Natural Language Processing (NLP), Parsing acts as an

essential and key component to many problems. Parsing is

the analysis of syntax or commonly called syntactic analysis

in which we process the sentences following the rules of a

formal grammar. Parsing involves uncovering the meaning,

content and underlying structure that makes up a sentence.

Every Language has a unique grammar thus making parsing

process unique as well. Languages can be divided into two

categories:

Segmented Languages: Those languages whose words are

space-delimited e.g. English and Spanish language
Un-Segmented Languages: In un-segmented Languages word

segmentation is required as a pre-processing step before further

processing E.g. Chinese and Japanese Languages

 A language is not just a ‘bag of words’ or else there would

be no need for grammar. Grammatical rules apply to sentences

where a sentence in a language is a group of strings that consists

of two things: a subject and a predicate. A subject is defined as

a Noun Phrase (NP) and predicate as a verb phrase (VP). E.g.

In an English Sentence ‘Sam went to school’, ‘Sam’ is NP and

‘went’ is VP. Parsing has many applications in Natural

Language Processing. For Example, Machine translation, text

summarization and question answering are few areas of NLP in

which immense work is being performed, etc. Parsing serves as

an initial step for these problems. The result of parsing a

sentence using a formal grammar is a tree structure. A sentence

can have exactly one or many such tree structures. The

grammar that is usually used is CFG (context-free grammar).

One of the major challenges in Parsing is dealing with

ambiguities in the sentence. Ambiguity refers to sentences that

are subjective, open to interpretation and can have multiple

meanings. Three types of ambiguities are present in a sentence

when parsing is performed namely Syntactic Ambiguity,

Lexical Ambiguity, and Semantic Ambiguity.

Syntactic Ambiguity: Sentences can be parsed in multiple

syntactical forms. E.g. ‘I heard his cell phone ring in my

office’. The Phrase ‘in my office’ can be parsed in a way that

modifies the noun or vice versa modifies the verb.

Lexical Ambiguity: Sentences having Lexical ambiguity can

have words with multiple assertions. E.g. ‘book’ is used as a

noun when used in a sentence as ‘He loves to read books’. On

the other hand, it can also be used as a verb when used in a

sentence as ‘He books an appointment at the dentist’.

Semantic ambiguity: It is related to the interpretation of the

sentence. E.g. ‘I saw a man with the telescope’. It can be

deduced as if I saw a man holding a telescope. Or I saw a man

through a telescope. Parsing of sentences happens in multiple

stages:

a) Dividing a sentence into tokens. These tokens are used as

input to some other tasks like parsing.

b) Tagging each token with parts of speech.

 Eight parts of speech are observed in the English language –

verbs, nouns, pronouns, adverbs, adjectives, conjunctions,

interjections and prepositions.

1.1. Types of parsing

Two main types of parsing will be discussed in this paper and a

comparison of performances for both the types will be made.

Following are the types:

i. Statistical Parsing

ii. Dependency Parsing

1.1.1. Statistical Parsing

 In Natural Language processing statistical parsers are the

type of parsers which associate grammar rules with probability.

The Statistical parser is an algorithm that looks for a tree that

maximizes the probability P (T|S). PCFG (Probabilistic

mailto:nimraiftikhar1995%7d@gmail.com

30

Context-Free Grammar) which is an extended form of CFG is

used as an underlying grammar. The probability of a parse tree

of a sentence can be computed by firstly calculating the

probability of the productions used in the derivation of the tree

and then taking the product of these probabilities. Following

three main tasks are involved in statistical parsing:

1. Determine the likely parse trees for the sentence.

2. Assign probabilities to each derived parse

3. Select the most probable parse (highest probability)

 Statistical parsing requires a corpus of hand-parsed text. For

this purpose, we have Penn treebank (Marcus 1993). Penn

Treebank is extensively used since it is the largest annotated

dataset for English. In recent years Penn Treebank has been

immensely used and considered as a standard for training and

testing statistical parsers. Parseval measures are used to

evaluate the Penn Treebank parsers. From many Parseval

measures most commonly used ones are and labelled recall

(LR) and labelled precision (LP). Sometimes Bracketed

precision (BP) and bracketed recall (BR) are also used which

are less strict measures then LP and LR.

1.1.2. Dependency Parsing

 Identifying a sentence and allocating a syntactic arrangement

to it is the major task of dependency parsing. In the

dependency-based method, the head-dependent relation

provides an estimate to the semantic relationship between

arguments and their predicates.

The translation of a sentence to its dependency structure is done

in two subtasks:

 Classify the structure for all head-dependent

relationships.
 Classify these relations with their correct dependency

relations.

A tree of dependency parsing is a coordinated diagram (a

directed graph) which fulfills the stated following limitations:

 It consists of a single assigned root hub that does not

have any approaching segments or arcs.
 With the exemption of the root hub, every vertex has

precisely one approaching segment or arc.
 From every vertex in V, a unique way exits from the

root hub.
In short, the stated requirements guarantee that every word has

a distinct head, to which the dependency tree is linked, and a

unique root hub by which one can pursue a unique guided path

to each word of the sentence.

 The idea of projectivity forces an extra restriction and is

firmly identified with the setting free nature of human dialects.

If there is a way from the head to each word that lies between

the head and it’s dependent, then an arc from a head to its

dependent is considered as projective. A dependence tree is

therefore said to be projective if every single one of the arcs is

projective There are, in any case, numerous impeccably

substantial developments especially in dialects with a generally

adaptable word that leads to non-projective trees.

 Presently the assignment of Syntactic parsing is very

unpredictable because of the way that a given sentence can have

numerous parse trees which we call as ambiguities. Consider a

sentence "Book that flight." which can frame various parse trees

dependent on its uncertain grammatical speech tags except if

these ambiguities are settled. Picking a right parse from the

numerous conceivable parses is called as syntactic

disambiguation.

The two main methods of dependency parsing are:

a) Transition-based dependency parsing

b) MST (Maximum spanning tree) dependency parsing

 Transition based parsers commonly have a linear or quadratic

complexity. MST based parsers divides the dependency

structure into small parts called ‘factors’. The components of

the principle MST parsing algorithm are edges that consists of

the head, the edge name and the dependent (child). This

algorithm has quadratic complexity. (Bernd Bohnet., 2010).

Treebanks have a critical job in the advancement and

assessment of dependency parsers. Having human annotators

legitimately create dependency structures for a given corpus.

The most generally utilized syntactic structure is the parse tree

which can be produced utilizing some parsing algorithms.

These parse trees are valuable in different applications like

sentence grammar checking, co-reference goals, question, and

their answers, data extraction or all the more significantly it

assumes a basic job in the semantic analysis stage. We can

likewise utilize a deterministic procedure to decipher existing

principal based treebanks into dependency trees using head

rules. The significant English reliance treebanks have to a great

extent been removed from existing assets, for example, the

Wall Street Journal segments of the Penn Treebank (Marcus et

al., 1993). The later OntoNotes venture (Hovy et al. 2006,

Weischedel et al. 2011) expands this methodology going past

customary news content to incorporate conversational phone

speech, newsgroups, weblogs and talk programs in English,

Arabic and Chinese.

2. Literature Review

 Following is the previous work for statistical parsing and

dependency parsing.

2.1. Statistical Parsing

 Magerman [9] presented a statistical parser called SPATTER.

It achieves the best accuracy by building a complete parse for

every sentence in the corpus. SPATTER is based on a decision-

tree learning technique. Using the PARSEVAL evaluation

measure, SPATTER on the Penn Treebank Wall Street Journal

corpus achieves 86% precision P (see equation 1) and recall R

(see equation 2), and 1.3 crossing brackets CB (see equation 3)

per sentence for sentences with a word length of 40 or less. For

sentences having word length between 10 and 20, SPATTER

achieves 91% P, 90% R, and 0.5 CB.

31

P = number of Correct Components / number of Components

in parser output (1)

R = number of correct Components / number of Components in

gold standard (2)

CB = number of Components in parser output that cross gold

standard Components / number of Components in parser

output (3)

 In 1996 Collins [10] presents his first model for statistical

parsing. Below equation 4 demonstrates a conditional model

capable of parse selection, where for a given sentence S in the

corpus, the probability of a parse tree T is calculated directly.

Input to the model is a Part of Speech (POS) tagged sentence

which produces a tree as an output. For a given sentence S in

the corpus and its tree T, the conditional model for Collins

represents the probability in the following manner:

The most likely parse under the model is then:

T (best) = argmax T (P (T |S)) (4)

 Collins (1996) model showed an improvement in Precision

and Recall when compared with Magerman’s (1995) results.

 Collins presented a new model in 1997 [11] which improved

on the previous results of Collins conditional model (1996).

This approach is based on a generative model. The Collins

(1997) accounts for word-word dependencies when generating

a parse tree. This model focuses on the modeling of the parses

and deals with the flat trees of the Penn Treebank corpus. This

generative version of Collins parser corpus shows an

improvement of 2.3% on the conditional model of Collins

(1996). It achieves 88.1% P and 87.5% R on Wall Street

Journal.

 In [12] Collins (1999) few problems were observed with the

generative model for Collins (1997). It was noticed that Collins

model is no longer a model for predicting maximum likelihood

because of how the dependency probabilities were estimated.

Another deficiency is its way of considering all dependency

relations as independent. Due to these reasons, Collins

presented another modification to his previous model.

 Charniak [13] (2000, 1999) after presenting his first model

for statistical parsing in 1997 Charniak presented another

statistical Treebank parser. It outperformed the Collins

generative model presented in 1997. Charniak’s main

advantage to Collin’s is generating candidate parses using a

simple probabilistic chart parser. Charniak’s model showed an

improvement of 0.45% in labelled recall (LR) and labelled

precision (LP). The model achieved average Precision and an

average recall of 91.1% on sentences with length less than 40.

For sentences with length less than 100, the model achieved

89.5% average precision and recall on Penn Treebank corpus.

Over the previously best results, Charniak’s model achieves an

error reduction of 13% for single parser on this test set.

 Henderson and Brill [14] presented an approach where they

combined the results/prediction of three current existing

parsers. They combined Charniak’s 1997 model with Collins

1997 and Ratnaparkhi 1998 model to better understand the

capabilities of parsers and to check if they yield better results.

This combination of three parsers gave the best results with

Labelled precision of 92.1% and Labelled Recall of 89.2% on

the development set while achieving LP of 92.4% and LR of

90.1% on the test set of Penn Treebank. These are best-known

results up till now.

 Parser presented by Bod [15] claims to give a better

performance in terms of Parseval measures. It improved on the

Charniak’s result by achieving 89.7% LP and LR on sentences

with 100 words. For sentences with 40 words or less Bod’s

model achieves 90.8% LP and 90.6% LR. Although it is

debatable whether an increase of 0.2% in LP and 0.1% in LR is

considered an improvement. Bods’ model takes arbitrary

structural and lexical dependencies into consideration when

computing probabilities of a parse tree as it is based on Data-

Oriented Parsing (DOP).

 Collins in 2000 and Collins and Duffy in 2002 [16] presented

two approaches in which they improved the performance for

Collins 2000 model by re-ranking the parses using a different

model on the outcome of Collins’ 1999 model. LP improved

from 88.1% to 88.3% while LR improved from 88.3% to 89.6%

on Collins 1999 model. For Collins 2000 model using a variant

for boosting LP improved to 88.3% and LR to 89.6%. For

Collins and Duffy 2002 model by using a DOP like approach

using a voted Perceptron LP improved to 88.6% and LR to 88.9

%.

2.2. Dependency Parsing

 A huge interest has been seen in Dependency Parsing lately

for applications such as relation extraction, machine translation,

synonym generation, and lexical resource augmentation. The

main reason for using dependency structures is because they are

highly effective to study and parse while still training much of

the predicate-argument information needed in a lot of

applications.

 Most of these parsing models have concentrated on trees that

are projective, including the effort of Eisner (1996), Yamada

and Matsumoto (2003), Collins et al. (1999), Nivre and Scholz

(2004), and McDonald et al. (2005).

A parsing model presented by Nivre and Nilsson in 2005 allows

to include edges that are non-projective, into trees using learned

edge transformations in the memory-based parser. The method

varies in examining efficiently the full span of non-projective

trees. The main focus was that the dependency parsing can

serve as the main search point for an MST in a directed graph.

This specifies the regular projective models of parsing that are

based on the Eisner algorithm (Eisner, 1996) to have a better

efficient of O (n 2). By using the spanning-tree illustration, to

cover non-projective dependencies we extend the work of

McDonald et al. (2005) on online large-margin discriminative

training methods (McDonald, Pereira, and Ribarov; 2005)

 Nowadays there has been an increase in the usage of

dependency representations through many tasks of natural

language processing (NLP). Stanford dependency is

extensively used in both NLP and biomedical text mining.

32

Stanford Dependency was originally extracted from constituent

parses but the production of parse trees from the raw text was

quite time. The approaches hence designed specifically for

dependency parsing such as Covington, minimum spanning

tree (MST), Eisner and Nivre should perform faster, assuming

that they have low time complexity. The different approaches

are compared in terms of their collective accuracy and speed

and characteristic errors are reported. The parsing models are

trained using the training set extracted from the Penn Treebank

that consists of sections 2 through 21, different parsers of

dependency were compared such as MaltParser package v1.3

selected models, the MSTParser 0.4.3b, and the rule Based

RelEx parser 1.2.0. We used F1-score other than accuracy

because the typical Stanford dependency representation parsers

can generate a variety of different dependencies for every

sentence. The fastest parsers were the Malt package, Nivre, and

Covington. Nivre Eager and MSTParser (Eisner) and they

achieved better F1scores when the interaction between model

and features was not used. If parsing a huge amount of data, and

speed is important, the experiments suggest that the top choice

is to use parsers included in the Malt package. (Cer, D. M., De

Marneffe, (2010, May)).

3. Performance Evaluation

 Many different parsers have been presented in the above

section having unique abilities and different performances each

trying to perform well than the previous. The main question is

what type of parsers should be used in which context. The

decision to apply these models depends on the type of the

problem under study. To facilitate the decision making a

performance overview of all the parsers is given below.

3.1. Statistical Parsing

 Table I shows the performance of multiple Statistical Parsers

over the Parseval Measures.

• In [9] it was shown that previous syntactic natural language

parsers used were not capable of handling ambiguous large-

vocabulary text. They had poor performances on standard

datasets like Wall Street Journal of Penn Treebank which led to

the new approach presented by Magerman called SPATTER

(Statistical Pattern Recognizer). It is based on decision-tree

learning technique and has accuracy way better than any parser

published up till 1995. SPATTER requires very less linguistic

knowledge and is compared against state of the art grammar-

based parsers. Decision trees provide a ranking system by

assigning a probability distribution to the possible choices,

which not only specifies the order of preference but also gives

a measure of the relative likelihood that each choice is the one

which should be selected. The limitation of the searching

strategy of SPATTER is its possible consumption of available

memory before completing the search. But conveniently this

memory exhaustion occurs on sentences which SPATTER most

likely will get wrong anyway. So little or no performance loss

is observed due to this search errors.

• The study in [10] reveals that Collins and Magerman both use

lexicalized PCFG which is associating a head word to every

non-terminal present in the parse tree. Collins parser performs

almost equally as SPATTER when it is trained and tested on

Wall Street Journal portion of Penn Treebank. The advantage

of Collins 1996 model over SPATTER is the simplicity of its

architecture and working. Still, many improvements can be

made by using a more sophisticated probability estimation

techniques like deleted interpolation or estimation on relaxing

the distance measure for smoothing could be used. Another

limitation of Collins 1996 model is that it does not account for

valency when calculating the parse.

• Collins [11] attempt to address the flaws of the model

presented in 1996 by putting forth 3 models. It shows that sub-

categorization and wh-movement can be given a probabilistic

treatment thus resulting in the statistical interpretation of the

concepts causing an increase in performance by adding useful

information to the parser’s output. The average improvement of

Collins 97 over the previous model is 2.3%. Model 1 presented

has clear advantages when handling unary rules and distance

measures. Model 2 and 3 can apply condition on any structure

that has been previously generated while Collins 96 lack in this

treatment.

• [12] Is an update of previous works of Collins. It addresses

the limitation of Collins 1996 and 1997 related to punctuation

as surface features of the sentence. Previous models failed to

generate punctuation and are considered a deficiency of the

model. Collins 2000 uses a technique that is based on boosting

algorithms for machine learning for re-ranking the best outputs

using additional features.

• The major invention of Charniak’s [13] 2000 model is the use

of maximum entropy inspired model which results in an

increase of 2% in performance due to its strategy of smoothing

and to combine multiple conditioning events for testing.

Maximum entropy inspired approached has certain advantages

over the probabilistic model and has recommended itself for use

due to its novel approach of smoothing. Most important

progress accomplished by using Charniak’s model over

conventional deleted interpolation is the flexibility achieved

due to simpler maximum-inspired-model which let us

experiment with different conditioning events and to move up

to Markov grammar without significant programming. This

model uses Markov processes to generate rules. The additional

features incorporated boost the performance. The main goal for

Charniak’s parser is to generate model flexible enough to allow

changes for parsing to more semantic levels.

• To solve some of the fundamental problems of Natural

Language processing like parsing some authors including

Henderson and Brill [14] may adopt a unique approach to

combine the previous parsers to obtain better results. Collins

along, with Charniak and Ratnaparkhi model, are experimented

to explore different parser combination. With poor parser being

introduced during the experiments, Techniques like parser

switching and parser hybridization still gave better results. For

more powerful parser combinations the results can be improved

further.

33

• Bod 2001 [15] presents results that are comparable to the

results of previous models like Charniak and Collins 2000. The

main goal of the Bod model is to achieve maximal parse

accuracy by applying constraints of several words in a fragment

and to the depth of lexicalized fragments. Many previous

models applied constituent lexicalization on Wall Street portion

of Penn Treebank while Bods 2001 DOP based model uses

frontier lexicalized approach. The results obtained from Bods

models claim that using frontier lexicalization yields better

results and is a better alternative to constituent lexicalization.

Another difference of Bod with other models is its use of

treebank grammar as an underlying grammar of its DOP model.

Another future area could be the application of Markov

grammar on the DOP model which will further improve the

results.

• The main advantage of this model presented by Collin and

Duffy [16] is the application of the perceptron algorithm on

exponentially big representations of parse trees. It is

computationally efficient and leads to a polynomial-time 2

algorithm for training and testing phases of the perceptron. It

can stretch to more complex domains. Due to its different

parameter estimation when compared to Bod and other models

the computation is manageable.

TABLE I: Performance of all statistical parsers on penn
treebank corpus

Parsers

Evaluation Measures

LP LR CB

Magerman 1995

[9]
86% 86% 1..3

Collins 1996 [10] 86.3% 85.8% 1.14

Collins 1997 [11] 88.6% 88.1% 0.96

Henderson and

Brill [14]
92.4% 92.1% -

Collin 2000 [12] 90.4% 90.1% 0.73

Charniak 2000

[13]
90.1% 90.1% 0.74

Bod 2000 [15] 90.8% 90.6% -

Colins and Duffy

2001 [16]
88.6% 88.9% -

3.2. Dependency Parsing

3.2.1. Deterministic Dependency Parsing

 Collins and Charniak are one of the best accessible parsers

prepared on the Penn Treebank, utilize statistical models for

disambiguation that utilize dependency relations. The Yamada

and Matsumoto method of deterministic dependency parser and

that of Collins and Charniak, when prepared On the Penn

Treebank, gives a nearly equal accuracy. The parser depicted in

this paper is like that of Yamada and Matsumoto in that it

utilizes an algorithm of deterministic parsing in blend with a

classifier actuated from a treebank. Be that as it may, there are

likewise significant differences between the two

methodologies. Most importantly, while Yamada and

Matsumoto utilizes a severe algorithm of bottom-up(basically

shift-reduce parsing), the present parser utilizes Nivre’s

algorithm, which uses bottom-up and top-down approaches

together to increase the accuracy. The experiment was carried

out on two sets whose result is shown in table II and IIA.

 Set G which contained grammatical roles from Penn

 Set B contained the function tags for grammatical

roles with normal bracket labels (S, NP, VP, etc.).

And the evaluation metrics used are:

 Unlabeled attachment score is the measure of words

that are root and are correctly identified as head.

 Labelled attachment score is the measure of words that

are root and are correctly identified as head and their

dependency type.

 Dependency accuracy is the measure of words that are

non-root and are correctly identified as heads.

 Root accuracy is the measure of root words correctly

identified as roots.

 Complete match is the measure of sentences whose

unlabeled dependency structure is correctly identified.

TABLE II: PERFORMANCE OF DETERMINISTIC DEPENDENCY

PARSERS ON PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ

2004)

Parsing

Models

Evaluation metrics

Dependency

Accuracy

Root

Accuracy

Complete

Match

Charniak 92.10% 95.20% 45.20%

Collins 91.50% 95.30% 43.30%

Yamada

and

 Matsumoto

90.30% 91.60% 38.40%

Nivre

and

Scholz

87.30% 84.30% 30.40%

34

TABLE IIA: PERFORMANCE OF DETERMINISTIC DEPENDENCY

PARSERS ON PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ

2004)

Evaluation

metrics

Data sets

Grammatical

Roles from

Penn II

(Experiment #

1)

Function

Tags for

Grammatical

Roles

(Experiment

#2)

Combinati

on of both

Experimen

ts

Unlabeled

Attachment

Score

85.8% 87.1% -

Labelled

Attachment

Score

84.6% 84.4% 86.0%

3.2.2. Constituent-to-Dependency Parsing

 PENN2MALT disposes of the deep information in the

dependency tree. In the new strategy, the topicalized phrases

and words are connected to their respective semantic head.

Other than this the new approach used a richer collection of

arced labels than that used in PENN2MALT. MALTPARSER

depends on a parsing system that constructs a parse tree

gradually while continuing through the sentence one token at

any given moment. By utilizing this type of system, a rich

history-based list of capabilities for the SVM classifier is made,

that can be used for choosing activities. MSTPARSER predicts

a parse tree by expanding a function of scoring over the space

of all parse trees. The scoring function is a weighted sum of

single connections or links. Table III describes MALT Parsers

and MST Parser for different parsing sets.

TABLE III: PERFORMANCE OF MALT AND MST DEPENDENCY

PARSERS ON PENN TREEBANK CORPUS (17.JOHANSSON,R., &

NUGUES,P.(2007))

3.2.3. MIRA (18. McDonald, R., Crammer, K., & Pereira,

F. (2005))

 It is an online learning algorithms which intuitive and easy

to comprehend and implement. To form dependency structures

the extraction rules of Yamada and Matsumoto were used. For

the evaluation and development of sets, the tagging system of

Ratnaparkhi was used and POS tags were assumed as the input

for the system.

 For large margin multi-class classification, Crammer and

Singer established an approach (equation #5) which was then

extended to structured classification by Taskar.

EQUATION # 5 (18. MCDONALD, R., CRAMMER, K., &

PEREIRA, F. (2005))

 The above-mentioned equation #1 optimization is directly
mapped into the online framework by the margin infused
relaxed algorithm (MIRA). On every attempt, while applying
the change to the parameter vector MIRA tries to maintain the
standard and keep it as small as possible, to classify an instance
correctly the margin should be at least equal to the loss of
classifying incorrectly. This can be done by substituting the
following changes in the original algorithm (equation #5)
present online and form another (equation #6).

EQUATION # 6 (18. MCDONALD, R., CRAMMER, K., &

PEREIRA, F. (2005))

 To apply dependency parsing using MIRA, we can just

consider the parsing as a multi-class classification problem in

which, every dependency tree is considered as one of the

classes of the sentence. Nevertheless, this clarification fails in

reality as a normal sentence has a lot of possible dependency

trees thus making it exponentially complex. To overcome this

issue another equation #7 was created.

EQUATION # 7 (18. MCDONALD, R., CRAMMER, K., &

PEREIRA, F. (2005))

Parsing

sets

Parsing models

 MALT

PARSER

 MALT

PARSER
 MST

PARSER

MST

PARSER

LABEL

ED

UN

LABELE

D

LABELE

D

UNLABEL

ED

PENN2

MALT

90.30%

91.36%

92.04%

93.06%

NEW

CONV

E-

RSION

87.63%

90.54%
86.92% 91.64%

35

TABLE IV: PERFORMANCE OF MIRA DEPENDENCY PARSERS ON

PENN TREEBANK CORPUS

Parsing

Models

Evaluation measures

Accuracy Root Complete

Y&M 90.30% 91.60% 38.40%

N&S 87.30% 84.30% 30.40%

AVERAGE

PERCEPTI

ON

90.60% 94.0% 36.50%

MIRA 90.90% 94.20% 37.50%

Accuracy: number of words whose parents are correctly identified.

Root: number of trees in which the root is identified correctly.

Complete: number of sentences whose dependency was correctly identified.

4. Conclusion

 Comparison between parsers leads us to examine the
similarities and differences between multiple models and the
scenarios in which they tend to perform better. The famous
CKY parsing algorithm can represent the ambiguities that occur
while parsing efficiently but it is not able to resolve them. So
statistical and dependency models are designed to overcome the
Limitations of the previous ones thus showing an increase in
the overall measures of evaluation.

5. Acknowledgment

 We would like to give our deepest appreciation to all the
people who helped us complete this paper. A special gratitude
to our instructor and co-author of this paper [Dr. WAQAS
ANWAR], whose support helped us in achieving the goals of
writing this paper.

6. References

[1] Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a

large annotated corpus of English: the Penn Treebank.
Computational Linguistics, 19(2):313–330.

[2] Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning syntactic
patterns for automatic hypernym discovery. In NIPS 2004.

[3] Eisner. 1996. Three new probabilistic models for dependency
parsing: An exploration. In Proc. COLING.

[4] Yamada and Y. Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In Proc. IWPT.

[5] Nivre and M. Scholz. 2004. Deterministic dependency parsing of
English text. In Proc. COLING

[6] McDonald, Pereira, Ribarov. 2005. Non-projective Dependency
Parsing using Spanning Tree Algorithms.

[7] McDonald, R., & Pereira, F. (2006). Online learning of
approximate dependency parsing algorithms. In 11th Conference
of the European Chapter of the Association for Computational
Linguistics.

[8] Magerman, D. M. (1995, June). Statistical decision-tree models
for parsing. In Proceedings of the 33rd annual meeting on
Association for Computational Linguistics (pp. 276-283).
Association for Computational Linguistics.

[9] Collins, M. J. (1996, June). A new statistical parser based on
bigram lexical dependencies. In Proceedings of the 34th annual
meeting on Association for Computational Linguistics (pp. 184-
191). Association for Computational Linguistics

[10] Collins, M. (1997). Three generative, lexicalized models for
statistical parsing. ArXiv preprint cmp-lg/9706022.

[11] Collins, M. (2003). Head-driven statistical models for natural
language parsing. Computational linguistics, 29(4), 589-637

[12] Charniak, E. (2000, April). A maximum-entropy-inspired parser.
In Proceedings of the 1st North American chapter of the
Association for Computational Linguistics conference (pp. 132-
139). Association for Computational Linguistics.

[13] Henderson, J. C., & Brill, E. (2000). Exploiting diversity in
natural language processing: Combining parsers. ArXiv preprint
cs/0006003

[14] Bod, R. (2001, July). What is the minimal set of fragments that
achieves maximal parse accuracy? In Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics
(pp. 66-73). Association for Computational Linguistics.

[15] Collins, M., & Duffy, N. (2002, July). New ranking algorithms
for parsing and tagging: Kernels over discrete structures, and the
voted perceptron. In Proceedings of the 40th annual meeting on
association for computational linguistics (pp. 263-270).
Association for Computational Linguistics

[16] McDonald, R., Crammer, K., & Pereira, F. (2005). Online large-
margin training of dependency parsers. In Proceedings of the
43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05) (pp. 91-98).

[17] Johansson, R., & Nugues, P. (2007). Extended constituent-to-
dependency conversion for English. In Proceedings of the 16th
Nordic Conference of Computational Linguistics (NODALIDA
2007) (pp. 105-112)

36

37

Corpus of Aspect-based Sentiment for Urdu Political Data

Ehsan ul Haq1,Sahar Rauf2,Sarmad Hussain3,Kashif Javed3

Center for Language Engineering

Al-Khawarizmi Institute of Computer Science

University of Engineering and Technology, Lahore
1{ehsan.ulhaq},2,3{firstname.lastname}@kics.edu.pk

Abstract

We present a corpus of Urdu political data annotated

at aspect and sentiment level. The corpus contains 8760

tweets regarding four different aspects (Members,

Projects, Party and Actions) of three political parties

(PTI, PMLN and PPP) of Pakistan. We also present the

results of a baseline system developed using the corpus

for analyzing its reliability. It can be seen that the

classifiers have achieved reasonable scores for aspects

categorization and sentiment classification tasks.

1. Introduction

 Sentiment analysis is defined as a task of

automatically identifying opinions expressed in a text

[1]. The text to be analyzed can be a feedback regarding

a product or service, a political review or a social media

comment [2]. The sentiment analysis can be done at

document level, sentence level and also at aspect level

[3]. In case of document level sentiment analysis, the

task is to assign an overall sentiment to the document.

On the other hand, sentence level sentiment analysis

assigns a polarity value to each individual sentence of

the document. The aspect level sentiment analysis

provides an in-depth analysis by assigning sentiments to

different aspects of entities mentioned in a text.

 There are different approaches that have been used

for performing sentiment analysis. These approaches

include lexicon based approach; machine learning based

and hybrid techniques [4]. In lexicon based approach, a

sentiment lexicon is used for assigning sentiment to text

by aggregating the sentiment scores of words present in

the text. In machine learning based approaches, a

sentiment tagged corpus is used to train machine

learning models using supervised learning approach.

After training models, they are used for assigning

sentiments to input text. Another commonly used

approach is using a hybrid technique. In hybrid

techniques, a combination of machine learning models

and lexicon is used for performing sentiment analysis.

 Nowadays sentiment analysis has become an

important task in the area like business intelligence (BI)

in which a company wants to know the sentiment of

customers towards their products or services. They use

this analysis in decision making and overcoming their

weaknesses. Another important area in which sentiment

analysis is used is called social media monitoring

(SMM) in which social posts are analyzed for finding

opinions towards different entities [5]. Sentiment

analysis is also used in disease surveillance systems for

monitoring social media content mentioning symptoms,

prevention and fear regarding a disease in different areas

[6]. Another important area in which sentiment analysis

is used is analysis of political data [7].

 In this work, we are presenting a corpus for aspect

based sentiment analysis (ABSA) task for Urdu political

data which can be used as a gold-standard for automatic

aspect-based sentiment annotation.

 The rest of paper is organized as follows. Section 2

contains related work. Section 3 explains the

methodology used for corpus development and its

statistics. Section 4 contains baseline results and Section

5 is based on conclusion and future work.

2. Related Work

A corpus for ABSA in political debates has been

presented in [7]. The corpus consists of transcribed

speeches from the two presidential debates of the 2016

US election. The authors have annotated the corpus and

provided baseline results for aspect based sentiment

analysis using Support Vector Machine (SVM)

algorithm.

 The authors in [8] have presented an Italian corpus for

aspect based sentiment analysis of movie reviews. The

corpus contains sentences that have been manually

annotated according to various aspects of movies and

also polarities expressed toward them.

 Two French language datasets for the purpose of

development and testing of aspect based sentiment

systems have been presented in [9]. The first dataset

consists of 457 restaurant reviews (2365 sentences).The

second contains 162 museum reviews (655 sentences).

Both datasets were developed as part of SemEval-2016

Task 5 "Aspect-Based Sentiment Analysis" where seven

different languages were represented, and are publicly

available for research purposes.

38

 A Turkish sentiment corpus comprised of user

reviews annotated using semi-automatically is

constructed in [10]. The corpus contains Turkish hotel

reviews dataset which has 1000 reviews and 5364

sentences. The corpus also contains root forms of words,

their usage, POS tags and sentiments.

 An Arabic Laptops Reviews (ALR) dataset [11] for

ABSA has been prepared according to the annotation

scheme of SemEval16-Task5. The annotation scheme

addresses two problems: prediction of aspect category

and sentiment polarity label prediction. An evaluation

procedure that extracts n-grams' features and uses a

Support Vector Machine (SVM) classifier has also been

described. in order to allow researchers to gauge and

compare the performance. The results of evaluation

show that there is a need for improvements in the

performance of the SVM classifier for the aspect

category prediction problem. On the other hand, the

SVM's accuracy is actually high for sentiment polarity

label prediction.

 The work in [12] provides a human annotated Arabic

dataset (HAAD). HAAD comprises of books reviews in

Arabic which have been annotated by humans with

aspect terms and their polarities. The paper also reports

a baseline results with common evaluation techniques

for the purpose of future evaluation of ABSA systems.

3. Urdu ABSA Corpus for Political Domain

This section describes the methodology that has been

used for developing the corpus.

3.1. Corpus Collection and Preprocessing

We have collected 8760 tweets containing user

comments regarding the following three political parties

of Pakistan: Pakistan Tehreek-e-Insaaf (PTI), Pakistan

Muslim League Nawaz (PMLN) and Pakistan People

Party (PPP). The tweets have been collected in Urdu

language using tweeter API. For searching relevant

tweets, we have used the keywords indentified for each

aspect in search queries.

After collecting the data, the next step is

preprocessing. In preprocessing step, we have done the

following tasks:

 Removal of special characters like hash tags,

emoticons and punctuation marks like; '?, !, ;'.

 Resolving segmentation issues like incomplete

words, issues of extra spaces between letters of

words and presence of Zero Width Non Joiner

(ZWNJ).

 Removal of duplicate tweets

 Removal of URLs and hyper links from the tweets.

3.2. Aspect-based tagging

The corpus has been designed for conducting aspect

based sentiment analysis of the reviews of people

regarding the above mentioned political parties of

Pakistan. The reviews are analyzed for finding

sentiments regarding the following four aspects:

3.2.1 Member

 This aspect refers to the positive, negative and neutral

comments of users regarding members of a party. For

example, consider the following sentence:

 /عمران خان کی نیت صاف ہے/
/ɪmrɑ:n xɑ:n ki: ni:jjət̪ sɑ:f hæ:/

 Imran Khan's intentions are pure

Here, the quality of a PTI member has been mentioned

in a positive way as the word 'pure' is very positive.

Consider another example:

 /عمران خان کی سونامی تباہی ہے/
/ɪmrɑ:n xɑ:n ki: so:nɑ:mi: t̪əbɑ:hi: hæ:/

Imran Khan's tsunami is disastrous

Here, a negative sentiment has been expressed in the

form of words 'tsunami' and 'disastrous'.

3.2.2. Projects

 This aspect refers to the projects of a party. The

followings could be the examples of party's projects; /

اورنج / ,/nəjɑ: pɑ:kɪst̪ɑ:n/ /New Pakistan/ / نیا پاکستان

 .ɔ:rɪnʤ tre:n/ /Orange train/ etc/ٹرین

Consider the following review as an example:

 /اورنج ٹرین ایک ناکامیاب پروجیکٹ ہے/

/ɔ:rɪnʤ tre:n e:k nɑ:kɑ:mjɑ:b pro:ʤækt hæ:/

Orange train is an unsuccessful project

In this sentence, a negative sentiment is attached with

the project of PMLN in the form of word 'unsuccessful'.

3.2.3. Actions

 This aspect refers to policies of a party. These

policies and actions could be foreign policies, economy

policies, price control policies and health policies etc.

The following keywords could be examples of action

aspect; / مہنگائی/ /mæhŋgɑ:i:/ /Inflation/ and

/قرضہ //qərzɑ:/ /Debt/ etc.

Consider the following example:

پی ٹی آئی کی حکومت کی وجہ سے مہنگائی بڑھ رہی /

 /ہے

39

/pi: ti: ɑ:i: ki: həku:mət̪ ki: vəʤɑ: se: mæhŋgɑ:i: bəɽʰ

rəhi: hæ:/

Inflation is increasing due to PTI's government

In the above mentioned sentence, a negative sentiment

is expressed towards the action of PTI.

3.2.4. Party

 This aspect refers to feedback of people regarding

party as a whole.

Consider the following example:

 /پی ٹی آئی کی کارکردگی اچھی نہیں/

/pi: ti: ɑ:i: ki: kɑ:rkərd̪əgi: əʧhʧhi: nəhi:/

The performance of PTI is not good

This review contains a negative feedback regarding

performance of PTI as a whole party rather than

individual members.

3.3. Sentiment Polarities

 For the purpose of assigning sentiments to each

aspect, we have used a five point scale from -2 to 2,

where -2 means more negative, -1 means less negative,

0 means neutral, 1 means positive and +2 means more

positive.

3.4. Corpus Tagging

 A team of expert linguists with Mphil and PhD

degrees in the area of Applied Linguistics and Urdu

Literature respectively has tagged the corpus. The tested

data achieved Inter Annotator Accuracy (IAA) of 75%

at aspects and sentiment level tagging.

3.5. Corpus Statistics

 This section explains the statistics of corpus that has

been tagged as aspect and sentiment level. Table 2

below is presenting the statistics of each aspect in the

developed corpus.

Table 2. Statistics of aspects in developed corpus

PART

Y

MEMB

ER

PROJE

CT

PART

Y

ACTIO

N

PTI 1622 445 798 669

PML

N 2215 758 621 308

PPP 1497 306 919 535

The statistics of aspect wise sentiments is given in Table

3 below.

Table 3. Statistics of aspect wise sentiments in the corpus

 Sentiment

Party Aspects POS NEG NEU

PTI

MEMBER 314 1090 218

PROJECT 50 391 4

PARTY 151 521 126

ACTION 81 570 18

PMLN

MEMBER 758 1257 200

PROJECT 406 205 147

PARTY 135 375 111

ACTION 157 140 11

PPP

MEMBER 295 914 288

PROJECT 89 126 91

PARTY 295 501 123

ACTION 34 489 12

4. Automatic Aspect-Based Sentiment

Annotation

 The developed corpus has been used for measuring

the performance of machine learning based algorithms

and baseline results have been reported. This evaluation

is useful for indicating the reliability of the developed

corpus.

 Hence, for the purpose of analyzing that whether the

corpus can be used for developing an ABSA classifier,

we have trained classifiers for aspects recognition and

sentiment tagging using an SVM library, namely

LIBSVM in Weka [13].

 We have used One-Vs-All approach and trained

classifiers for each aspect and sentiment separately. So,

we have trained 12 models for aspects and 12 models

for sentiments classification. We have evaluated the

results by performing 10-fold cross validation.

We have also experimented with different n-gram

features with n ∈ {1,2,3}. For the purpose of vectorizing

the data, we have used a binary scheme in which the

vector contains 1 if word is present and 0 otherwise.

The results for sentiments classification system are

presented in Table 3 below.

40

Table 4. F1-scores for sentiment models using CV

 Parties

Features Aspects PTI PMLN PPP

Unigram

MEMBER 70.7 70.6 65.2

PROJECT 85.7 62.8 60.7

PARTY 77 65.3 77.5

ACTION 80 75.1 89.9

Bigram

MEMBER 64 70.1 65.7

PROJECT 84.1 62.8 60.9

PARTY 90.1 64.2 71.9

ACTION 80.3 73.6 90.2

Trigram

MEMBER 63.1 63.9 61.1

PROJECT 82.6 47.6 59.9

PARTY 61.1 53.3 60.4

ACTION 78.9 59.8 89.9

The results of aspects classifiers are presented in Table

4 below.

Table 5. F1-scores for aspects models using CV

 Parties

Features Aspects PTI PMLN PPP

Unigram

MEMBER 88.5 86.3 90

PROJECT 96.2 94.6 98.3

PARTY 90.7 92.9 91.6

ACTION 91.2 94.1 95.6

Bigram

MEMBER 89.9 87.7 88.4

PROJECT 96.8 95.6 98.9

PARTY 92.9 92.7 93.7

ACTION 90.6 94.6 94.1

Trigram

MEMBER 79.1 76.1 77.1

PROJECT 94.3 91.3 92.3

PARTY 90.7 90.6 89.9

ACTION 88.9 94.7 85

5. Conclusion

A corpus for ABSA for Urdu political data has been

presented in this paper. The developed corpus has been

tagged at aspect and sentiment level with IAA score of

75%. A baseline system has also been developed using

the corpus for analyzing its reliability in future use. It

can be seen from the above mentioned results that the

aspect classifiers have achieved a F1-score of more than

90% in most of the cases. Moreover, the sentiment

classifiers have also achieved a F1-score of more than

70% in many cases

6. References

[1] Walaa, A. Hassan, and H. Korashy Medhat, "Sentiment

analysis algorithms and applications: A survey," Ain Shams

engineering journal, vol. 5, no. 4, pp. 1093-1113, 2014.

[2] Maria, D. Galanis, H. Papageorgiou, I. Androutsopoulos

and S. Manandhar Pontiki, "Semeval-2016 task 5: Aspect

based sentiment analysis," in Proceedings of the 10th

international workshop on semantic evaluation (SemEval-

2016), 2016, pp. 19-30.

[3] D. Mohey and El-Din Mohamed Hussein, "A survey on

sentiment analysis challenges," Journal of King Saud

University-Engineering Sciences, vol. 30, no. 4, pp. 330-338,

2018.

[4] "Automated sentiment analysis in tourism: Comparison of

approaches," Journal of Travel Research, vol. 57, no. 8, pp.

1012-1025.

[5] Muhammad, M.Diab, and S.Kübler Abdul-Mageed,

"SAMAR: Subjectivity and sentiment analysis for Arabic

social media," in Computer Speech & Language, 2014, pp. 20-

37.

[6] V. Kumar, and S.Kumar. Jain, "Effective surveillance and

predictive mapping of mosquito-borne diseases using social

media.," Journal of Computational Science, pp. 406-415,

2018.

[7] M.Bexte and T.Zesch D.Gold, "Corpus of Aspect-based

Sentiment in Political Debates," in Proceedings of the 14th

Conference on Natural Language Processing (KONVENS

2018), 2018.

[8] Antonio, et al. Sorgente, "An italian corpus for aspect

based sentiment analysis of movie reviews," in CLICIT2014,

2014.

[9] Marianna, X.Tannier, and C.Richart Apidianaki, "Datasets

for aspect-based sentiment analysis in french," in Proceedings

of the Tenth International Conference on Language Resources

and Evaluation, 2016.

[10] S. İlhan, E. Ekinci, and H. Türkmen Omurca, "An

annotated corpus for Turkish sentiment analysis at sentence

level.," in In 2017 International Artificial Intelligence and

Data Processing Symposium (IDAP).IEEE., 2017, pp. 1-5.

[11] Al-Ayyoub and Mahmoud, "Aspect-Based Sentiment

Analysis of Arabic Laptop.," , 2017.

[12] Mohammad, et al. Al-Smadi, "Human annotated arabic

dataset of book reviews for aspect based sentiment analysis,"

in 2015 3rd International Conference on Future Internet of

Things and Cloud. IEEE, 2015., 2015.

[13]https://www.cs.waikato.ac.nz/~ml/weka/index.html.

41

Development and Automation of Phrase Model for Urdu Speech Corpus

1Aneeta Niazi, 1Saba Urooj, 1Benazir Mumtaz, 1,2Tania Habib
1Center for Language Engineering (CLE),

Al-Khwarizmi Institute of Computer Science (KICS),
2Computer Science and Engineering Department

University of Engineering and Technology (UET),

Lahore, Pakistan.

aneeta.niazi@gmail.com, {first name.last name}@kics.edu.pk

Abstract

A phrase model for the annotation of Break Indices

(BI) in Urdu speech corpus has been presented. A

detailed acoustic analysis has been carried out to

understand the patterns of phrase breaks in 1 hour of

recorded Urdu speech. A four level phrase model has

been proposed, including BI levels 0, 1, 2 and 4. From

the outcomes of this analysis, rules have been

formulated for automating the process of BI tagging in

Urdu speech corpus. For this purpose, the annotated

information of word boundaries, Part Of Speech

(POS), intonation, stress and pauses from the Urdu

speech corpus has been utilized. As the features

indicating the prosodic behavior of the pitch contour,

including stress and intonation, have already been

accurately tagged in the speech corpus, the results

obtained from the automatic BI tagging are quite

promising. The automatic BI labeling system has

provided coverage of 97.8%, and accuracy of 98.3%

for the tagging of unseen data.

Keywords: Break Index, BI, Phrase model, Urdu

speech, Automatic annotation, prosodic modeling

1. Introduction

In a language, a word or a group of words co-

existing as a single conceptual unit is known as a

phrase [1]. Human speech contains words clustered

together to form phrases. These phrases are separated

by pauses, or a change in the speaker’s tone.

In written text, punctuation is commonly used to

indicate phrase boundaries e.g. comma, full stop etc.

However, while speaking, humans insert phrase

breaks, even in the absence of punctuation. These

breaks usually occur in speech while moving from one

word to another, mostly for expressing emotions and

intentions [2]. A phrase break is also referred to as

Break Index (BI).

 For building Text-to-Speech (TTS) systems, an

adequately large, well annotated speech corpus is one

of the basic requirements. The corpus should contain

accurate annotations for prosodic features, such as BI,

stress and intonation, to make the TTS sound as

human-like as possible.

 Several efforts have been made to develop an

international standard for annotating prosody in

speech. One of the earliest and most popular prosody

tagging standards is ToBI (Tones and Break Indices)

[3]. In ToBI, the different types of pauses in speech are

represented by numbers from 0 to 4. A typical break

between two adjacent words is represented by BI level

1. A break in place of a comma is indicated by BI level

3, whereas a distinctive pause in between speech

segments is represented by BI level 4. This tagging

convention is used by many languages. However, this

could not be generalized for all the languages.

Researchers developed variations of ToBI to suit the

requirements of speech annotation for their particular

languages e.g. J-ToBI for Japanese, G-ToBI for

German, ToDI for Dutch, B-ToBI for Bengali etc. [4].

 The existing Urdu speech corpus [4] has been

annotated for all the necessary prosodic features of

speech. A 5 level scale (from 0 to 4) has been used for

marking BI, based on, duration of breaks, and

lengthening of phrases, pitch contour and

glottalization. During an acoustic analysis for

understanding the tonal patterns of Urdu speech, it has

been observed that the structure of Urdu phrases is

very different from English phrases in the spoken

Urdu sentences. In Urdu, word and phrase boundaries

are not marked in accordance with the rules followed

by English; i.e. the behavior of Urdu BI is very

different from the conventions followed by English.

Due to the presence of accentual phrase, Urdu phrase

structure resembles with the phrase structure of South

Asian languages. Therefore, there is a need to re-

design the phrase model, and develop new standards

for marking BI for Urdu speech.

 The manual labeling of phrase boundaries in speech

corpus is a time consuming and laborious activity.

Machine learning based systems can be used for

making the annotation process efficient, but such

mailto:aneeta.niazi@gmail.com

42

systems require large amount of annotated data, which

is not readily available for under-resourced languages,

such as Urdu.

 In this paper, we present a detailed acoustic analysis

that has been carried out for developing a phrase

model for Urdu speech. An automatic BI labeling

system has been proposed to annotate the BI in the

Urdu speech corpus. Section 2 presents a survey of

the existing work for the topics of phrase modeling and

break index annotation. The results and discussions

are covered in section 4, whereas the findings of this

research are concluded in section 5. In section 6, we

propose the future directions which can be pursued to

further investigate the process of phrase modeling.

2. Literature Review

For long-form reading, phrase model serves as one

of the most important components for improving the

naturalness of a TTS system [2]. The phrase model

has been constructed by analyzing textual features

such as dependency tree features, Part Of Speech

(POS) and word embeddings. For improving the

prediction of phrase boundaries, these features have

been given as input to train Bidirectional Long Short

Term Memory (BiLSTM) and Classification And

Regression Trees (CART) based systems. Both

subjective and objective testing has been carried out to

compare the performance of BiLSTM and CART

systems. The evaluation results have shown that better

performance has been obtained by using word

embeddings and BiLSTM.

A language independent BiLSTM-CRF

(Conditional Random Fields) model has been

proposed for prosodic boundary prediction [5]. The

architecture consists of three layers, i.e. word

embeddings, BiLSTM and CRF. These three layers

learn from task-specific embeddings, past and future

features and sentence level information respectively.

The system has been evaluated for Mandarin and

English speech. The results show that using the

proposed model, the intonational phrase prediction has

been significantly improved as compared to the

traditional BiLSTM method.

BI labels have been automatically annotated for

Japanese and English speech, using only the

information extracted from the speech signal [6]. The

automatic labeling is carried out without using any

other prior information, such as transcriptions or word

boundaries. For this purpose, spontaneous Japanese

speech has been used to train BiLSTMs. The trained

system is used to annotate Japanese and English

speech, and a cross-lingual comparison is made with

the monolingual English labeling system. The

evaluation results have shown that the system trained

with Japanese speech performed better for the BI

labels 1 and 2, while the system trained with English

speech performed better for the Break Index label 3.

The less frequent labels in the data have not been

accurately detected. The proposed cross-lingual model

can be applied when sufficient amount of data is not

available for training a monolingual break index

labeling system.

An analysis is carried out to observe the impact of

the size of focus constituents on phrase boundaries in

French [7]. The experimental results have shown that

an accentual phrase boundary gets converted into an

intermediate phrase boundary, if it forms the right

edge of a narrow focus constituent. However, an

intermediate phrase boundary remains unaffected in

the presence of a narrow focus constituent in its

surrounding context.

Intonational phrase break prediction models have

been developed to automatically predict phrase breaks

in American English [8]. Binary classifiers, based on

logistic regression from the LLAMA machine learning

toolkit are used. 50 hours of recorded speech are used

for building the system. The prediction models are

data driven, based on features including lemmatized

words, POS, punctuation, distance from punctuation,

as well as dependency-relation features. An overall

prediction accuracy of 84.7% has been obtained.

A model for detecting prosodic boundaries in

Russian speech, using syntactic as well as acoustic

information, has been presented [9]. It is based on a

two level architecture, where the possible phrase

boundaries are marked by using syntactic information,

with the help of a dependency tree parser in the first

step. In the second step, a Random Forest (RF)

classifier uses a small set of acoustic features, such as

tempo, pitch range and amplitude etc., to mark the

actual prosodic boundaries. The duration of pauses has

been reported to be the best amongst all acoustic

features used for predicting prosodic boundaries.

For Indian languages, the analysis of phrases

becomes very difficult if there is no punctuation in the

text [10]. In read sentences, the units in between the

pauses are considered as phrases for analysis. It has

been observed that the length of inter-pausal units

follows a Gamma distribution. An analysis of shape

and scale parameters of speech has shown that these

parameters have dependence on the location of inter-

pausal units. This information is utilized to improve

the prosody modeling of TTS system for four Indian

languages. The results have shown considerable

improvement in the naturalness of synthesized speech.

An automatic prosodic transcription system has

been reported for Bengali and Odia languages [11]. 3

levels of breaks are annotated, i.e. word breaks are

represented as B1, phrase breaks as B2 and sentence

breaks as B3. For labeling BI automatically, short term

energy (STE) of speech signal is considered. The

43

energy associated with silence is negligible as

compared to unvoiced and voiced regions. Also,

unvoiced segments have very small duration as

compared to silence and voiced segments. The

duration thresholds for B1, B2 and B3 have been

determined by histograms. From the results, it is

observed that the automatic BI tagging system

detected many spurious breaks, which were not

perceived during manual tagging.

For Urdu speech, a 5 level scale (from 0 to 4) has

been presented for annotating break indices [4].

Acoustic features including pitch contour, duration of

pauses and glottalization have been considered for

analysis. 1036 files from CLE Urdu speech corpus are

used; comprising of simple sentences. An automatic

BI labeling system is developed to annotate 10 hours

of speech. The reported analysis does not include

complex predicates and compound sentences.

3. Proposed Methodology

This section includes the details of the data

collection, analysis and rules developed to formulate

phrase model for Urdu.

3.1. Data Acquisition

From CLE Urdu Speech Corpus, 1403 files have

been acquired for carrying out break index analysis.

Out of these files, 983 files are used as training data to

develop the automatic BI labeling utility. The

remaining 420 files have been kept as unseen data for

testing the performance of the automatic BI labeling

system.

Table 1 shows the counts of the BI tags found in

the training data.

TABLE 1 Training data counts

Tag Total Count

0 194

1 1320

2 3948

4 1410

Total 6872

Table 2 shows the counts of the BI tags found in

the testing data.

TABLE 2 Testing data counts

Tag Total Count

0 86

1 1097

2 2663

4 1012

Total 4877

From tables 1 and 2, it can be observed that in Urdu

speech corpus, BI level “2” tag has the highest

frequency, whereas BI level “0” tag has the lowest

frequency. This shows that accentual phrase boundary

i.e. level '2' BI occurs most frequently as accentual

phrase is the basic unit of Urdu prosody. BI level '0'

i.e. the words using zair-e-izafat, vao izafat and the

pronoun case marker combinations occur less

frequently in the data selected for the phrase model

analysis of Urdu.

3.2. Rules for Automating BI Tagging

As BI is marked between words and from words to

silence, so the onset of each word of a sentence would

not be assigned any BI level. The stress [12],

intonation [13] and POS [14] tiers have already been

accurately marked in the Urdu speech corpus. The

information provided by these tiers is used to

formulate rules for automatic BI marking.

Figure 1 shows an example of a speech file

containing the Urdu sentence, “US KA_Y

SA_AT_D_H APNA_Y RAVAJJA_Y PAR

MUD_Z_HA_Y AFSO_OS T_D_HA_A”.

(Translation: I was sorry for my behavior with him),

44

in which all the 4 levels of break indices (0, 1, 2 and

4) have been automatically labeled, according to the

automatic BI labeling rules.

The rules formulated for automating the process of

BI tagging are given as follows.

3.2.1. Break Index 4

1. In the first run, mark “4” if the following tag is

“SIL”.

2. In the second run, mark “4” aligning with every

“%” symbol on the intonation tier i.e. “LH%”,

“H%” and “L%” as % symbol denotes a full

intonation phrase boundary and is used at the end

of clauses and sentences only.

In Figure 1, it can be observed that BI level ‘4’ is

marked at the end of the word “T_D_HA_A”, in

accordance with the first rule, as it is the last word of

the sentence, followed by “SIL”. At the end of the

word “SA_AT_D_H”, BI level ‘4’ is marked in

accordance with second rule, as it aligns with the

intonation tag “L%”.

3.2.2. Break Index 2

Mark 2 aligning with every “Ha” or “La” tag on

intonation tier. “Ha” and “La” tags show an accentual

phrase boundary. An accentual phrase usually

comprises of a pitch accent and a boundary tone and it

is the smallest unit of Urdu prosody instead of a word

as multiple words are joined to form one accentual

phrase in Urdu. In other languages e.g. English, BI

level '2' is used to mark strong juncture with no tonal

markings. But we have used BI level ‘2’ for accentual

phrases as accentual phrase is found in South Asian

languages only.

In Figure 1, it can be observed that BI level ‘2’ is

marked at the end of words, “KA_Y”, “APNA_Y”,

“PAR”, “MUD_Z_HA_Y” and “AFSO_OS”,

aligning with the “Ha” intonation tag.

3.2.3. Break Index 0

Mark “0” in the following contexts:

1. At the onset boundary ofzair-e-izafat, A_Y with the

POS tag CN

2. At the onset boundary of vao-izafat, O_O with the

POS tag CN

3. Between the following pronouns and case markers:

a. Between US/اس with the pos tag PR and

KA_Y/کے with the pos tag AP

b. Between UN/ان with the pos tag PR and

KA_Y/کے with the pos tag AP

Personal pronouns in Urdu completely lose their

word boundary when followed by certain case markers

taking BI level '0' between them and behaving as one

prosodic word. See Appendix A for the list of such

pronouns and case markers.

In Figure 1, it can be observed that BI level ‘0’ is

marked at the end of the word “US”, as its POS tag is

“PR” and it is followed by the word “KA_Y” with the

POS tag “AP”, in accordance with the rule 3 (a).

3.2.4. Break Index 1

Mark 1 at all the remaining word boundaries as BI

level '1' is used for default word boundary, when two

words are not merged as in BI level '0', or there is no

FIGURE 2 An example of a speech file that has been automatically annotated for all BI levels (0, 1, 2 and 4).

45

accentual phrase as in BI level '2', or there is no silence

or full intonation phrase as in BI level '4'.

In Figure 1, it can be observed that BI level ‘1’ is

marked at the end of the word “RAVAJJA_Y”, as it

does not follow the rules mentioned for BI levels ‘0’,

‘2’ and ‘4’.

4. Results and Discussion

Table 3 shows the results obtained after

automatically labeling the unseen testing data, and

comparing it with the manually labeled gold standard

corpus.

TABLE 3 Automatic BI labeling results obtained

with unseen testing data.

Tag
Total

Count

Marked

Count

Coverage

(%)

Accuracy

(%)

0 86 86 100 100

1 1097 1084 96 97

2 2663 2657 99 97

4 1012 983 96 99

Total 4887 4810 Avg=97.8 Avg=98.3

From the above table, it can be observed that the

level “0” tag has been automatically marked with

100% accuracy, whereas its coverage is also 100%. A

very high percentage of coverage has been obtained

for all of the four BI tags, with an overall coverage of

97.8%. The results obtained for accuracy are also quite

promising, as an average accuracy of 98.3% is

obtained.

The reason for obtaining such high quality

performance is the fact that the automatic BI labeling

system only utilizes the information from already

accurately annotated tiers i.e. stress, intonation and

part of speech (POS) tags from the speech corpus, and

does not rely on extracting information from the pitch

contour at run time for BI tagging.

The stress tier contains information about the

stressed and unstressed syllables. The intonation tier

indicates the high and low tones of the pitch at

accentual phrase boundaries and pitch accents. This

annotated information has been used to get an idea of

the pitch contour, for marking BI in the speech corpus

at any point of time.

5. Conclusion

A detailed acoustic analysis has been carried out for

understanding the behavior of phrase breaks, to

develop a phrase model for Urdu speech. The features

considered for this purpose include POS, annotated

intonation and stress information.

It has been observed that Urdu speech contains four

levels of break indices i.e. 0, 1, 2 and 4, for

establishing prosodic relationships between words.

The outcomes of this analysis have been used to

develop an automatic BI labeling system. The

developed system has provided coverage of 97.8%,

and an accuracy of 98.3% with unseen testing data,

which is quite promising.

6. Future Work

In future, the automatic BI labeling utility

developed during this research will be used to annotate

phrase breaks in the remaining 9 hours of CLE Urdu

speech corpus. This annotated corpus will be used as

input to train the speech synthesis module of Urdu

TTS system, to improve the naturalness of synthesized

Urdu voice.

 Analysis for phrase modeling of long-form Urdu

speech can be carried out in order to observe the

patterns of phrase breaks during the reading of long

Urdu paragraphs. The outcomes of such analysis can

be utilized to improve the naturalness of Urdu TTS for

audio books and screen readers.

References

[1] (2019) Lexico powered by Oxford. [Online].

https://www.lexico.com/en/definition/phrase

[2] Viacheslav Klimkov et al., "Phrase break

prediction for long-form reading TTS: exploiting text

structure information," in Interspeech, Stockholm,

Sweden, 2017.

[3] Joe Crumpton and Cindy L. Bethel, "A Survey of

Using Vocal Prosody to Convey Emotion in Robot

Speech," International Journal of Social Robotics, vol.

8, no. 2, pp. 271-285, April 2015.

[4] Benazir Mumtaz, Saba Urooj, Sarmad Hussain,

and Ehsan Ul Haq, "Break Index (BI) Annotated

Speech Corpus for Urdu TTS," in Conference of The

Oriental Chapter of International Committee for

Coordination and Standardization of Speech

Databases and Assessment Technique (O-

COCOSDA) , Bali, Indonesia, 2016.

[5] Yibin Zheng, Jianhua Tao, Zhengqi Wen, and Ya

Li, "BLSTM-CRF Based End-to-End Prosodic

Boundary Prediction with Context Sensitive

Embeddings in A Text-to-Speech Front-End," in

Interspeech, Hyderabad, India, 2018.

[6] Marco Vetter, Sakriani Sakti, and Satoshi

Nakamura, "Cross-lingual Speech-based Tobi Label

Generation using Bidirectional LSTMs," in

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brighton, United

Kingdom, 2019.

46

[7] Amandine Michelas and James S. German, "Focus

Marking and Prosodic Boundary Strength in French,"

International Journal of Phonetic Science (Phonetica),

2018.

[8] Taniya Mishra, Yeon-jun Kim, and Srinivas

Bangalore, "Intonational phrase break prediction for

text-to-speech synthesis using dependency relations,"

in International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brisbane, QLD,

Australia, 2015, pp. 4919-4923.

[9] Daniil Kocharov, Tatiana Kachkovskaia, and Pavel

Skrelin, "Prosodic boundary detection using syntactic

and acoustic information," Computer Speech and

Language, vol. 53, pp. 231-241, 2019.

[10] Jeena J. Prakash and Hema A. Murthy, "Analysis

of Inter-Pausal Units in Indian Languages and Its

Applications to Text-to-Speech Synthesis,"

IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 27, no. 10, pp. 1616-1628,

June 2019.

[11] R. Ravi Kiran et al., "Automatic Phonetic and

Prosodic Transcription for Indian Languages : Bengali

and Odia," in 10th International Corference on Natural

Language Processing, Noida, India, 2013.

[12] Benazir Mumtaz, Saba Urooj, Sarmad Hussain,

and Wajeeha Habib, "Stress Annotated Urdu Speech

Corpus to Build Female Voice for TTS," in 18th

Oriental COCOSDA/CASLRE Conference, Shanghai,

China, 2015.

[13] Benazir Mumtaz, Saba Urooj, and Sarmad

Hussain, "Urdu Intonation," Journal of South Asian

Linguistics, vol. 10, October 2019.

[14] Tafseer Ahmad et al., "The CLE Urdu POS

Tagset," in Language Resources and Evaluation

Conference (LERC 14), Reykjavik, Iceland, 2014.

47

Appendix A

Lists of Urdu pronouns and case markers to be considered for Break Index 0 rule.

Case Markers

SA_Y

NA_Y

KO_O

KA_A

KI_I

KA_Y

MA_Y_N

Pronouns

MA_E_N

MUD_Z

T_DUD_Z

A_AP

T_DU_U

T_DUM

HAM

IS

US

UN

SAB

VO_O

IN

48

49

Development of Annotated Corpus Resources of Sindhi

Mutee U Rahman1, Tafseer Ahmed2, and Muhammad Shaheer Memon3
1,3 Isra University, Hyderabad, 2Mohammad Ali Jinnah University, Karachi

muteeurahman@gmail.com, tafseer@gmail.com, shaheer.memon@isra.edu.pk

Abstract

We present ongoing work on the development of an

annotated corpus resources project for Sindhi. A multi-

layer annotation model is presented and experimentally

applied on a subset of an existing plaintext Sindhi

corpus. The multilayer model may possibly include

different annotation layers like part-of-speech,

morphological features, phrase structure, and

dependency structure, etc. A compact POS tagset based

on universal pos tags is considered for the POS

annotations layer. Initially, a gold standard of 0.1

million words balanced corpus is created by using

manual tagging tools with inter-annotator agreement

considerations. A model is also trained with this gold

standard corpus. Testing and evaluation show

precision, recall, and F-measure accuracies with 97%,

96.7%, and 96.9% respectively.

1. Introduction

Annotated corpus is an important language resource

used in theoretical and computational linguistics to

reveal the deep linguistic structures and capture the

computational properties of a natural language. Modern

language technologies use these insights to develop high

performance software systems with natural language

processing and understanding capabilities [1]. Being

under resourced language, annotated corpus resources

for Sindhi are rarely available. This work presents an

initiative of annotated corpus resources development

project for Sindhi. Main objective is to lay down the

foundations of multipurpose annotated corpus

development model. A corpus development model with

possibility of multiple annotation layers is presented.

The proposed model is based on James Pustejovsky &

Amber Stubbs model [2] with some changes. Initially

this model is used to develop part-of-speech (POS)

tagged corpus of Sindhi. Subset of an existing Sindhi

corpus [3] is used for experimental development of pos-

tagged corpus. At the outset first layer is annotated with

part-of-speech tags. An obligatory POS tagset based on

universal POS tags is used for annotations. Webanno [4]

was initially used for manual annotations to create a

gold standard for machine learning. Later on, Stanford

tagger [5] was used for machine learning and automatic

pos tagging. Gold standard is incrementally developed

by automatic tagging and manual tweaking of wrongly

tagged words in different sub-sets of corpus under

consideration.

subsequent sections discuss the existing work,

proposed multilayer annotation model, development of

pos-tagged corpus, results, future work, and conclusion.

2. Existing Work

Only few corpus development studies for Sindhi are

there which include Rahman (2010) [3], Mazhar, et., al.

[6], and Syed & Bhatti (2018) [7]. In first study Rahman

(2010) presented Sindhi corpus construction project.

The corpus collection cleaning and organization process

is discussed with plain text corpus analysis results

including unigram, bi-gram, and tri-gram frequencies.

This work lacks the annotation model and its

implementation. In second study Mazhar, et. al., (2019)

presented the development and analysis of Sindhi

corpus for feature attributes and sentiment analysis. This

corpus is made available as a dataset with around seven

thousand (7000) entries annotated with universal POS

tagset. Entries mostly include discrete sentences without

any continuity of topic. Dataset includes universal pos-

tags, with morphological (number, gender, and person)

information, negative, positive sentiment and polarity

values. The third study Syed & Bhatti (2018) presented

an XML based document structure for development of

Sindhi corpus. However, only document structure

model is presented, and linguistic annotations are not

discussed in this study.

Other related studies are mostly about pos tagger

development and training, and development of tagsets

for Sindhi Language [8]. [9] and [10] present POS

taggers with reasonable accuracy results, however, there

is no publicly available annotated corpus except [6]

discussed above.

3. Annotated Corpus Development Model

As discussed above, particularly for this corpus

development project a subset of an existing plain text

corpus [3] is selected for experiments and final

annotations. However, the overall corpus development

model is shown in Figure 1. Various phases of corpus

mailto:muteeurahman@gmail.com
mailto:tafseer@gmail.com
mailto:shaheer.memon@isra.edu.pk

50

development process are summarized in the figure.

Guidelines include the necessary documentation

regarding what annotators need to know about the

corpus and its overall design including the corpus subset

selection criteria, annotations, and annotation process

guidelines. Selected corpus segments, and tagset

alongwith guidelines are given to annotators for manual

annotations. Different phases of the presented model are

discussed in subsequent sections.

3.1 Annotation Structure & Representation

The annotation model is designed as a multilayer

model where each annotation layer is independent of

other layers. This model is inspired by Stand-off

annotation by Character Location [11]. This not only

solves the white-space tokenization problems but allows

simultaneously different layers on same text

token/entity with possibility of links between them.

Table 1 shows a three-layer sample of layered

annotation model with part-of-speech tag,

morphological feature tag, and syntactic function tag

layers.

Table 6. Layered Annotations

Text ڇوڪريء مون تي ڀروسو ڪیو

POS Tags : VERB NN ADPP PRON NN

Morph Tags: SMPAST SMNOM OBL SGOBL SFNOM

FUNC-Tags: VC NP-POF PP-OBL NP-SUB

XML representation of above model are as given

below:

<TEXT> <TEXT/> ڪیو ڀروسو تي مون ڇوڪريء

<POSTAGS>

 <NN id="N0" start="1" end="7" text=" ڇوڪريء" />

 <PRON id="P0" start="9" end="11" text="مون" />

 <ADPP id="A0" start="13" end="14" text="تي" />

 <NN id="N1" start="16" end="21" text="ڀروسو"/>

 <VERB id="V0" start="23" end="25" text="ڪیو"/>

</POSTAGS>

<MORPHTAGS>

 <SFNOM id="SFO0" start="1" end="7" text=" ڇوڪريء"/>

 <SOBL id="SO0" start="9" end="11" text="مون" />

 <OBL id="O0" start="13" end="14" text="تي" />

 <SMNOM id="SMN0" start="16" end="21" text="ڀروسو" />

 <SMPAST id="SMP0" start="23" end="25" text="ڪیو" />

</MORPHTAGS>

<FUNCTIONALTAGS>

 <NPSUB id="NS0" start="1" end="7" text=" ڇوڪريء"/>

 <PPOBL id="PO0" start="9" end="14" text="مون تي"/>

 <NPPOF id="NPF0" start="16" end="21" text="ڀروسو"/>

 <VC id="VC0" start="23" end="25" text="ڪیو" />

</FUNCTIONALTAGS>

Layers (<POSTAGS>, <MORPHTAGS>,

<FUNCTIONALTAGS>) contain tags of different

categories. For example, <POSTAGS> layer contains

NN (Common Noun), PRON (Pronoun), ADPP

(Postposition), and VERB tags. Multiple tags within

same category have unique id attributes followed by

starting and ending position of a token being annotated

in the text. It can be seen that multiple layers can mark

same location (token) with different tags without

disturbing each other. For example, in case of token

 ,girl” a common noun with singular“) ”ڇوڪريء “

feminine, nominative features) pos tag layer marks it as

a common noun tag “NN”, morphtags layer marks it

with singular feminine and nominative features

(SFNOM), and functional tags layer marks the same

token as noun phrase subject (NPSUB) function.

Overlapping can also be observed where multiple tags

of one layer are part of single tag of another layer. This

can be seen in functional tags layer where PPOBL

(Postpositional Oblique Phrase) spans over the start

position 9 to ending position 14 marking single token at

Figure 3. Annotated Corpus Development Model

51

functional layer, whereas other layers have two different

tags within the same span.

3.2 Tag-Set Considerations

Sindhi has rich morphological constructions as

compared to its neighboring languages. Along-with

various sub-classes of different parts of speech

morphological feature include number, gender, and case

in nouns. Morphology also includes rich pronominal

suffixation system with nouns, verbs, postpositions, and

adverbs. Verbs also have complex morphological

causative system. To avoid extra granularity levels

initial experimental design of tag-set includes only

major parts of speech categories. Morphological

features are considered as a separate layer and are not

discussed in this paper. POS tagset considered for

tagging is based on Universal POS tags [12] and is

shown in Table 2.

Table 7. Obligatory Tagset Based on Universal POS

Tags

S.No. POS POS-Tag

1. Common Noun NN

2. Proper Noun NNP

3. Pronoun PRON

4. Adjective ADJ

5. Adverb ADV

6. Preposition ADP

7. Postposition ADPP

8. Conjunction CONJ

9. Interjection INTJ

10. Particle PRT

11. Negation NEG

12. Punctuation .

13. Number NUM

14. Other Symbols / Unknown X

3.3 Corpus Selection for Annotations

Two sections (representing two different genres of

text) of existing corpus [3] are selected for annotations.

Selected corpus sections include news and folk stories

Reason behind the selection of these two genres is that

news section contains written language with well-

formed sentences and folk stories contain vocabulary

used by common people in everyday life. Together these

two genres represent the Sindhi language of everyday

use. 0.1 million words corpus from these two genres

(approximately half from each genre) is annotated and

used as gold standard for machine learning to automate

the pos-tagging process.

3.4 POS Tagging Process

As discussed earlier that selected corpus is annotated

with parts of speech tags. Three different annotators

were given segments of text for manual POS tagging.

WebAnno [4] tool was used for manual POS tagging.

Figure 2 shows the snapshot of pos tagging screen in

WebAnno.

Figure 2. Screenshot of Webanno Tagging Window

Manually annotated segments were then discussed

among three annotators to sort out the differences in

annotations. These three agreed upon tagged segments

were finally combined to have an initial gold standard

for machine learning. Stanford pos-tagger was trained

on this data and training model was used to tag text

segments automatically. These automatically tagged

segments were again given to annotators for review and

corrections. Correct segments were incrementally added

to gold standard. This process is shown in Figure 3.

During this process the usability of compact POS-

Figure 3. Gold Standard: Incremental Development

Process

52

Tagset being considered was also discussed and

evaluated by annotators.

4. Discussion, Results, and Evaluation

Selected subsets of Sindhi corpus include newspaper

and folk stories genres. The major reason behind

selecting these two genres was their representativeness

of language. During corpus analysis it was found that

newspaper corpus represents well formed written

language which does not necessarily include the spoken

language flavor. Folk stories on the other hand are

transcriptions of stories narrated by folk storytellers and

include rich linguistic features of language used in

everyday life. It was found that most interesting

linguistic features including the pronominal suffixes,

causatives, and inflectional variations were more

frequent in folk stories. In contrast newspaper corpus

rarely included those features and is mostly comprised

of formal written language.

As discussed earlier, internal structure of developed

corpus is represented as XML based standoff annotation

by character location. This notation is LAF (Linguistic

Annotation Framework an ISO standard) [13]

compliant. Despite of internal XML based

representation, the annotated corpus is easily

representable by using common inline tagged notation

format. Screenshot of an automatic annotation result

generated by Stanford Tagger is shown in Figure 4. It

may be noted that this output shows the POS layer in

inline format where “_” underscore is used as a tag

separator.

 By using incremental approach shown in Figure 3

and discussed in section 3.4, 0.1-million-word corpus is

tagged and verified as a gold standard. Model trained by

using this gold standard is used for automatic POS

tagging. Sample output of such tagging is shown in

Figure 4. Tagger produces results with 97.0% and

96.7% precision and recall respectively. The given F-

measure results are 96.9%. Reasonable accuracy is

achieved by trained POS tagger. Most of the error

patterns are with the tokens where same token form has

more than one POS tags. For example, token “بند” can

either be a common NN (stanza) or a VERB (close).

Few errors are due to probabilities of noun clusters

where inner proper noun NNP or adjective ADJ is

tagged as common noun NN. For example, in cluster

 is tagged ”مڪمل“ the inner token ”صورتحال مڪمل طور“

as common noun NN instead of adjective ADJ due to

higher probability of three common noun clusters in

training data.

5. Conclusion and Future Work

Linguistic resources for Sindhi are rarely available,

this work provide the basis for annotated Sindhi corpus

resources development with different kinds of

annotations. As an experiment compact version of POS

tags based on Universal POS tags is used to annotate the

selected segments of existing pre-processed and cleaned

corpus. First the usability of the compact POS tagset

was analyzed and annotators did not find any major

problem while annotating the corpus using compact

POS tagset. Second, the tagged corpus was used to

develop gold standard for machine learning this helped

the annotators to speed up the annotation process. Gold

standard is evaluated by using machine learning model

of Stanford POS tagger and results show reasonable

precision and recall accuracy between 96 – 97%. These

experimental results are encouraging, and the corpus

development is being extended to other layers

incrementally. Corpus distribution model is also being

worked out to share the corpus resources. This will help

to build more robust computational resources and

models for Sindhi language processing. We also plan to

use this model to develop annotated corpus resources for

other Pakistani languages.

9. References

[1] P., James, and A., Stubbs. “Natural Language Annotation

for Machine Learning: A guide to corpus-building for

applications.” O'Reilly Media, Inc.", 2017. pp 1 – 23.

[2] P., James, and A., Stubbs. “Natural Language Annotation

for Machine Learning: A guide to corpus-building for

applications.” O'Reilly Media, Inc.", 2017. pp 106.

[3] M. URahman ., Towards Sindhi Corpus Construction,

Linguistics and Literature Review 1(1): UMT. 2015., 39- 48.

[4] S. M., Yimam, I. Gurevych,., R. E., de Castilho, & C.

Biemann, “WebAnno: A flexible, web-based and visually

supported system for distributed annotations.” in Proc. of the

يڪڙھ _ADJ ینھنڏ _NN دستور_NN موجب_ADPP

ڙگد _NN ۽_CONJ ڻشینھ _NN جیئن_PRON جھنگ_NN

ارڪش ADPP_مان _NN لاء_ADPP پیچرو_NN

ئيڏ _VERB پئي_VERB ویا_VERB ،_.

 NN_شینھن ADPP_کین ADV_اوچتو PRT_ته

نجو _ADPP ارونڪگج _NN ٻڌڻ_VERB ۾_ADPP

ڻشینھ ._. VERB_آیون _NN ایسٻڌ _NN ته_PRT :_.

 VERB_نچن ADPP_۾ NN_خوشيء NN_شینھن

پنٽ _VERB پیا_VERB ._. اتي_ADV ڙگد _NN پڊ _NN

وڳل VERB_ڏڪڻ ADPP_کان _VERB ،_. ھنڏت _NN

ڻشینھ _NN یسڇپ _VERB ته_PRT :_. میرخان_NNP ،_.

 ._، AUX_آھي PRT_ته NN_خیر

Figure 4. Output of Trained Stanford POS Tagger

53

51st Annual Meeting of the Association for Computational

Linguistics: System Demonstrations August 2013, pp. 1-6.

[5] C., Manning, M., Surdeanu, J., Bauer, J., Finkel, S.,

Bethard, & D., McClosky. “The Stanford CoreNLP natural

language processing toolkit.” In Proceedings of 52nd annual

meeting of the association for computational linguistics:

system demonstrations June, 2014. pp. 55-60.

[6] M. A. Dootio, & A. I. Wagan. “Unicode-8 based linguistics

data set of annotated Sindhi text”. Elsevier Data in brief, 19,

2018. pp.1504-1514.

[7] Z. Bhatti, and M. Shah. "Sindhi Text Corpus using XML

and Custom Tags" Sukkur IBA Journal of Computing and

Mathematical Sciences 2.2, 2018. pp.30-37.

[8] M., URahman. “Developing a Part of Speech Tagset for

Sindhi”. In proc. Of the Conference on Language and

Technology UET Lahore. 2012.

[9] J. A., Mahar., and G. Q., Memon. "Probabilistic Analysis

of Sindhi Word Prediction using N-Grams." Australian

Journal of Basic and Applied Sciences 5.5, 2011. pp. 1137-

1143.

[10] R., Motlani, H., Lalwani, M., Shrivastava, & D. M.

Sharma. “Developing part-of-speech tagger for a resource

poor language: Sindhi.” In Proc. of the 7th Language and

Technology Conference LTC 2015, Poznan, Poland.

[11] P., James, and A., Stubbs. “Natural Language Annotation

for Machine Learning: A guide to corpus-building for

applications.” O'Reilly Media, Inc.", 2017. pp 87 – 103.

[12] S., Petrov, D., Das, R., McDonald. "A universal part-of-

speech tagset" arXiv preprint arXiv:1104.2086 2011.

[13] N. Ide, and R. Laurent. "International standard for a

linguistic annotation framework." Natural language

engineering 10.3-4. 2004. pp. 211-225.

54

55

Improving Time Efficiency of TF-IDF Algorithm for Dynamic Data Streams

Sidra Saher, Qurat-ul-Ain Akram*, Kashif Javed and Sarmad Hussain

Al-Khawarizmi Institute of Computer Science

(University of Engineering and Technology, Lahore)

{sidra.sehar, ainie.akram*, kashif.javed, sarmad.hussain}@kics.edu.pk

Abstract

 Different applications including search engines,

plagiarism detection systems and recommender systems

need to crunch the data frequently after a specific period

of time. The data indexing and retrieval for such

applications is becoming popular research area due to

availability of huge electronic content through Internet,

which is growing rapidly on daily basis. TF-IDF based

term weighting scheme is commonly used to extract

features of a document which are used for relevant

document searching. In this paper, TF-IDF algorithm is

analyzed and an efficient implementation of TF-IDF

algorithm is proposed to handle such dynamic text data.

Two major improvements of the traditional TF-IDF

algorithm are proposed; (1) Algorithm-1: Expansion of

IDF using logarithm properties and (2) Algorithm-2:

Store lookup of term frequency, document frequency and

IDF for reuse in next batch and efficiently update IDF of

terms. The systems are evaluated on dataset of 100,000

Urdu documents. Traditional TF-IDF algorithm takes

2676520 ms (10256 ms for IDF calculation) to process

complete dataset. Algorithm-1 takes 2676272 ms (10008

ms for IDF calculation), showing time efficiency in IDF

calculation. Algorithm-2 is specifically designed to

handle the dynamic growth of the data, which calculates

the new IDF of a term using the previously computed

IDF. This algorithm takes 707823 ms to process 100,000

documents. Another contribution of this study involves

reduced memory consumption for TF-IDF vectors using

the sparse representation of vectors. This reduces

8,945,445 MB to 353 MB to store TF-IDF of 11,724,976

terms computed from 100,000 Urdu documents.

1. Introduction

Due to rapid advancement in the development of

Information and Communication Technologies (ICTs),

electronic content is easily accessible in the form of

blogs, online articles, books, magazines, newspapers,

research papers and theses etc. To provide real time

accessibility of the relevant content, an efficient

information retrieval system is important. The research

in the fields of data mining, search engines and similarity

computation among documents for plagiarism detection

is becoming popular to handle huge dynamic text data

which is increasing on a daily basis. Processing of such

large dataset is a challenging task. To develop such

applications, text data is processed in such a way so that

meaningful information can be extracted efficiently.

Various term weighting schemes such as Mutual

Information, Okapi, LTU [1-3]and TF-IDF are used to

process massive datasets. Among all these schemes, TF-

IDF based term weighting scheme is commonly used

technique [4] to extract features of the document which

are used for searching the relevant document, text

mining and text classification etc.

To process the text for similarity computation, data is

processed and converted into the structured form which

can easily be used for similarity computation. For this,

three structures are used for document representation,

which include inference network [5], probabilistic [6]

and Vector Space Model (VSM). Among all these

models, VSM is most widely used model [7]. The VSM

contains a vector representation of weighted terms of a

document.

There are two ways to find the similarity between the

documents; (1) Local similarity and (2) Global

similarity. Local similarity refers to the technique which

tries to find the sequence of words which are same in two

documents. Usually cosine similarity based on vector

space model of terms (n-grams, n>1) is used to find the

similarity between two documents. However, Global

similarity based techniques rely on the unigram do not

cover the context. The similarity results of such

technique are meaningless in cases when two documents

have exactly similar terms but their sequence is never the

same. Therefore, researchers prefer to use local

similarity for applications which requires sequence of

the words to be matched [8].

For huge datasets, term weighting schemes are

applied for query retrieval or similarity calculation

purposes. A lot of research in this area has emphasized

on importance of using phrases as terms. Due to

improved accuracy of results, bigram and trigram based

phrases are preferred over unigrams [9]. In case of

Global similarity [8], similarity score between two

documents is highly unreliable. Therefore, we cannot

predict the documents to be exactly similar irrespective

56

of high similarity score. Due to this reason, trigrams are

used as terms for enhanced accuracy of the system.

To develop real time system for search engine,

plagiarism detection system etc. huge amount of dataset

is required. In addition, it is also essential to find the

document similarity with minimum time. Hence, term

weighting scheme needs to be implemented efficiently.

The re-computation of term weights in case of

dynamically growing data on daily basis is also

challenging, even if there is small change in the actual

content. The major contributions of this study are given

below

 Algorithm-1 incorporates an efficient implementation

of TF-IDF calculation for huge data.

 Algorithm-2 is an efficient implementation of TF-IDF

calculation for dynamically growing data on daily

basis.

 The memory consumption of TF-IDF vectors is also

reduced by using sparse representation of vectors

instead of dense vector representation.

 The rest of the paper is organized as follows: Section

2 describes related work. Section 3 provides explanation

of proposed algorithm by using logarithm properties and

lookup storage to improve computational time of TF-

IDF. Section 4 involves a brief discussion of dataset used

for experimentation. The experimental evaluation and

their results are discussed in Section 5 and finally

Section 6 concludes research study.

2. Related work

The idea of inverse document frequency was first

proposed by Jones [10]. Jones emphasized the idea of

specificity by introducing the concept of collection

frequency i.e. the words which are less frequent in a

collection should have more weight [10]. Salton and Yu

[11] used same technique in information retrieval and

observed retrieval effectiveness by using precision and

recall as evaluation metrics [11]. In addition, Salton and

Yu [11] also figured out that the TF-IDF algorithm

performed well in document retrieval. TF-IDF is a term

weighting scheme which assigns weights to terms

depending on their significance in the corpus. Its major

principle is based on the fact that a more frequent term

in a document with less frequency in overall documents

(i.e. document frequency) will have high TF-IDF weight

and vice-versa.

The calculation of TF-IDF is carried out using (1)

which is based on the term frequency (TF) and inverse

document frequency (IDF), and are calculated by using

following equations

 𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) ∗ 𝐼𝐷𝐹(𝑡) (1)

Term frequency is calculated as follows

 𝑇𝐹(𝑡, 𝑑) = 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡 𝑖𝑛 𝑑 (2)

Where t, d stands for term (i.e. trigrams in this study) and

document respectively. The IDF is calculated using (3)

 IDF(t) = log (
TotalDocSize

DF(t)
) (3)

Where, TotalDocSize is the total number of

documents in the corpus, which is processed to compute

the TF-IDF of all terms in corpus. In addition the DF is

the Document Frequency which is computed using (4).

DF(t) = ∑ tdTotalDocSize
i=1 {

td = 1 if t in di

td = 0 otherwise

 (4)

 Where td denotes the presence of a term in a

document.

The calculation of the IDF is further improved by

using the concept of smoothing introduced in [12] as can

be seen in (5).

 IDF(t) = 1 + log(
TotalDocSize+1

DF(t)+1
) (5)

TF-IDF is extensively explored to utilize TF-IDF for

text classification, document retrieval and plagiarism

detection systems [13-15]. A lot of research is done to

improve TF-IDF algorithm in terms of accuracy [14, 16,

17]. In addition, a few efficiency improvements of the

TF-IDF are also suggested. Bin and Yuan [18] presented

a technique for the efficient computation of TF-IDF from

large data using Hadoop as main framework. Hadoop

supports data distribution on multiple machines. In

addition Map/Reduce scheme was also used for fast

calculation of TF-IDF. The main shortcoming of the

work [18] is that the data is assumed to be static which

means data will not be updated once it would be indexed.

Gu et al. [19] used parallel cloud computing framework

which is based on GPU and MapReduce to improve the

efficiency of TF-IDF algorithm.

3. Methodology

In context of document relevance, n-grams based

similarity calculation is used to provide very accurate

results with emphasis on use of trigrams as a term [9].

TF-IDF algorithm uses VSM to represent TF-IDF

computed over each document in complete corpus. In

this study, an efficient implementation of TF-IDF is

proposed. As a first step, Traditional Algorithm of TF-

IDF calculation is implemented with efficient lookup of

term frequency and document frequency. Algorithm-1 is

proposed which involves improvement in time by use of

logarithmic expansion for IDF formula. Most of the real

world applications like search engines, plagiarism

detection systems and other information retrieval

57

applications have dynamically growing data. Addition of

a few more documents compels recalculation of weights

of all terms in all the documents. Therefore, Algorithm-

2 is designed in such a way that when a huge corpus is

indexed using TF-IDF term weighting scheme. The term

frequency, document frequency and inverse document

frequency lookups are stored. These lookups are then

used to update TF-IDF on increment of new documents.

In this way, term frequency of only newly updated

documents is calculated. The IDF of new terms is

calculated using document frequency lookup. The terms

which do not occur in newly updated documents undergo

a slight update in their already computed IDF values. It

reduces the overhead of re-computation and improves

efficiency. The overhead of memory is also reduced by

conversion of dense representation of TF-IDF vector to

sparse representation.

3.1. Traditional TF-IDF Algorithm

A very simple implementation for TF-IDF calculation

is carried out in [20]. The implementation of this

algorithm is computationally analyzed and an efficient

implementation is proposed to reduce the redundant

calculations. In order to reduce computational time, TF

and DF for all documents is calculated within the same

iteration over all documents. This reduces a lot of

computational time. Separate lookup is maintained for

each document to store the TFs. For document frequency

a global DF lookup is created to maintain the document

frequency of each term.

Once, the complete global DF lookup is maintained

over all the documents, another lookup is also

maintained for IDF (using (5)) by iterating over global

DF lookup. For TF-IDF calculation, it will iterate over

each term of every document just once and use the values

of TF and IDF stored in respective lookups.

3.2. Algorithm-1

The original equation for IDF i.e. (5) is analyzed

further. By applying the logarithm this computation is

further reduced as can be seen in (6).

IDF(t) = 1 + log(TotalDocSize + 1) −
 log (DF(t) + 1) (6)

As can be seen in (6), (1 + log(TotalDocSize +
1)) will be calculated only once for all the terms of all

the documents. In addition log (DF(t) + 1) requires to be

computed for each term and another subtraction

operation is required. In addition, running time of

division operation for n-digit number is 𝑂(𝑛2) and

running time of subtraction operation is 𝑂(𝑛), thus

saving more computational effort [21].

 In traditional TF-IDF algorithm, the expression

𝑙𝑜𝑔((𝑇𝑜𝑡𝑎𝑙𝐷𝑜𝑐𝑆𝑖𝑧𝑒 + 1)/(𝐷𝐹(𝑡) + 1)) is calculated P

times i.e. time complexity is O(P), where P denotes total

number of terms in global term lookup but due to this

algorithmic modification redundant calculation of

log(TotalDocSize + 1)) will be reduced to single time

calculation i.e. time complexity is reduced to O(1).

3.3. Algorithm-2

Various real time information retrieval and online

text similarity based applications such as plagiarism

detection system and search engines are based on

indexing of huge data. Majority of these systems are

developed to handle dynamic data, resulting in

incorporation of the results computed on the newly

indexed and already indexed data. This is usually carried

out by indexing the complete data (new and old

documents). Once, a significant amount of data is

processed (e.g. 5.5 million documents) then number of

new documents is minimum may be 1-3% of the already

indexed content. The document metadata information

(document name, URL, last modified date, etc.) is also

maintained while developing such huge systems.

Therefore, before starting indexing of complete dataset

(existing and new), document filtering can be applied on

recently crawled data to filter all those documents which

are not indexed previously based on metadata

information. These documents are referred to as

NewBatch and remaining documents which are already

indexed documents are referred to as PreviousBatch. The

NewBatch and PreviousBatch terminology is used

throughout this paper.

In order to re-index complete data including data of

PreviousBatch and NewBatch, a lot of computational

effort and time will be utilized. Although, the number of

documents in NewBatch is minimal. Based on analysis,

a term can be categorized into one of the following

categories

 New Terms: Terms which are only present in

NewBatch.

 Common Terms: Terms which are present in both

PreviousBatch and NewBatch.

 Old terms: Terms which are only present in

PreviousBatch.

For new terms, term frequency, document frequency

and inverse document frequency are computed using (2),

(4) & (6) respectively, from documents in NewBatch.

The DFs of terms which are common between

PreviousBatch and NewBatch are computed from

NewBatch and will be added in DFs of respective terms

already stored in the respective DF lookup of

PreviousBatch. Then, the IDF and TF-IDF are computed

using the same traditional way.

58

Inverse document frequency of old terms which are

only present in PreviousBatch is not required to be

recomputed for obvious reasons. As document

frequency lookup, inverse document frequency lookup

and term frequency lookup of each term of the

PreviousBatch are also maintained and stored separately

to minimize the re-computation time. Thus IDFs of old

terms can be calculated from already computed IDFs in

PreviousBatch by addition of an expression dependent

only on document size of PreviousBatch and NewBatch.

In order to calculate the IDF for old terms during re-

indexing of the dynamically growing data, the respective

IDFs of the PreviousBatch are processed in such a way

that DocSize of the NewBatch denoted with

NewDocSize, is incorporated. More precisely the IDFs

are calculated using (6). Equation 6 for PreviousBatch

can be written as follows

IDFPrevious = 1 + log((PreviousDocSize + 1)) −

log (DF(t) + 1) (7)

We can modify (7) for incorporating TotalDocSize

when NewBatch is indexed with PreviousBatch.

IDFNew = 1 + log((PreviousDocSize + 1) + x) −

 log (DF(t) + 1) (8)

Where PreviousDocSize denotes the number of

documents in PreviousBatch and x denotes the number

of documents in NewBatch.

The term log((PreviousDocSize + 1) + x) can be

further solved by simplifying the expression in

logarithm. Let k denotes the term (PreviousDocSize +
1), then the term 𝑙𝑜𝑔(𝑘 + 𝑥) can be written as [22]

𝑙𝑜𝑔 (k + x) = 𝑙𝑜𝑔 (k (1 +
x

k
))

Substituting value of k in (8), following expression

is obtained

IDFNew = 1 + 𝑙𝑜𝑔 ((PreviousDocSize + 1) ×

(1 +
x

(PreviousDocSize+1)
)) − log (DF(t) + 1) (9)

Using Multiplicative property of Logarithm in (9)

IDFNew = 1 + log (1 +
x

(PreviousDocSize + 1)
)

+ log(PreviousDocSize + 1)
− log (DF(t) + 1)

= 1 + log(PreviousDocSize + 1) − lo g(DF(t) + 1)

 +log (1 +
x

(PreviousDocSize + 1)
)

Clearly, the bold part is the same as (7). It can be

replaced with Previous IDF value.

IDFNew = IDFPrevious

+ log (1 +
x

(PreviousDocSize + 1)
)

 (10)

Equation 10 shows that we can update IDF of old

terms by addition of an expression dependent on

NewDocSize and PreviousDocSize. This expression

needs to be calculated only once before update of IDF of

all the old terms.

The main advantage of using this approach is that

instead of calculating IDF of old terms incorporating the

total document size, we just need to calculate the

expression log (1 +
x

(PreviousDocSize+1)
) only once

which is based on PreviousDocSize and x i.e.

NewDocSize. This approach works well for vast

dynamic data streams when data is being updated

frequently. In such cases IDFs can be efficiently updated

without any redundant re-computations.

3.4. Avoiding Extra Memory Consumption

Next step involves intelligent representation of TF-

IDF vector so that it occupies less space in memory. The

TF-IDF vector size for each document is the total terms

computed from the complete dataset. Since each

document does not contain all the terms therefore

majority of the terms contain zero in a document. To

solve this issue, dense representation of TF-IDF vector

of a document is converted to sparse by excluding terms

having TF-IDF value of zero. An example of dense to

sparse vector representation is given in Fig.1.

𝑑𝑒𝑛𝑠𝑒: [5.0 0.0 0.0 4.0 0.0 2.0]

𝑆𝑝𝑎𝑟𝑠𝑒 = {
𝑖𝑛𝑑𝑖𝑐𝑒𝑠: 0,3,5

𝑣𝑎𝑙𝑢𝑒𝑠: 5.0 4.0 2.0

Fig.1 Dense and sparse representation

4. Dataset

Traditional Algorithm, Algorithm-1 and Algorithm-2

are tested on dataset of Urdu web pages and results are

evaluated.

5.7 Million Urdu web pages are crawled [23]. Their

dataset is not publically available as it is crawled from

various authenticated Urdu websites. A subset of this

dataset is selected for the performance evaluation of the

proposed algorithms. Therefore, 0.1 Million Urdu

documents are used for testing. The detailed statistics of

selected data is given in Table 1.

59

Table 1.Data statistics

Total Documents 100000

Average Words per Document 438

Average Lines per Document 10

Average words per line 34

5. Experiments and Results

Urdu has space insertion and deletion issues. Hence,

unlike English, the words cannot be extracted by

processing the space. To handle this issue, a pre-

processing is applied on the complete dataset to resolve

such issues. Urdu word segmentation is applied to the

dataset used for evaluation purpose, which converts the

sequence of Urdu ligature to the best sequence of Urdu

words of a sentence.

In addition, pre-processing is applied which involves

normalization, diacritics and punctuation marks

removal. Then content of a document is processed and

trigrams as terms are extracted and stored so that TF-IDF

weighting can be applied.

As a first experiment, 100,000 documents are

processed to compare the performance of Traditional

Algorithm and Algorithm-1. The results are given in

Fig.2. As can be seen in Fig.2, the Algorithm-1

outperforms Traditional Algorithm with efficient

computation results using the properties of logarithm.

Traditional Algorithm takes 2676520 ms to process

complete dataset for the computation of IDF, whereas

Algorithm-1 takes 2676272 ms to process same dataset

for IDF calculations.

As Algorithm-1 reduces redundant computations of

expression 𝑙𝑜𝑔((𝑇𝑜𝑡𝑎𝑙𝐷𝑜𝑐𝑆𝑖𝑧𝑒 + 1)/(𝐷𝐹(𝑡) + 1) by

employing logarithm properties, Moreover, it converts

division operation for IDF computation of each term to

subtraction operation. So, the difference between the

time taken for IDF calculation between Traditional

Algorithm and Algorithm-1 is somehow evident.

Fig.3. Time comparison for IDF calculation

The second experiment is carried out to find the

difference between execution time of Algorithm-1 and

Algorithm-2. While comparing IDF calculation time of

Algorithm-1 with Algorithm-2, we will also include the

execution time for document frequency calculation

along with IDF calculation time because we store the

lookups of document frequency along with IDF after the

execution of each batch. Due to this reason, redundant

document frequency and IDF calculation for common

and old terms in PreviousBatch and NewBatch are

minimized. This technique also reduces a lot of

computational effort and time.

By visualizing the trend in the graph as can be seen in

Fig. 3, it can be observed that increment of 20,000

documents within each new batch results in increased

execution time for both algorithms. However, this

increment in execution time is very mild in case of

Algorithm-2 and very rapid in case of Algorithm -1.

 Another point worth noticing is the trend of trigrams

within each batch. The total number of unique trigrams

in 100,000 documents is given by about 11 Million. If

each batch introduces 20,000 new documents.

Fig. 2. Time comparison for IDF calculation

9800

9900

10000

10100

10200

10300

T
im

e(
m

s)

Traditional Algorithm Algorithm-1

4000

9000

14000

19000

24000

29000

20000 40000 60000 80000 100000

T
im

e(
m

s)

Number of Documents

Algorithm-1 Algorithm-2

60

Table 2. Number of trigrams in each batch

There must be some terms which are not present in

PreviousBatch and hence their IDF is calculated using

(6). In our experiment 26% new terms are introduced in

each batch on average. Some terms are present in

previous and new batch as well hence their document

frequency is updated and then their IDF is calculated. In

our experiment, on average 7% common terms are

generated with each NewBatch. However, the old terms

are actually not being used in NewBatch and hence their

document frequency does not change compelling us to

update their IDF using the expression log (1 +
x

(PreviousDocSize+1)
). For each new batch, the IDF of 66%

of total trigrams need to be updated using (10) on

average. Their detailed statistics are shown in Table 2.

When evaluating Algorithm-2 in terms of accuracy,

we find out that Algorithm-2 exhibits 100% accuracy.

Although, it shows drastic reduction in computational

time but its accuracy is evaluated to be same as that of

Algorithm-1.

Third experiment as shown in Fig.4 is the pictorial

view of time efficiency of two proposed algorithms

executed over 5 batches for end to end TF-IDF

calculation.

While dividing batches, it is ensured that Algorithm-

1 is executed by increment of 20,000 documents in each

batch because Algorithm-1 does not store any lookup

for each batch. However, execution of Algorithm-2 is

carried out by dividing 100,000 documents into 5

batches. Each NewBatch contains 20,000 new

documents only and does not contain any document

from previous batch.

By viewing the bar values for Algorithm-1 in Fig.4,

it is evident that the time for TF-IDF calculation

increases with the increase in number of documents in

each batch. Algorithm-1 involves variation in (5) and

the effect of this variation is evident while IDF

calculation. Algorithm-2 involves storage of term

frequency, document frequency and IDF lookups after

execution of each batch. These lookups are then used in

NewBatch for IDF calculation, update and TF-IDF

calculation. Similarly, we can observe in Fig.4 that

Algorithm-1 takes 44 minutes for executing 100,000

documents whereas Algorithm-2 takes 11.7 minutes for

execution of 100,000 documents.

Forth experiment involves observing the extent of

memory reduction by incorporating sparse

representation of TF-IDF vectors created after TF-IDF

calculation. As total number of unique trigrams in 0.1

million documents is 11,724,976. So, creating TF-IDF

matrix will occupy 1 × 105 rows and about 11.7 ×
106columns. This will make the total entries of matrix

as

No. of rows × No. of columns = 11.7 × 1011entries

As each TF-IDF entry is stored as a double in

memory, so total memory consumed for TF-IDF matrix

of 0.1 million documents is given by 8735.787 GB. This

is practically almost impossible to store in main memory

By observing the vector of TF-IDF for each

document, it was found that they contain a lot of null

values and they are redundantly occupying memory. By

converting the dense representation to sparse

representation for each document. It was concluded that

the total number of non-zero terms in TF-IDF vectors of

100,000 documents are 30,841,481. So, for sparse

representation of 100,000 documents we need

30,841,481 double entries and same amount of integer

entries as shown in Fig. 1. So, total memory occupied

by TF-IDF vectors of 0.1 million documents will be 353

MB which is far less than space occupied by dense

representation. Thus, we save 8735.558 GB. This is

almost 99.996% reduction in memory being used in case

of dense representation.

Document

Batches

Total

Trigrams

New Trigrams in

current batch

Trigrams common

with previous batch

Trigrams only in

previous batch

(%of total trigrams)
Batch1(20,000) 3,239,453 None None None

Batch2(40,000) 6,238,318 2,998,865 732,171 2,507,282 (41%)

Batch3(60,000) 7,558,982 1,320,664 319,048 5,919,270 (78%)

Batch4(80,000) 9,743,136 2,184,154 833,066 6,725,916 (69%)

Batch5(100,000) 11,724,976 1,981,840 715,117 9,028,019 (77%)

61

Fig. 4 TF-IDF calculation using Algorithm-1 and Algorithm-2 over 5 batches

6. Conclusions and Future Work

In this research study, the efficiency of TF-IDF

algorithm is improved. The existing approaches for

efficiency improvements of TF-IDF algorithm for huge

amount of data involve hardware level enhancements

for parallel computing. Most of the work is based on

static data. In this paper, two algorithms are presented.

Algorithm-1 is slight modification of efficient

implementation of Traditional Algorithm. For 100,000

documents Traditional Algorithm takes 2676520 ms,

whereas Algorithm-1 shows an improvement of 248 ms

compared to Traditional Algorithm. On the other hand,

Algorithm-2 contains stored lookups of term frequency,

document frequency and IDF after execution of each

batch and these lookups are used for TF-IDF calculation

when each NewBatch is uploaded. It performs very well

when data for TF-IDF calculation is being updated

dynamically. In our experiment, for Algorithm-2,

100,000 documents are processed divided into 5

batches. Each batch exhibits an increment of 20,000

documents. Final batch has 100% accuracy and shows

drastic time efficiency compared to Algorithm-1 for

processing 100,000 documents. Algorithm-1 takes

2676272 ms whereas algorithm-2 takes 707823 ms for

execution of 100,000 documents.

Another major contribution involves employing

sparse representation of TF-IDF vectors. It saves a lot of

memory and reduces 8,945,445 MB to 353 MB to store

TF-IDF of 11,724,976 terms computed from 100,000

Urdu documents.

Future enhancements in this work include modifying

TF-IDF algorithm in such a way that we can execute it

on a number of machines concurrently and thus it will

divides the execution time of TF-IDF calculation

equivalent to the number of machines used for this

process.

7. References

[1] M.-G. Jang, S. H. Myaeng, and S. Y. Park, "Using

mutual information to resolve query translation

ambiguities and query term weighting," presented

at the Proceedings of the 37th annual meeting of the

Association for Computational Linguistics on

Computational Linguistics, College Park,

Maryland, 1999.

[2] S. E. Robertson and S. Walker, "Okapi/Keenbow at

TREC-8," in TREC, 1999.

[3] C. Buckley, A. Singhal, and M. Mitra, "New

Retrieval Approaches Using SMART: TREC 4," in

TREC, 1995.

[4] W. Na, W. Pengyuan, and Z. Baowei, "An

improved TF-IDF weights function based on

information theory," in 2010 International

Conference on Computer and Communication

Technologies in Agriculture Engineering, 2010,

vol. 3, pp. 439-441.

20000 40000 60000 80000 100000

Algorithm-1 71.0471 172.567 356.594 1983.7024 2676.272

Algorithm-2 70.338 132.275 196.96 1549.054 707.8235

0

500

1000

1500

2000

2500

3000
T

im
e(

S
ec

)

62

[5] H. Turtle and W. B. Croft, "Evaluation of an

inference network-based retrieval model," ACM

Trans. Inf. Syst., vol. 9, no. 3, pp. 187-222, 1991.

[6] K. Sparck Jones, S. Walker, and S. E. Robertson,

"A probabilistic model of information retrieval:

development and comparative experiments: Part 2,"

Information Processing & Management, vol. 36,

no. 6, pp. 809-840, 2000/11/01/ 2000.

[7] L. Guoping, K. Y. Lee, and H. F. Jordan, "TDM and

TWDM de Bruijn networks and ShuffleNets for

optical communications," IEEE Transactions on

Computers, vol. 46, no. 6, pp. 695-701, 1997.

[8] B. Stein and S. M. zu Eissen, "Near Similarity

Search and Plagiarism Analysis," in From Data and

Information Analysis to Knowledge Engineering,

Berlin, Heidelberg, 2006, pp. 430-437: Springer

Berlin Heidelberg.

[9] H. Chim and X. Deng, "Efficient Phrase-Based

Document Similarity for Clustering," IEEE

Transactions on Knowledge and Data Engineering,

vol. 20, no. 9, pp. 1217-1229, 2008.

[10] K. Sparck Jones, "A STATISTICAL

INTERPRETATION OF TERM SPECIFICITY

AND ITS APPLICATION IN RETRIEVAL,"

Journal of Documentation, vol. 28, no. 1, pp. 11-21,

1972.

[11] G. Salton and C. T. Yu, "On the construction of

effective vocabularies for information retrieval,"

SIGIR Forum, vol. 9, no. 3, pp. 48-60, 1973.

[12] S. F. Chen and J. Goodman, "An empirical study of

smoothing techniques for language modeling,"

Computer Speech & Language, vol. 13, no. 4, pp.

359-394, 1999/10/01/ 1999.

[13] S. Basnayake, H. Wijekoon, and T.

Wijayasiriwardhane, "Plagiarism detection in

Sinhala language: A software approach," Gloria

Scientiam - Golden Jubilee Commemorative

Volume, Faculty of Science, University of

Kelaniya (2017), 10/01 2017.

[14] H. Wu and N. Yuan, "An Improved TF-IDF

algorithm based on word frequency distribution

information and category distribution information,"

presented at the Proceedings of the 3rd

International Conference on Intelligent Information

Processing, Guilin, China, 2018.

[15] K. Sugathadasa et al., "Legal Document Retrieval

Using Document Vector Embeddings and Deep

Learning: Proceedings of the 2018 Computing

Conference, Volume 2," 2019, pp. 160-175.

[16] L. Cheng, Y. Yang, K. Zhao, and Z. Gao, "Research

and Improvement of TF-IDF Algorithm Based on

Information Theory," in The 8th International

Conference on Computer Engineering and

Networks (CENet2018), Cham, 2020, pp. 608-616:

Springer International Publishing.

[17] I. Yahav, O. Shehory, and D. Schwartz, "Comments

Mining With TF-IDF: The Inherent Bias and Its

Removal," IEEE Transactions on Knowledge and

Data Engineering, vol. 31, no. 3, pp. 437-450, 2019.

[18] L. Bin and G. Yuan, Improvement of TF-IDF

Algorithm Based on Hadoop Framework. 2012.

[19] Y. Gu, Y. Wang, J. Huan, Y. Sun, and W. Jia, An

Improved TFIDF Algorithm Based on Dual Parallel

Adaptive Computing Model. 2018, pp. 657-663.

[20] AdnanOquaish. (2019, 17- 09- 2019).

AdnanOquaish/Cosine-similarity-Tf-Idf-.

Available:

https://github.com/AdnanOquaish/Cosine-

similarity-Tf-Idf-

[21] En.m.wikipedia.org. (2019, 18-09-2019).

Computational complexity of mathematical

operations. Available:

https://en.m.wikipedia.org/wiki/Computational_co

mplexity_of_mathematical_operations

[22] E. Series and S. Art. (2019, 28-11-2019).

Mathematics Stack Exchange. Available:

https://math.stackexchange.com/questions/203332

4/express-lnx-with-a-3-as-taylor-series

[23] H. M. Shafiq, B. Tahir, and M. A. Mehmood,

"Towards building a Urdu Language Corpus using

Common Crawl," presented at the LKE 2019 : 7th

International Symposium on Language &

Knowledge Engineering, Dublin, Ireland, Oct 29,

2019 - Oct 31, 2019, 2019.

63

Removing the Gender and Tense Discrepancies in Online English to Urdu

Translators

*Tariq Naeem1, Shanza Salomi2, Aman Ullah Khan3

1,2,3 Department of Computer Science & Engineering, Air University Multan Campus, Pakistan
1naeemtarik@aumc.edu.pk (*corresponding author), 2shanza.atta@outlook.com, 3auk@aumc.edu.pk

Abstract

 Existing translators like Google Translate, Bing

Microsoft Translator and Collins Translator does not

identify gender and tense cases in translation from

English to Urdu. This paper, primarily based on, ruled

based methodology to machine translation for English

(source language) to Urdu (target language),

handling tense identification and semantic translation

of gender cases. Data was collected gathered from

published resources like BBC Urdu, newspapers,

magazines, novels and literature. POS (Part of

Speech) tag model and POS-based reordering

techniques are presented. Analysis and findings

segment of the research article elucidated our testified

outcomes in detail. The proposed approach achieved

79% accuracy. The developed application allows

contributing towards information to comprehend

writing, logical inquires and literature in Urdu

language and translate it in equivalent English

language.

Keywords: Online Translators, Rule based

Approach, Gender and Tense Case

1. Introduction

 Natural Language Processing (NLP) has been now

introduced as an interdisciplinary course in the fields

of artificial intelligence, linguistics and computer

science that is very helpful in exploring the usage of

computers in understanding and manipulating the text

or speech of natural language [1]. Computer software

automatically translates the text using Machine

Translation (MT) methods [3]. In MT, the source

natural language is converted automatically into a

new-targeted language, however, keeping the meaning

of the input text original and fluent in the output

language, as shown in Fig 1.

There are three architectural classifications of MT

systems i.e. Direct, Transfer and Interlingua

architectural [8]. In addition, RBMT, EBMT, SMT

and hybrid are the approaches of MT system [5].

Fig 1: Machine Translation Architecture [8]

 Direct Architecture is the basic type of translation

substituting source language (SL) lexeme with the

target language (TL) lexeme; Interlingua approach

necessities a top to bottom semantic investigation and

the TL is produced through this methodology.

Transfer approach lies in the middle of the two

boundaries; it deals with the syntactic dimension and

includes semantics in a few spots. The syntactic

arrangement of SL is explored to develop a processed

structure, plot the rules to change it into TL

arrangement, and interpretation is then produced with

the use of TL definite rules.

 MT provides many benefits like without the human

translators a large amount of text is converted from

one natural language to other language which reduce

spending of money and time with less human efforts

[7] Google Translate is an online translator that is a

free of cost text translation system, which implies the

mailto:naeemtarik@aumc.edu.pk
mailto:shanza.atta@outlook.com

64

statistical machine translation patterns and provides

translations for 55 different languages or more.

Besides this Microsoft Translator is also available

which implies EBMT and different SMT translation

systems. RBMT system is implied by Systran.

English, Chinese, Arabic, Dutch, French and other

languages are converted by Systran. Most of the other

languages worked in pairs with English or French [18].

Another one Babel Fish is a web based translator that

sutepport multilingual translation. Babel Fish

translator provide services to translate webpages

among 36 pairs and 13 languages including, Russian,

Spanish, Korean, English, Dutch, French, Japanese,

Traditional Chinese, Italian, Simplified Chinese,

German, Greek and Portuguese [2]. The ImTranslator

is a free web-based translator that performs translation

of words, text or phrases between more than 90

languages. ImTranslator use statistical machine

translation (SMT), this online translator use statistical

methods that is based on multilingual texts. Statistical

machine translation use the existing translation (done

by human translators) of source and target language

for making new rules to translate between language.

The accuracy of the translator is increase by using

statistical machine translation approach.

 Issues and problems does exist in machine

translations that make it difficult such as order of

words, idioms, ambiguity in word sense, preposition,

post-position, awareness of gender and context

because natural languages are very complex. There are

multiple meanings of most words, various readings are

available for sentences and grammatical rules of one

language may differ from other languages. Besides

this, there are other non-linguistic aspects such as the

word knowledge and language morphology is needed

for carrying out translation [6] and [7].

 The rest of paper is composed as follow. Section 2

explains the literature review and related work.

Section 3 illustrates the strategies and methodology.

Results and discussion about current work is

illustrated in section 4. Section 5 closes the article with

future work indicators.

2. Literature Review

 Development of framework for translation from

English to Urdu is considerably insufficient in

comparison with the number of Urdu speakers [13].

More work is highly needed in this field. Urdu has

been ranked at 19
th

 number out of 7,105 languages

spoken all over the world. It is one of the most

common languages in South Asian region [11]. About

5% to 10% people only can speak or understand

English in Pakistan [9], [21] and [10].

 According to [12], for developing and

implementing a translator all grammar of SL must be

developed with bottom-up parsing algorithms. After

acquiring the parse tree of SL sentences, it is then

translated according to those grammatical rules in to

TL sentences. In [14], corpus-based MT system was

proposed to tackle problems like syntactic and

structural ambiguity, anaphoric resolution and

discourse analysis using data mining and text mining

tools.

 MT system for English to Bodo [5] uses general

domain English-Bodo parallel text corpora. But the

computational system containing information of Bodo

language was not enough and it required more

expansion.

 The authors of [15], proposed a method for

translating Malayalam text into English. For this

purpose, rule-based machine translation system was

used. The system comprises of bilingual dictionaries

and conversion rules. These rules were implied for text

conversion from SL to TL. In case of multiple

meanings in English of a Malayalam word the

proposed system generated multiple sentences.

 Whereas, for translating English text into Urdu an

expert system using Unicode Standards for translation

was proposed in [16]. The Unicode worked with a

knowledge base which contained grammatical patterns

of English and Urdu, as well as a tense and gender-

aware dictionary of Urdu words (with their English

equivalent forms). In order to avoid the problems

occurred in case of multiple meaning of a single word

AGHAZ solution was implemented. A parsing-based

reordering technique was presented in [17] which were

used for English-to-Japanese phrase translation. The

phrase-based translator is used to increase the

performance of translation through reordering

technique. The reordering technique was also used in

the preprocessing stage for syntax base translation.

 In [18], the author focused on the rule-based case

transfer, as shown in Fig 2, which was a part of the

transfer grammar module developed for bidirectional

Tamil to Malayalam MT system. The presented study

65

involved two typologically close and genetically

related languages, Tamil and Malayalam. They

considered the basic construction of sentences which

was highly dependent on the case systems. The rules

were written by taking into consideration the

postpositions and cases in the languages. A parallel

corpus was chosen and deep analyses of the case

transfer patterns were drawn and rules were written to

sort out the case changes that happen when translating

from SL to TL. Web data was used for evaluation and

the results were encouraging.

Fig 2: Architecture of RBMT [18]

 As [19] presented, a system outline of English to

Hindi Machine-Aided translation system named

AnglaHindi. This translation system utilizing rule-

based and example-based approaches, with some

statistics to achieve more satisfactory and precise

translation for regular verbs and nouns phrases. This

approach to some degree combined hybridization of

rule-based and example-based.

 A translator that translate English text into Arabic

by using rule based machine translation approaches

was also used feed-forward back propagation of

Artificial Neural Network (ANN) was proposed by

[4], [20] and [25]. The proposed system translates

sentences that have prepositional objects, gerunds,

direct and indirect objects, infinitives, etc. Neural

networks worked with bilingual dictionaries that do

not have the meanings of English words into Arabic

but it also store all the linguistic details of words of

one language to other languages.

 A translator proposed by [9] to translate English text

into Urdu text through the use of example based MT.

The English and Urdu translator supported

homographs, idioms, and helped out other features that

had the aptitude of the bilingual corpus to grow.

 Some examples from traditional MT systems are

discussed below. Several sentences were taken from

books, magazines, and online forum to test the gender

and tense cases.

She is playing. (1)

 وہ کھیل رہا ہے۔[22]

 وہ چلا رہی ہے۔[23]

 وہ چلا رہی ہے۔[24]

Amna is my friend. (2)

[22] - امینہ میرے دوست ہے

[23] - آمنہ میرا دوست ہے

[24] - آمنہ میرا دوست ہے

The boys wanted to help him. (3)

 [22] ۔لڑکوں کو اس کی مدد کرنا چاہتا تھا

 [23] لڑکوں نے اس کی مدد کرنا چاہتا تھا۔

 [24] نے اس کی مدد کرنا چاہتا تھا۔لڑکوں

 In these above statements, Google Translator [22],

Microsoft Bing Translator [23] and Collins Translator

[24] showed semantically incorrect translation output.

A huge demand comes from users who are not familiar

with English to build an automated system, which can

cope with such issues. For this, the English to Urdu

machine translator is designed and developed, which

is a web-based system for providing correct language

translation semantically.

66

3. Methodology

 Natural Language Processing Toolkit (NLTK) is a

main platform for structuring Python programs to

work with language data. It gives simple interfaces to

more than fifty corpora and lexical resources such as

Word Net. It also provides a suite of content handling

libraries for stemming, tagging, tokenization,

classification and semantic reasoning.

 Apart from having a discussion forum, NLTK also

cover the highly develop industrial libraries using

recent NLP methodologies.

Fig 3: Code for English POS tags

 TextBlob is a python library utilizing NLTK.

Practically, all required tasks needed in essential NLP

works well as a framework with TextBlob.

 Apart from it, TextBlob has some advance features.

For instance, Part-of-speech tagging (see Fig 3),

sentiment analysis, noun phrase extraction,

classification (Naive Bayes, Decision Tree),

lemmatization, language transis a leading platlation by

Google, word and phrase frequencies, tokenization

(splitting text into words and sentences), word

inflection (singularization and pluralization) and

spelling correction.

Fig 4: Code for Urdu POS tags

 TextBlob translate any English sentences in Urdu

that is entered by user see Fig 4. TextBlob have the

feature of POS (part of speech) tagging on English

sentence. For instance:

She goes for a walk daily. (4)
[('She', 'PRP'), ('goes', 'VBZ'), ('for', 'IN'), ('a', 'DT'),

('walk', 'JJ'), ('daily', 'NN')]

{'response': {'status': 'ok', 'tagged_text': 'PRP| وہ RB|

انہزرو VBF| لتاچ NN| ہے '}}

The boys wanted to help him. (5)
[('The', 'DT'), ('boys', 'NNS'), ('wanted', 'VBD'), ('to',

'TO'), ('help', 'VB'), ('him', 'PRP')] {'response': {'status':

'ok', 'tagged_text': 'NN| لڑکوں PSP| کو PRP| اس PSP| کی

NN| مدد VBI| کرنا AUXM| چاہتا NN| تھا . '}}

67

Fig 5: Implementation of English to Urdu Translator

 In these sentences, TextBlob Part of Speech tagging

technique separates the POS tags. After POS tagging

for Urdu sentences were applied. The proposed

system, shown in Fig 5, use Urdu POS tag set of CLE

(Center for Language Engineering) for Urdu part of

speech tagging [26]. Urdu tag set of CLE

contributions as “Urdu word sense annotation tool” is

developed to run a simple interface for word sense

labeling and confirming labeling stability. After

identifying of tenses, the data set for English Urdu

meanings was developed then the incorrect translation

with correct translation was replaced.

68

Fig 6a: System Framework for Gender Analysis

 We have presented our framework in which we

have explained a process of part of speech tagging of

English text. Identification of gender and tense case of

a given English text is shown. A clear view of the tense

identification in framework that is illustrated above in

Figure 6.

4. Result and Discussion

 We checked our English to Urdu translator with

various sentences of English and Urdu language.

From our proposed framework, we have corrected

both tense and gender cases.

Fig 6b: System Framework for Tense Analysis

4.1 Tense Case

 In tense case we have tested our system with

present, past and future tense sentences. They were

accurately identified by our proposed method.

I am playing. (6)
 میں کھیل رہا ہوں۔

Fig 7: Present tense case by proposed system

69

She worked in office for three years. (7)

۔ایک ماک کت لاس نیت ںیم رتفد ےن ںانہو

We shall play together. (8)

۔ےگساتھ مل کر کھیلے ہم

4.2 Gender Case

Some examples of English sentences, whose incorrect

translation by [22], [23] and [24] were corrected by our

proposed system i.e.

Sana is reading a book. (10)

 ثنا ایک کتاب پڑھ رہی ہے

Fig 8: Gender case by proposed system

5. Error Analysis

 A sample of 190 English sentences was taken from

books, magazines and online platforms given as input to

the proposed system. Out of 190 sentences, the system

achieved semantically accurate translation of 150

sentences.

The accuracy of the system was calculated simply using

the percentage formula, i.e.

(150/190) * 100 = 78.9%

 Due to long and complex English sentence structure,

the system could not generate semantically correct

translation.

6. Conclusion

 This system remove the gender discrepancies in

online English to Urdu translators because the existing

translators like Google Translate, Bing Microsoft

Translator and Collins Translator does not identify the

gender (male or female) of the person names in

translation from English to Urdu. If we write the name

of female in English text, Google translator gives the

translation according to male gender but this research,

primarily based on, ruled based approach of source

language to target language, handling semantic

translation of gender cases and tense identification. Our

MT system supports POS (Part of Speech) tags models

use for tagging of English and Urdu text and our English

to

 Urdu MT system gives accurate translation according

to gender (Male or Female). The proposed system

achieved 79% accuracy.

 Although this not the first study in English to Urdu

MT, however, less efforts are done to consider

semantically gender cases during translation. The

proposed system provide translation of simple English

sentences into Urdu, we use rule based machine

translation approach. The main objective was to identify

these cases in English to Urdu MT system that never

discussed before.

7. Future Work

 The future work and extension of this work can be the

extraction of accurate translation for complex long

sentences. Because in long complex sentence structure

a simple POS matching of one word may not work;

especially if there are multiple verbs (different forms) in

a sentence and one of them is incorrect. How would the

authors know which one is wrong?

8. Reference

[1]. Liu, D., Y. Li, and M.A. Thomas. A roadmap for

natural language processing research in information

systems. in Proceedings of the 50th Hawaii

International Conference on System Sciences. 2017.
[2]. Liddy, E., Natural Language Processing, 2nd edn.

Encyclopedia of Library and Information Science.

Marcel Decker. Inc., NY, 2001.
[3]. Khan, S. and R. Mishra, Translation rules and ANN

based model for English to Urdu machine translation.

INFOCOMP, 2011. 10(3): p. 36-47.

[4]. Antony, P., Machine translation approaches and

survey for Indian languages. International Journal of

Computational Linguistics & Chinese Language

Processing, Volume 18, Number 1, March 2013, 2013.

18(1)

70

[5]. Islam,S.andB.S.Purkayastha,

Implementation of English to Bodo Machine

Translation System using SMT Approach,.

International Journal of Computer Science &

Applications, 2017. 14(2)

[6]. Costa-Jussa, M.R., et al., Study and

comparison of rule-based and statistical catalan-

spanish machine translation systems. Computing and

informatics, 2012. 31(2): p. 245-270

[7]. Naeem T., Khan MA, Automatic derivation of Nouns

from Adjectives, 6th International Conference on

Language and Technology, 41-49, 2016
[8]. Islam, S., M. Devi, and B. Purkayastha, A study on

various applications of NLP developed for North-East

languages. International Journal on Computer Science

and Engineering, 2017. 9(6): p. 386-378.

[9]. Alqudsi, A., N. Omar, and K. Shaker, Arabic machine

translation: a survey. Artificial Intelligence Review,

2014. 42(4): p. 549-572.
[10]. Zafar, M. and A. Masood, Interactive english to urdu

machine translation using example-based approach.

International Journal on Computer Science and

Engineering, 2009. 1(3): p. 275-282.
[11]. Hussain, S. Urdu localization project: Lexicon, MT

and TTS (ULP). in Proceedings of the

Workshop on Computational Approaches to

 Arabic Script-based Languages. 2004,

Association for Computational Linguistics

[12]. Malik, A.A. and A. Habib. Qualitative Analysis of

Contemporary Urdu Machine Translation Systems. in

NLPAR@ LPNMR. 2013. Citeseer.

[13]. Ahmed, T. and S. Alvi, English to Urdu translation

system. manuscript, University of Karachi, 2002.

[14]. Revanuru, K., K. Turlapaty, and S. Rao, Neural

Machine Translation of Indian Languages. 2017.

[15]. Tahir R., Asghar S, and Masood. Knowledge based

machine translation. in Information and Emerging

Technologies (ICIET), 2010 International Conference

on. 2010. IEEE.

[16]. Rajan, R., et al. Rule based machine translation from

english to malayalam. Advances in Computing,

Control, & Telecommunication Technologies, 2009.

IEEE.

[17]. Muhammad, U., et al., Aghaz: An expert system based

approach for the translation of english to urdu.

International Journal of Social Sciences, 2008. 3(1): p.

70-74.

[18]. Lee, Y.-S., B. Zhao, and X. Luo. Constituent

reordering and syntax models for English-to-Japanese

statistical machine translation. in Proceedings of the

23rd international conference on computational

linguistics. 2010. Association for Computational

Linguistics.

[19]. Lakshmi, S. and S.L. Devi, Rule Based Case Transfer

in Tamil-Malayalam Machine Translation. Research in

Computing Science, 2014. 84: p. 41-52.

[20]. Sinha, R. and A. Jain, Angla Due to long and complex

English sentence structure, the system could not

generate semantically correct translation.Hindi: an

English to Hindi machine- aided translation system.

MT Summit IX, New Orleans, USA, 2003: p. 494-497.

[21]. Akeel, M. and R. Mishra, ANN and rule based method

for english to arabic machine translation. Int. Arab J.

Inf. Technol., 2014. 11(4): p. 396-405.

[22]. Google Translator, 2018, [online].

Available:https://translate.google.com/, [Accessed:

16-Dec-2018]

[23]. Microsoft Bing Translator, 2018, [online].

Available:https://www.bing.com/translator,

[Accessed: 16-Dec2018]

[24]. Collins Translator, 2018, [online].

Available:https://www.collinsdictionary.com/t

ranslator, [Accessed: 16-Dec-2018]

[25]. Mohsin A., Asghar S., Naeem T., Intelligent Security

Cycle: A rule based run time malicious code detection

technique for SOAP messages, 19th IEEE

International Multi-Topic Conference (INMIC), 1-10,

2016

[26]. Urooj S., Shams S. Hussain S. Adeeba F.; Sense

Tagged CLE Urdu Digest Corpus, CLE KICS, UET,1-

8, 2018

https://translate.google.com/
https://www.bing.com/translator
https://www.collinsdictionary.com/translator
https://www.collinsdictionary.com/translator

71

Bilingual Sentiment Analysis of Tweets Using Lexicon

Farwa Iqbal1, Amber Ayoub2, Jaweria Manzoor3, Rida Hijab Basit4

Computer Science Department

Kinnaird College for Women Lahore

{farwaiqbal786, ember.ayub}@gmail.com1,2, {jaweria.manzoor, rida.basit}@kinnaird.edu.pk3,4

Abstract

Sentiment Analysis determines the emotions,

attitude, feelings or behavior of people towards an

event, topic, or a product. The advent and growth of

social media platforms have given people opportunity to

voice their opinions, reviews and share experiences.

User Generated Content when analyzed for its

sentiments can be helpful for various reasons such as

predictive analysis, summarization of reviews,

measuring popularity, acceptance of products, and

much more. In this regard, various researches and

studies exist, but all these studies focus on resource-rich

languages like English, Chinese and Arabic. In this

paper, we focus on Roman Urdu language. Around 30

million people across the world speak Urdu and mostly

use Roman Urdu written in Roman script to express

their views, feelings or experiences over the Internet.

Keeping this in view, an approach has been proposed

that performs sentiment analysis of bilingual data

(English and Roman Urdu), using Lexicon based

approach. In order to create domain specific lexicon,

political tweets related to 2018 Elections held in

Pakistan have been collected and analyzed for the

sentiments expressed in them.

Keywords – Sentiment Analysis, Text, Opinion

Mining, User Generated Content, Pakistan Election

2018

1. Introduction

With advancements in technology and internet, the

use of mobiles and laptops to access social media

accounts has increased [1]. People now openly give their

reviews and opinions about anything, thus making it

necessary to analyze the content generated by them.

Substantial amount of work related to sentiment

analysis on structured languages like English, Chinese

and Arabic exist, but limited work has been done on

Roman Urdu or Urdu languages [2]. Majority of the

people in subcontinent are not much well versed in

English language and use Urdu to express their

sentiments on social platforms. People tend to express

their opinions in Urdu mostly using Roman script

known as Roman Urdu also due to the limited

availability of keyboards in Urdu; thereby emphasizing

upon the need of sentiment analysis in Roman Urdu.

The importance of research in Roman Urdu has also

been highlighted in other researches [2], [3] and [4].

Many techniques and methods for sentiment analysis

exist but we have focused on the development of a

domain specific lexicon of 3900 words that consists of

Roman Urdu and English Language. Generally,

sentiment analysis has been carried out using adjectives,

but sentiment analysis approach presented in this paper

makes use of lexicon built using adjectives, verbs,

adverbs and nouns for improved sentiment analysis. The

analysis has been performed on the data collected from

Twitter using several hash tags based on election, from

different pages of political parties, anchors etc. For

detailed experimentation and to improve results two

different datasets with 5031 tweets and 4177 tweets are

considered. This paper is divided into five sections.

Section 1 gives an introduction, Section 2 focuses on

literature survey, Section 3 discusses the methodology,

Section 4 compiles the results and Section 5 concludes

the paper.

2. Related Work

 Various existing systems that have performed

sentiment analysis using lexicon approach have been

studied. Some of those papers depicting similar work are

discussed below.

 The concept of bilingual sentiment analysis using

lexicon approach on Roman Urdu has been presented by

[4]. The purpose of this approach is to analyze the

bilingual data from twitter. Tweets are collected based

on the keywords related to four main political parties.

SentiStrength is used for extracting the sentiments for

the English language but for Roman Urdu a new lexicon

is created to provide sentiment strength to the Roman

Urdu words. SentiStrength along with English to Roman

Urdu dictionary are utilized to create bilingual

sentiment repository which provides 3900 Roman Urdu

words and 1673 English words. The results depict that

PTI dominates other parties in general whereas in

Lahore, public opinion is mostly in favor of PML-N.

mailto:farwaiqbal786@gmail.com
mailto:ember.ayub%7d@gmail.com
mailto:jaweria.manzoor@kinnaird.edu.pk
mailto:rida.basit%7d@kinnaird.edu.pk

72

In [5], analysis of the sentiments expressed in news

comments has been performed using lexicon based

approach to get users’ opinions about a certain topic.

The problem of comments oriented sentiment analysis

is that the user may express his/her own opinion, which

is different from the original focus of discussion. This

system has used a lexicon based approach to analyze the

opinions by extracting comments. The lexicon used in

this system is a manually created lexicon that contains

250 news items. Objective expressions have been stored

in the lexicon for identifying the focus. Objects and its

features are arranged in a taxonomy-based structure.

Lexicon’s knowledge and the user generated content are

then preprocessed by using NLP techniques. The overall

sentiment of the entire document is also computed by

using certain weights assigned to positive, negative and

neutral comments. The experiments provide an

accuracy of 0.89.

In a similar study [6], the salience for an entity in the

news corpus or lexicon and the polarity of each salience

as positive or negative has been calculated. The system

builds the news corpus from different websites

including DAWN news, ARY news, Nawai Wakt and

BBC Urdu news. Corpus is further divided into chunks

and POS tagging is performed to create tag list. Tag list

is fed into entity finding module, which selects entities

meeting a certain criterion and weight for each entity is

calculated. Every salience is provided with polarity

using the manual polarity tagger. After assigning the

polarity the corpus is searched for intensifiers like

(1) Shadid (ʃad̪id̪, Extremely)

(2) Bohut (bɔhət̪, Lots, Intense)

Polarity of the salience with intensifier gets double for

example from -5 to -10. The accuracy achieved is

84.5%.

A different approach has been discussed by [7] to find

the subjectivity and polarity of the tweets using lexicon

based approach. Tweets have been analyzed to predict

the results of elections about a certain candidate

providing a comparison on the various candidates based

on sentiments expressed in them. 10,000 labeled tweets

have been collected, preprocessed, imported for

sentiment analysis for determining the subject to overall

polarity. The sentences are classified by first assigning

polarities to individual words: +1 for positive words, -1

for negative words and 0 for neutral words. Then

polarity of a sentence is calculated by adding polarities

of occurring words and classified as positive, neutral or

negative. The subjectivity (users personal view about a

candidate) of the tweets has been represented by 1

whereas the objectivity by 0. After the calculation of

average polarity and subjectivity, percentage of

positive, negative and neutral tweets is calculated. The

experiments show that candidate Hillary has received a

greater number of positive tweets whereas Trump

received highest number of negative tweets.

Based on the limited research in Roman Urdu sentiment

analysis, we propose a Lexicon based approach to detect

sentiments depicted in tweets using Roman Urdu

language as it is used by many people around the world

to express their opinions on social media. In this

approach, we have created a domain specific lexicon

containing different parts of speech like nouns, verbs,

adjective and adverbs to depict sentiments.

3. Methodology

 The approach presented in this paper aims on

performing bilingual sentiment analysis using lexicon.

The novelty of our work lies in creation of a domain

specific lexicon that contains both English and Roman

Urdu words containing adjectives, nouns, verbs and

adverbs. For the purpose of creating domain specific

lexicon, tweets related to Pakistan Elections 2018 have

been collected from Twitter using Twitter APIs. The

collected data is then preprocessed, cleaned (noisy data

and hashtags are removed) and tokenized (stop words

removal). After formation of the tokens each word is

assigned a polarity by using the lexicon ranging from -

1 to + 1. Polarity of the sentence is then calculated by

summing up polarities of all occurring words in the

sentence. Based on the polarity, each sentence is

classified as positive, negative or neutral. Furthermore,

results in the form of accuracy, precision, recall and F-

measure are calculated with the help of confusion

matrix.

3.1. Data Preparation

3.1.1. Data Collection. The data has been collected

using Twitter APIs with the help of Python. Making use

of the twitter developer account, tweets from 2018

elections of Pakistan have been gathered. A total of

5031 tweets are extracted using multiple political hash

tags and official pages of different anchors and

politicians. A total of 2673 positive tweets, 1923

negative and 426 neutral tweets have been collected.

These tweets have been stored in .json file after

extraction.

73

Table 1: Hashtags and keywords used to extract data

#PTI #PMLN #MQ
M

#corru
ptlead

er

#nayap
akistan

#imr
ankh

an

#voteko
izzatdo

#naw
azsha

rif

#mary
amna
waz

#absirfi
mrankh

an
#jiye
bhutt

o

#marya
mmeria

waz

#mia
nsaab

#tabde
eli

#shehb
azsharif

3.1.2. Data Preprocessing. Extracted data has been

cleaned by removing all the unnecessary characters and

symbols [8].

3.1.3. Translation of Urdu Tweets. At this stage, the

extracted data consists of tweets in three different

languages namely English, Urdu and Roman Urdu. For

our proposed approach, Roman Urdu and English tweets

are to be considered so Urdu tweets have been translated

into Roman Urdu using online translator iJunoon.com.

3.1.4. Labeling of Tweets. After the translation, data set

now contains only English and Roman Urdu tweets. As

the next step, data labeling of tweets as positive,

negative or neutral has been performed for each tweet

by a single resource person. However, to remove

partiality while labeling data for the dataset with 4177

tweets, data labeling has been performed using

crowdsourcing technique. The tweets are labelled

according to the sentiments in them like

(1) IK buhat acha politician hai

IK bɔhət̪ aʧʰa politician hæ

“IK is a great politician” is labeled as positive

(2) Zardari ek corrupt insaan hai

zərd̪ari æk corrupt ɪnsan hæ

“Zardari is a corrupt person” is labeled as negative

(3) PTI or PMLN jo bhi jeete, hume vote aur

elections ko izzat deni chahiye

PTI ɔr PMLN ʤo bhi ʤit̪e həme vote ɔr elections ko

ɪzət̪ d̪eni ʧahie

“PTI or PMLN whoever wins, we should respect vote

and elections” is labeled as neutral

3.1.5. Normalization and Tokenization of Tweets.

The tweets are then normalized, where the stop words

are removed from each tweet so that the meaningless

words (words that play no part in sentiment analysis)

like ‘wo (vo, “they”), hum (həm, “we”), are, is, it’ etc.

are eliminated. Unlike English, Roman Urdu is not a

structured language and does not have list for stop

words. Therefore, we created a list translating Urdu stop

words to Roman Urdu using iJunoon.com and used this

with built-in Python Normalization function to remove

stop words from Roman Urdu tweets.

Figure 2: List of some stop words

3.2. Lexicon based Approach

 Sentiment analysis approach presented in this paper

make use of lexicon of 3900 words built using

adjectives, verbs, adverbs and nouns for improved

sentiment analysis [4]. The reason of creating a lexicon

with different parts of speech is the morphological

richness of Urdu Language and Roman Urdu. Basically,

Roman Urdu is Urdu language written using Roman

Script where an adjective can inflect from noun or other

parts of speech like

(1) daftari,

d̪əft̪əri

“official”

74

(2) kagazi

kɑɣəzi

“Thin, scariose”

etc. [9]. Moreover, the sentiment of a complete

sentence may not be depicted by adjective only like

(1) Mujhe ye phone buhat acha aur sasta lagta hai.

mʊʤʰe je phone bɔhət̪ aʧʰa ɔr səst̪a ləgt̪a hæ

“I think this phone is very good and inexpensive”

For the analysis of this sentence we also must take

intensifier ‘buhat (bɔhət̪, “very”)’ into consideration

along with adjectives ‘acha (aʧʰa, “good”)’ and ‘sasta

(səst̪a, “inexpensive”)’.

The lexicon is created using SentiWordNet (lexical

resource for Sentiment analysis and opinion mining).

The sentiment scores for English words are directly

taken from SentiWordNet whereas the Roman Urdu

words are first translated into Urdu and then into English

and then those English translations are searched in

SentiWordNet for the sentiment scores. The scores

assigned range from -1 to +1.

Figure 2: Lexicon based Approach

3.2.1. Sentence Level Classification. Each tweet is

normalized and converted into tokens. The java code

specifically built for this purpose then assigns sentiment

score (polarity) to individual tokens in each tweet using

the lexicon. Then the sentiment score of the whole

sentence is calculated by summing up the scores of all

occurring tokens or words in the sentence similar to the

approach used by [7] for sentence level sentiment

classification. The classification of a sentence is based

on the following conditions:

 If the resultant value is greater than 0, the

sentence is classified as positive

 If the resultant value is less than 0, the sentence

is classified as negative

 If the resultant value is equals to 0, the sentence

is classified as neutral

4. Results and Discussion

This section discusses the results of the experiment

carried out in the light of objective of this study.

Experiments are performed initially by considering

dataset with 5031 tweets consisting of tweets including

negation words like ‘nae, ni, nahi (no)’ etc. and mixed

sentiments expressed in them like:

(1) Imran Khan buhat acha insaan hai, a great

cricketer lakin buhat hi bura leader aur politician

hai is ko kuch nahi ata pata ni umeed krni chaiye ya

ni

Imran Khan bɔhət̪ aʧʰa ɪnsan hæ, a great cricket

lekɪn bɔhət̪ hi bura leader ɔr politician hæ ɪs ko kuʧʰ

nəhi at̪a pət̪a ni umid̪ kərni ʧahie ja ni

“Imran Khan is a good person, he is a great leader

but not a good politician, he knows nothing, I

don’t know we should hope or not.”

Better results are achieved by eliminating tweets

with different sentiments and negation words. Removal

of such tweets reduced the dataset to 4177 tweets only.

Although there is a difference between negation words

and words that depict negative sentiment like corrupt,

evil, bad. We have kept the tweets like

(1) IK ek corrupt insaan hai

IK æk corrupt ɪnsan hæ

“IK is a corrupt person”

But have removed sentences like

(2) IK ek acha leader ni hai

IK æk aʧʰa leader ni hæ

“IK is not a good leader”

Furthermore, different measures have been

calculated using confusion matrix for all three classes

(positive, negative and neutral) separately. Confusion

matrix is a form of a table that is used to represent a

classification model. In the confusion matrix below, n

depicts total number of tweets. Actual values of three

classes depict the tweets labeled as positive, negative

75

and neutral through human labeling. Predicted values of

three classes depict the tweets labeled as positive,

negative and neutral using domain specific lexicon that

is created in this paper. Furthermore, accuracy,

precision, recall and F-measure with respect to each

class are calculated separately.

4.1. Dataset with 5031 Tweets containing

Positive, Negative and Neutral Classes

4.1.1. Positive Class. Here the confusion matrix is

created by taking positive class in consideration and the

accuracy, recall, precision, F-measure are calculated.

Our lexicon based approach of sentiment analysis

predicts positive class with 81% accuracy. For positive

class, TP (true positive) is the intersection of actual

positive and predicted positive. FP (false positive) is the

sum of values in the corresponding column, whereas FN

(false negative) is the sum of values in the

corresponding row excluding value of TP in both cases.

TN (true negative) is the sum of all the values excluding

the row and column containing positive class. The

column matrix with respect to positive class is given

below.

Table 2: Confusion matrix for positive class

n =
5031

Predicte
d
Negative

Predicte
d
Positive

Predicte
d
Neutral

Actual
Negativ
e

TN = 739 FP = 0 TN =
1193

193
2

Actual
Positive

FN = 0 TP =1734 FN = 939 267
3

Actual
Neutral

TN = 0 FP = 0 TN = 426 426

 739 1734 2558

Measures calculated for positive class are as follow:

Accuracy = 0.81 = 81%

Precision = 1

Recall = 0.649

F Measure = 0.787

4.1.2. Negative class. Here the confusion matrix is

created by taking negative class in consideration and the

accuracy, recall, precision, F-measure are calculated.

Our lexicon based approach predicts negative class with

76.7% accuracy. For negative class, TP (true positive) is

the intersection of actual negative and predicted

negative. FP (false positive) is the sum of the values in

the corresponding column, whereas FN (false negative)

is the sum of values in the corresponding row excluding

value of TP in both cases. TN (true negative) is the sum

of all the values excluding the row and column

containing negative class. The column matrix with

respect to negative class is depicted below.

Table 3: Confusion matrix for negative class

n =
5031

Predicte
d
Negative

Predicte
d
Positive

Predicte
d
Neutral

Actual
Negativ
e

TP = 739 FN = 0 FN =
1193

193
2

Actual
Positive

FP = 0 TN =1734 TN = 939 267
3

Actual
Neutral

FP = 0 TN = 0 TN = 426 426

 739 1734 2558

Measures calculated for negative class are as follow:

Accuracy = 0.763 = 76.3%

Precision = 1

Recall = 0.383

F Measure = 0.55

4.1.3. Neutral class. Here the confusion matrix is created

by taking neutral class in consideration and the accuracy,

recall, precision, F-measure are computed. Our lexicon

based approach of sentiment analysis predicts neutral class

with 57.6% accuracy. For neutral class, TP (true positive)

is the intersection of actual neutral and predicted neutral.

FP (false positive) is the sum of the values in the

corresponding column, whereas FN (false negative) is the

sum of values in the corresponding row excluding value of

TP in both cases. TN (true negative) is the sum of all the

values excluding the row and column containing neutral

class. The column matrix with respect to neutral class is

depicted below.

Table 4: Confusion matrix for neutral class

n =
5031

Predicte
d
Negative

Predicte
d
Positive

Predicte
d
Neutral

Actual
Negativ
e

TN = 739 TN = 0 FP =
1193

193
2

Actual
Positive

TN = 0 TN =1734 FP = 939 267
3

Actual
Neutral

FN = 0 FN = 0 TP = 426 426

 739 1734 2558

Measures calculated for neutral class are as follow:

Accuracy = 0.576 = 57.6%

Precision = 0.167

Recall = 1

76

F Measure = 0.286

4.1.4. Results with 5031 tweets. The results with this

dataset show that positive class is predicted by lexicon

more accurately as compared to negative and neutral

classes. The accuracies of positive, negative and neutral

classes are not encouraging because there is a huge

difference in their actual and predicted values. The

reason of bad performance is that the lexicon created in

our approach does not handle negation which are words

like ‘not’ in English and ‘nahi, nai, nae, nayi, ni (nəhi,

nəi, nəi, nəi, ni” not/no”)’ in Roman Urdu. Therefore,

lexicon based approach is unable to predict tweets

containing mixed sentiments correctly and labels them

as neutral. Moreover, for this dataset, labeling has been

performed by only one person contributing to the poor

performance to some extent.

Figure 2: Results with 5031 tweets

4.2. Dataset with 4177 tweets containing

positive, negative and neutral classes

To improve the performance of our proposed approach

the tweets containing mixed sentiments and negation

words discussed earlier are removed. Moreover, for this

experiment crowdsourcing technique has been used to

perform data labeling of tweets. In this technique

labeling from more than one person is taken into

consideration and one final labeling is deduced from

those labeled tweets. The confusion matrix is then built

using these manually labeled tweets along with tweets

where sentiment score has been computed using domain

specific lexicon.

4.2.1. Positive class. Here, the confusion matrix is

created by taking positive class in consideration and the

accuracy, recall, precision, F-measure are calculated.

The lexicon based approach predicts positive class with

98% accuracy. Confusion matrix for this class is

depicted below which is constructed like positive class

with 5031 tweets given in the previous section.

Table 5: Confusion matrix for positive class

n =
4177

Predicte
d
Negative

Predicte
d
Positive

Predicte
d
Neutral

Actual
Negativ
e

TN = 417 FP = 0 TN = 0 417

Actual
Positive

FN = 81 TP =
1411

FN = 0 149
2

Actual
Neutral

TN = 150 FP = 0 TN =
2118

226
8

 648 1411 2118

Measures calculated for positive class are as follow:

Accuracy = 0.98 = 98%

Precision = 1

Recall = 0.946

F Measure = 0.972

4.2.2. Negative class. Here, the confusion matrix is

created by taking negative class in consideration and the

accuracy, recall, precision, F-measure are calculated.

Our lexicon based approach predicts negative class with

94% accuracy. Confusion matrix for this class is

depicted below which is constructed like negative class

with 5031 tweets given in the previous section.

Table 6: Confusion matrix for negative class

n =
4177

Predicte
d
Negative

Predicte
d
Positive

Predicte
d
Neutral

Actual
Negativ
e

TP = 417 FN = 0 FN = 0 417

Actual
Positive

FP = 81 TN =
1411

TN = 0 149
2

Actual
Neutral

FP = 150 TN = 0 TN =
2118

226
8

 648 1411 2118

Measures calculated for negative class are as follow:

Accuracy = 0.94 = 94%

Precision = 0.64

Recall = 1

F Measure = 0.783

0 0.5 1 1.5

Accuracy

Precision

Recall

F-Measure

Results with 5031
Tweets

Neutral Negative Positive

77

4.2.3. Neutral class. Here, the confusion matrix is

created by taking neutral class in consideration and the

accuracy, recall, precision, F-measure are calculated.

Our lexicon based system predicts neutral class with

96% accuracy. Confusion matrix for this class is

depicted below which is constructed like neutral class

with 5031 tweets given in the previous section.

Table 7: Confusion matrix for neutral class

n =
4177

Predicte
d
Negative

Predicte
d
Positive

Predicte
d
Neutral

Actual
Negativ
e

TN = 417 TN = 0 FP = 0 417

Actual
Positive

TN = 81 TN =
1411

FP = 0 149
2

Actual
Neutral

FN = 150 FN = 0 TP =
2118

226
8

 648 1411 2118

Measures calculated for neutral class are as follow:

Accuracy = 0.96 = 96%

Precision = 1

Recall = 0.934

F Measure = 0.966

4.2.4. Results with 4177 tweets. Results show

improved accuracies in all three classes on this reduced

dataset as compared to the previous dataset, with highest

accuracy achieved for positive class. Accuracy for

positive, negative and neutral classes is better with this

dataset because there is less difference in their actual

and predicted values due to elimination of tweets with

negation words and mixed sentiments. Moreover, crowd

sourcing has been performed for manual labeling

instead of using a single resource person for labeling to

remove any bias and impact the result positively.

.

4.3. Comparison of proposed approach with

related work

In related work highest accuracy of 89% has been

achieved by [5] that propose an approach to analyze

sentiments depicted in news comments using domain

specific lexicon consisting of 250 words. In the

approach presented here, accuracy of 98% for positive

class, 94% for negative class and 96% for neutral class

is achieved with dataset containing 4177 tweets. This

dataset includes positive, negative and neutral tweets

and excludes tweets expressing mixed sentiments or

tweets including negation. However, for the larger

dataset of 5031 tweets with all kinds of sentiments

expressed, the results show accuracy of 81%, 76.3% and

57.6% for positive, negative and neutral class

respectively.

Figure 3: Results with 4177 Tweets

5. Conclusion and Future Work

People in the subcontinent mostly use Urdu

language but due to the unavailability of Urdu

keyboards, Roman script is used to write Urdu language

which is known as Roman Urdu. In this study, bilingual

sentiments expressed in tweets including English and

Roman Urdu are analyzed. The analysis has been

performed by building domain specific bilingual lexicon

to assign sentiment scores. Extensive experimentation

has been carried out by considering different kinds of

tweets. Better results are achieved with tweets dataset

containing specific sentiments i.e. positive, negative or

neutral as compared to mixed sentiments or sentiments

making use of negation. We now aim to further build

our lexicon making it more generic and applying the

proposed approach to a larger dataset for further

validation. We are already in the process of using hybrid

technique combining Machine Learning and lexicon for

identifying sentiments expressed in bilingual user

generated content. Work can also be done to handle

negation and to analyze those sentences which include

multiple kinds of sentiments.

6. References

[1] M. Kamran and K. Moin , "Sentiment Classification of

Customer’s Reviews About Automobiles in Roman

0 0.5 1 1.5

Accuracy

Precision

Recall

F-Measure

Results with 4177
Tweets

Neutral Negative Positive

78

Urdu," in Future of Information and Communication

Conference, 2018, pp. 630--640.

[2] G. Saqib Muhammad and S. Tariq Rahim, "Twitter and

Urdu," in 2018 International Conference on Computing,

Mathematics and Engineering Technologies – iCoMET

2018, 2018.

[3] M. Khawar, E. Daryl and S. Kamran, "Sentiment

Analysis System for Roman Urdu," in Intelligent

Computing, vol. AISC 858, 2018, pp. 29--42.

[4] Javed and A. Hammad, "Opinion Analysis of Bi-Lingual

Event Data from Social Networks," in ESSEM@ AI * IA,

2013, pp. 164--172.

[5] M. Alejandro, R. M, C. JL and Z. Jose Manuel, "Lexicon-

based comments-oriented news sentiment analyzer

system," Expert Systems with Applications, vol. 39, pp.

9166--9180, 2012.

[6] S. A. ALi , M. D. Noor, M. A. Javed , M. M. Aslam and

O. A. Khan, "Salience Analysis of NEWS Corpus using

Heuristic Appoach in Urdu Language," International

Journal of Computer Science and Network Security, vol.

16(4), p. 28, 2016.

[7] N. Farah and H. B. Sayyada, "Sentiment Analysis to

predict election results using Python," in 2018 2nd

International Conference on Inventive Systems and

Control (ICISC), 2018, pp. 1259--1262.

[8] B. Muhammad, I. Huma, S. Muhammad and K. Amin,

"Sentiment classification of Roman-Urdu opinions using

Naive Bayesian, Decision Tree and KNN classification

techniques," Journal of King Saud University-Computer

and Information Sciences, vol. 28(3), pp. 330--344, 2016.

[9] S. Afraz Z., A. Muhammad and M.-E. Ana Maria,

"Lexicon Based Sentiment Analysis of Urdu Text Using

SentiUnits," in Mexican International Conference on

Artificial Intelligence, springer, 2010, pp. 32--43.

[10] H. Ahmed , K. Hoda and M. Walaa, "Sentiment

analysis algorithms and applications: A survey," Ain

Shams engineering journal, vol. 5(4), pp. 1093--1113,

2014.

79

NCL-Crawl: A Large Scale Language-specific Web Crawling System

Hafiz Muhammad Shafiq, Muhammad Amir Mehmood

Al-Khawarizmi Institute of Computer Science, UET, Lahore, Pakistan

{hafiz.shafiq, amir.mehmood}@kics.edu.pk

Abstract

There exist many cases that require language-

specific web crawling, e.g., text corpus building in

Natural Language Processing (NLP) domain and

regional language search engine content crawling. In

NLP, linguistics use text corpus for statistical analysis,

checking occurrences or validation of linguistic rules

within a specific language territory. Similarly, regional

search engines use focused crawling to serve better

quality results to the users. In this study, we build a

system “NCL-Crawl” for large scale language specific

web crawling using Apache Nutch crawler. For this

purpose, we have customized Apache Nutch and added

Compact Language Detector 2 (CLD2) module for

language identification at runtime. The system also

provides an option to specify minimum language bytes

to avoid garbage collection in configured language. For

evaluation, we have chosen the Urdu language and

crawled 25,723 documents from the given seed and got

very good quality pages with better accuracy. Our work

is an effort towards building large scale text corpus for

the NLP community especially for the low resource

languages. In addition, regional search engines can

effectively use NCL-Crawl for language specific web

crawling.

1. Introduction

With the passage of time as Internet users are

increasing, many regional search engines have appeared

in the search engine market, e.g., Baidu, Yandex etc. In

China, Baidu has 76.69% market share [1] and in

Russia, Yandex has 45.16% market share [2]. These

types of regional search engines require to crawl the

WWW for a specific language at large scale. This

approach not only provides better quality web

documents of given language, but also helps to use

minimal resources in terms of storage, bandwidth, and

time [3]. Further, language-specific crawl is also

required to build text corpus for linguistic researches

and NLP applications. The advancement in NLP and

Information Retrieval (IR) domain, e.g., summarization,

cross-language information retrieval, etc., requires to

build corpus in single or multiple languages at large

scale [4][5].

There exists many open-source solutions to crawl

World Wide Web (WWW) from small to large scale,

e.g., curl, Apache Nutch, Scrapy, Heritrix etc. [6]. But

for language specific crawl, none of these provides a

concrete solution. In most cases, a new job is executed

to find language information of crawled documents,

which is both time as well as storage consuming.

Moreover, language threshold based crawling, e.g.,

crawling documents with more than 50% Urdu content,

is even more complex than former case. Some crawlers

provide language filters but in most cases, it is based on

web server response header and hence, it requires

customization to find language information from

crawled content. For instance, Apache Nutch provides

“language-identifier” plugin to find language

information but it is also based on web server response

header.

This work is an effort to build Apache Nutch with

CLD2 Language Crawl (NCL-Crawl) - A system using

Apache Nutch Crawler and Compact Language

Detector (CLD2) for language specific web crawling.

NCL-Crawl aims to filter web-documents based on the

content size in bytes of a particular language. Apache

Nutch is an open-source large scale web-crawler and is

developed in Java language that can be extended very

easily. It has two major development branches, i.e., 1.x

and 2.x [7]. We have used latter one for our

experimentation. For language detection, we have

integrated CLD2 with Nutch that can detect a maximum

of three languages in a single document with percentage

information [8]. Further, we do our customization in the

fetcher module of Nutch to remove irrelevant

documents at run time which also minimizes time and

storage resources. For this purpose, we also added many

new configuration parameters to set the language label

and minimum bytes threshold.

To test our work, we collect Urdu language seed of

50 URLs from different domains and run the crawler for

40 iterations. We configure Urdu minimum threshold to

256 bytes and disable out-links. For politeness, a

maximum of 50 URLs are selected in each iteration

from a single domain. Our main findings in this study,

are given below:

 Yield Rate Statistics: NCL-Crawl runs for 40

iterations and crawls 25,723 documents. From total

fetched documents, 24,172 documents have Urdu

content more than configured threshold. Crawling

80

rate varies from 50 documents to 1300 during the

experimentation.

 Accuracy Measurements: Overall 93.99% of the

fetched documents have Urdu content greater than

the configured threshold. For each iteration,

accuracy varies from 86% to 99%.

 The rest of our paper is organized as follows: In

Section 2, we discuss existing work for language

specific web crawling. Section 3 presents our

methodology for Nutch customization and

experimentation. In Section 4, experimental results are

presented. Finally, we conclude our work in Section 5.

2. Related Work

For language-specific crawl for text corpus building

and regional search engines, researchers have suggested

various solutions. For instance, [9] has proposed a

heuristics-based approach for focused web crawler. This

approach uses pattern-based recognition algorithm to

match the topic of crawled text. It requires a lot of space

to save fetched data in each iteration and later analysis

for pattern recognition. In [10], the authors have used

Dictionary and Breadth-First algorithm for focused

crawling to build Javanese and Sundanese Corpus. Their

study shows that these two algorithms deliver the

highest performance as compared to others in a focused

crawl.

 Further, [11] has used Semantic Similarity Vector

Space Model for focused crawler improvement. Their

results show better performance of focused crawler as

compared to the Breadth-First model and VSM model.

Similarly, [12] and [13] have used topic-based approach

for focused crawling. In former, the authors have built a

classifier that evaluates the relevance of a given

document with respect to the topics and in latter work, a

weight table is constructed with topic frequency to

check the similarly of a web page.

For language-specific crawl, [14] has used linguistic

graph analysis approach for crawling. The authors have

analyzed web data from large crawl with specific

language attributes for selection strategies. Moreover,

[15] has used language locality in selecting the crawl

paths from a large space of Thai weblogs for specific

web crawl. Their work achieve higher performance than

a naive Breadth-First crawling strategy.

Apache Nutch is one of the most matured web

crawlers and has been used extensively in the research

area for web crawling [16]. In [17], the authors have

optimized Apache Nutch for domain-specific crawling

at large scale. During experimentation, they got a

success rate of only 0.0015% due to sparse data

distribution and duplicate content on the Web. In our

approach, we have also used Apache Nutch to build

language-specific web crawler.

3. Formatting instructions

In this section, we discuss our proposed approach for

language-specific crawling. First, we briefly describe

Apache Nutch crawler with different phases. Next, we

discuss the existing challenges in Apache Nutch for

language-specific crawling. After this, we describe our

proposed approach for Nutch customization in this

regard. Finally, we discuss our testing environment for

customized Nutch.

3.1 Apache Nutch Crawler Overview

Apache Nutch is an open-source distributed crawler

to crawl the web at large scale. There exist two major

versions of Nutch namely 1.x and 2.x. The latter one

differs from the former with the addition of Apache

Gora as a storage abstraction layer that allows to use

different NoSQL databases, e.g., Hbase, Cassandra, etc.,

[18]. We have used Apache Nutch 2.x branch in this

study. Further, each cycle of Nutch consists of many

phases to complete a job as shown in Figure 1. Each of

these phases have been described below:

Inject & Generate: The inject phase is the first

phase where selected seed URLs are provided and

crawler starts crawling by introducing some default

score to URLs. This step is very important because the

crawler will grow and fetch new web-pages based on the

initial seed. The next phase in Nutch is generate phase

where top URLs are marked for fetching based on the

assigned score to URLs. Note that this score is the

default for the first iteration but later on, it is calculated

in updatedb phase of Nutch for each next iteration.

Fetching: In this phase, the crawler requests the

marked URLs (in the generator phase) and fetches

HTML of these pages from the World Wide Web

(WWW). This job is multi-threaded and one can control

the number of threads via Nutch configuration. There

exist many controls in Nutch for various purposes in this

phase, e.g., age filter (filter.age.timestamp), size filter

(http:content:limit), fetcher threads per host

(fetcher.threads.per.queue) etc. At the end of this phase,

complete downloaded HTML with headers is stored in

configured storage back-end, e.g., Hbase etc.

81

Figure 2: A sample webpage with very small Urdu

Parsing: As discussed earlier, each crawled

document consists of various levels of information, e.g.,

raw content, i.e., HTML source code, request/response

headers, etc. The parse phase of Nutch parses each of

this information of crawled data and saves them

separately in the configured database. There are

different parser plugins available in Nutch, e.g.,

html−parser, tika−parser, xml−parser that can be

configured via Nutch configuration file.

UpdateDB & Indexing: After parsing, the next

phase of crawling is to update the database using parsed

documents. Many types of activities are performed in

this phase, e.g., addition of in-links/outlinks, page score

calculation, extra markers removal etc. There exist

many configuration options for each of these actions to

enable/disable these controls or to add some scoring

plugin etc. For instance, db.ignore.external.links

configuration parameter is used to allow the addition of

external links, i.e., outlinks, in the database. Later on,

these URLs get a mark possibility for fetch in generate

phase based on their score. This is the last major phase

of Nutch in the crawling cycle and the crawler can jump

back to generate phase from here for the next cycle.

Nutch also provides an indexing phase to index and

search crawled content via some text search platform,

e.g., Apache Solr or Elastic Search, etc. This phase

should be executed after updatedb to include current

crawled documents in index.

Figure 1: NCL-Crawl Execution Pipeline

82

3.2. Language Specific Crawl and Challenges in

Nutch

Although, Nutch provides language identification

plugin ”language-identifier” to find language details of

crawled documents, however, this plugin is based on a

web-server response header and is not reliable. In most

websites, this header is not properly set and in some

cases, it is not even available. Further, Nutch also does

not provide language information for multilingual pages

with their percentage distribution.

To crawl specific websites only for text corpus

building and regional search engine content, Nutch

provides an option to disable out-links and crawl inlinks

completely. For this purpose, one has to configure

db.ignore.external.links property to true in Nutch

configurations. Despite the fact that this approach will

crawl all documents of given seed, but it cannot filter

low quality documents w.r.t. given language, and hence,

will cause garbage collection. For instance, Figure 2

shows such a sample page that has English as a

primarily language and Urdu as a secondary language.

Although, this document has Urdu content but it is of

very small size, i.e., bytes. Such documents should be

filtered for applications that requires very rich content

in Urdu language. Unfortunately, Nutch does not

provide any such option to avoid garbage collection for

language specific crawling.

3.3. Nutch Customization for Language specific

Crawl

In this section, we have discussed the customization

of Apache Nutch for language specific crawling. First,

we discuss the addition of language detection tool in

Nutch and later, we discuss about the implementation of

minimum language size filter to avoid garbage

collection.

3.3.1. Language Detection Tool. For language specific

crawling, the first and most important step is tool

selection for language identification of a given

language. For this purpose, there exist many open-

source tools e.g., langid, langdetect, ldig and CLD2

[19][20][8]. Each of these tools has its own limitations

and requirements. In our case, we have selected CLD2

for language identification of crawled content. CLD2

accepts only UTF-8 encoded strings and can identify

161 different languages. For a given text, it can detect

upto maximum of three languages along with their

percentage and total bytes. The percentage information

can help to apply a minimum size filter for configured

language as discussed later.

To add CLD2 module in Nutch, we decided to detect

document language at runtime, and if a document is

irrelevant, we truncate it at the spot. This strategy not

only helps to remove documents that are not in the

required language but also helps to save storage. For this

purpose, we have customized Apache Nutch fetcher

module that actually crawls the documents from WWW.

In this module, fetched content is parsed via Boilerpipe

library to get the main article of document. Boilerpipe is

an open-source library developed for boilerplate

removal from HTML documents [21]. Later, this

extracted text is sent to CLD2 module that returns

language information of the document.

3.3.2. Minimum Size Filter. In order to implement

minimum size filter to avoid garbage collection, as

already discussed, we cannot directly use CLD2

percentage value as a minimum threshold without

language bytes information. For example, if there are

two documents with a content of 1 MB and 1KB

respectively and CLD2 returns 10% Urdu in both cases,

then in first case, Urdu bytes are 100 KB while in

second, these are just 100 bytes. Thus, first document is

more rich with Urdu as compared to the second one. To

cater this problem, we find language bytes from the

CLD2 output using following equation:

𝐿𝑎𝑛𝑔𝐵𝑦𝑡𝑒𝑠 =
(𝑡𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠) ∗ (𝑙𝑎𝑛𝑔. 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)

100

Bytes information for above discussed documents will

be as follows w.r.t. this equation:

𝐷𝑜𝑐1 𝐿𝑎𝑛𝑔𝐵𝑦𝑡𝑒𝑠 =
(1,024,000) ∗ (10)

100
= 100𝐾𝐵

𝐷𝑜𝑐2 𝐿𝑎𝑛𝑔𝐵𝑦𝑡𝑒𝑠 =
(1,024) ∗ (10)

100
= 100𝐵

In order to configure language and minimum

language threshold, we introduce few new configuration

parameters, e.g., filter.lang.label and

filter.lang.minSize.bytes etc. Complete details of all new

configuration parameters are given in second part of

Table 1 with default values and description. Lastly,

Figure 1 shows complete workflow of Apache Nutch

with language filter and minimum size filter. Our main

contributions are highlighted with light blue color in the

diagram.

3.4. Testing Environment

To test our customized Nutch crawler, we set up a

small size Hadoop/Hbase cluster with 3 worker nodes

and run it for 5, 10, 20, 30 and 40 iterations. We select

Urdu as a test case language, and for seed, we collect 50

number of URLs from different Urdu domains. To avoid

garbage collection, minimum threshold for language

83

size filter is set to 256 bytes. In each iteration, the

crawler selects a maximum 2,500 URLs (topN) from all

domains, and from single domain, a maximum of 50

URLs are marked for politeness via

generate.max.count. In addition, instead of manually

checking crawl documents for accuracy measurement,

we index all crawled documents in Apache Solr that is

an open source full text search engine [22]. Relevant

documents are retrieved using query filter present in

Apache Solr. Important configuration parameters with

their test-case values are given in Table 1.

4. Results

In this section, we present experimental results from

language-specific crawler. First, we discuss yield rate

statistics and later, we discuss the accuracy measures of

our proposed crawler.

4.1. Crawler Yield Rate

Yield rate statistics help to know the crawling rate at

different intervals. After the crawling job completion, a

total of 25,723 documents are successfully fetched, out

of which, 24,174 documents have content in Urdu

language with a percentage more than threshold. Figure

3 presents yield plot in our experimentation of

customized crawler for overall successfully crawled

documents and Urdu language documents vs the

number of iterations. In each iteration, the number of

crawled documents is very close to the total number of

documents fetched in that iteration. It shows better

accuracy of crawler in context of Urdu documents. The

crawling rate varies from 50 to 1300 in this analysis. The

Figure 3: Crawler Yield Rate

decaying behavior in the figure shows that over time,

available URL space, i.e., the list, is reducing as more

and more URLs are crawled with time. It is due to the

Table 1: Configuration changes for testing environment with new language specific
parameters

Type Property Value Options Test value Description
Default db.ignore.internal.links true, false false Enable/ disable internal links

Default db.ignore.external.links true, false true
Enable/ disable external

links

Default generate.max.count numeric 50
Maximum links from single
domain in each iteration

New filter.lang.enable true, false true
Enable/disable language

filter

New filter.lang.label language label Urdu
Language name to be

filtered

New filter.lang.minSize.enable true, false true
Enable/ disable minimum

size filter

New filter.lang.minSize.bytes numeric (bytes) 1
Minimum language bytes,

i.e., threshold

New filter.lang.maxSize.enable true, false false
Enable/ disable maximum

size filter
New filter.lang.maxSize.bytes numeric (bytes) - Maximum language bytes

New filter.lang.minPercentage.enable true, false false
Enable/ disable language

percentage filter

New filter.lang.minPercentage.limit Numeric (%) -
Minimum language

percentage

84

reason that we have disabled out-links as already

discussed in Section 3.

4.2. Accuracy Measurements

In order to measure effectiveness of NCL-Crawl

system, we use the percentage of relevant pages from

total downloaded pages in each iteration as the accuracy

Figure 4: Accuracy Measure of Proposed Language

measurement. The relevant pages are those pages where

Urdu language is found and where the percentage of

Urdu content is greater than the configured threshold.

Figure 4 shows the customized crawler accuracy

measurement for each iteration, and it varies from 86%

to 99% during the experimentation. Overall, the crawler

accuracy is 93.99% which is a very good score.

In general, the system accuracy depends upon the

seed collection and language threshold parameter. If the

seed is refined to the given language and threshold is not

very large, then the accuracy will be very high as

observed in our current experimentation, and if seed is

not very well refined in context of the given language

and the threshold is set very high, then the accuracy will

increase or decrease immoderately. As already

discussed, this is a new feature added in the default

Nutch crawler, hence we cannot compare our results

with some existing feature in Nutch default version.

5. Conclusion

In this work, we endeavor to build a language

specific web crawling system, i.e., NCL-Crawl, to assist

the NLP community for textual corpus building and

regional language web crawling at a large scale. For this

purpose, we have customized the Apache Nutch fetcher

class and added CLD2 language detection module to

identify the language of crawled content at run time. For

experimentation and evaluation of our work, we collect

50 seed URLs in Urdu language from different domains

and run the crawler for 40 iterations. To avoid garbage

collection, we set minimum size threshold to 256 bytes

of Urdu. Total crawled documents are 25,174 that

include 24,174 documents with Urdu language content

more than threshold. The crawling rate varies from 50

to 1300 during the job execution. Overall accuracy is

93.99% and varies from 86% to 99%. In general, this

accuracy is dependent on the given seed URLs and

language threshold parameter and will vary with these

two parameters. Lastly, this solution can be used for any

language and threshold value; one has to just change

configuration parameters only. In future, we plan to

open source this system for research community.

6. Acknowledgement

This research work was funded by Higher Education

Commission (HEC) Pakistan and Ministry of Planning

Development and Reforms under National Center in Big

Data and Cloud Computing.

7. References

[1] Search engine market share china — statcounter global

stats. https://gs.statcounter.com/search-engine-

marketshare/all/china/monthly-201808-201908, 2019.

[2] Search engine market share russian-federation —

statcounter global stats.

https://gs.statcounter.com/searchengine-market-

share/all/russian-federation/monthly-201808-201908, 2019.

[3] Focused web crawler - wikipedia.

https://en.wikipedia.org/wiki/Focused crawler, 2019.

[4] Natural Language Processing - Wikipedia.

https://en.wikipedia.org/wiki/Natural language processing,

2019.

[5] Text Corpus - Wikipedia.

https://en.wikipedia.org/wiki/Text corpus, 2019.

[6] Top 50 open source web crawlers for web mining.

https://bigdata-madesimple.com/top-50-open-sourceweb-

crawlers-for-data-mining/, 2019.

[7] WIKI Apache Nutch Web Crawler.

https://wiki.apache.org/nutch/NutchTutorial, 2019.

[8] Compact Language Detector 2. CLD2owners/cld2.

https://github.com/CLD2Owners/cld2, 2019.

[9] Joy Dewanjee. Heuristic approach for designing a focused

web crawler using cuckoo search. International Journal of

Computer Science and Engineering, 4(09):59–63, 2016.

[10] William Eka Putra and Saiful Akbar. Focused crawling

using dictionary algorithm with breadth first and by page

length methods for javanese and sundanese corpus

construction. International Journal of Procedia Technology,

11:870–876, 2013.

[11] Yajun Du, Wenjun Liu, Xianjing Lv, and Guoli Peng. An

improved focused crawler based on semantic similarity vector

space model. Applied Soft Computing, 36:392–407, 2015.

[12] Ayar Pranav and Sandip Chauhan. Efficient focused web

crawling approach for search engine. International Journal of

Computer Science and Mobile Computing, 4(5), 2015.

85

[13] Soumen Chakrabarti, Martin Van den Berg, and Byron

Dom. Focused crawling: a new approach to topic specific web

resource discovery. International Journal of Computer

networks, 31(11-16):1623–1640, 1999.

[14] Takayuki Tamura, Kulwadee Somboonviwat, and

Masaru Kitsuregawa. A method for language-specific web

crawling and its evaluation. International Journal of Systems

and Computers in Japan, 38(2):10–20, 2007.

[15] Kulwadee Somboonviwat, Masaru Kitsuregawa, and

Takayuki Tamura. Simulation study of language specific web

crawling. In Proceedings of International Conference on Data

Engineering Workshops (ICDEW’05), pages 1254–1254.

IEEE, 2005.

[16] Apache nutch web crawler.

http://https://nutch.apache.org/, 2019.

[17] Luis A Lopez, Ruth Duerr, and Siri Jodha Singh Khalsa.

Optimizing apache nutch for domain specific crawling at large

scale. In Proceedings of International Conference on Big Data

(Big Data), pages 1967–1971. IEEE, 2015.

[18] Digitalpebble’s blog: Nutch fight! 1.7 vs 2.2.1.

https://gs.statcounter.com/search-engine-market-share, 2019.

[19] saffsd. Python’s standalone language identification tool.

https://github.com/saffsd/langid.py, 2017.

[20] Michal Danilak. langdetect: language-detection library to

python. https://github.com/Mimino666/langdetect, 2017.

[21] Boilerpipe. https://code.google.com/archive/p/boilerpipe,

2019.

[22] Apache solr. https://lucene.apache.org/solr/, 2019.

86

87

Sentiment and Emotion Analysis of Text: A Survey on Approaches and

Resources

Nazish Azam, Bilal Tahir, Muhammad Amir Mehmood

Al-Khawarizmi Institute of Computer Science, UET, Lahore, Pakistan

{nazish.azam, bilal.tahir, amir.mehmood}@kics.edu.pk

Abstract

 The evolution of internet has given the ability to the

users to give their reviews, ratings, and opinions on

social media or commercial websites. Sentiment and

emotion analysis is an ongoing field of research in text

processing, which aims to classify these reviews

automatically. This paper presents the survey regarding

approaches and resources used for sentiment and

emotion analysis of text. We summarize the techniques,

datasets, and resources available for text analysis.

Additionally, we focus on summarizing literature and

resources available for Urdu, a low resource language,

along with some open problems for Urdu text analysis.

The presented survey can be used effectively to

understand challenges and to take future direction for

research in sentiment and emotion analysis field,

especially for Urdu.

Keywords– Sentiment analysis, Emotion analysis,

Lexicon, Urdu natural language processing

1. Introduction

In recent years, technology has been so much

enhanced that internet is now an irreplaceable part of our

lives. According to Human Computer Interaction (HCI)

studies, people are now so addicted and connected to

computers and busy in using internet. The accelerated

evolution of internet has attracted people from all over

the world to social media platforms, micro-blogging

websites, and online discussion forums. The sentimental

content in form of reviews, opinions, recommendations,

ratings, and feedback is generated by users on these

platforms. Analysis of these sentiments has spread

across many fields such as consumer information,

marketing, and social analysis. Sentiment analysis is

performed to enhance the quality of products or to

understand the public opinion towards different topics

[1], [2], [3].

In the field of sentiment analysis, subjectivity

analysis of text is done to determine the attitude or

polarity of the writer. Such analysis helps in decision

making and it is an important human aspect because it

tells us “What other people think”. In general, the

polarity or sentiment of text is classified into three main

classes, i.e., positive, negative, and neutral. Similar to

sentiment, emotions can be analyzed computationally.

Despite the fact that sentiments and emotions are

synonyms and equivalent words, but they don’t express

something very similar. Looking into the dictionary

shows that sentiment is just an opinion or view while

emotion alludes to feeling according to the mood [4].

However, the goal of emotion analysis is a difficult task

as differences between emotions are subtler than those

between positive and negative class. Additionally, the

emotion itself is a universal feeling however different

people concerning social context, values, interests, and

experience have a different interpretation of text [5].

The approaches for sentiment and emotion analysis

for text are categorized into three classes: 1) Lexicon

Based, 2) Machine Learning, 3) Hybrid approach.

Lexicon based approach classifies textual content

utilizing a list of manually labelled words. Machine

learning methods use machine learning algorithms

along with textual features of content for classification

of text. Hybrid method combines lexicon and machine

learning approaches to enhance the performance of

classifiers. However, the performance of the approach is

highly dependent on data quality, size, and content

language.

The sentiment and emotion analysis are extensively

applied to understand social, political and business

behaviours. The sentiment analysis of reviews is done

in [1], [2], [6], and [7] to automatically rate the product

using user opinion. Similarly, tweets are analyzed to

understand the political biases of news channels [8] and

to calculate sentiment towards Syrian refugees [9]. The

emotion analysis of tweets is done in [10] to predict the

outcome of US election 2016 by analyzing public

perception towards candidates. Previous studies show

that much work has been done on sentiment and emotion

analysis for English text. A large research gap is still

present in case of Urdu - a resource poor language.

In this paper, we aim to do a survey on sentiment and

emotion analysis research efforts, datasets, lexical

resources and classification techniques. Besides

discussing approaches used for English language, we

focus on approaches and challenges for sentiment and

emotion analysis of Urdu and Roman Urdu text as well.

Additionally, a discussion of available resources and

88

datasets for the Urdu language is provided to facilitate

future work.

The rest of the paper is organized as follows: We

discuss available lexicons, datasets, and existing

approaches for sentiment analysis in Section 2. Next, we

present our survey on emotion analysis in Section 3.

Before the conclusion, we discuss some open problems

related to Urdu text analysis in Section 4. Finally, we

conclude our paper in Section 5.

2. Sentiment Analysis

In this section, first, we provide details of publicly

available lexicons and datasets to perform sentiment

analysis. Next, we discuss different approaches used to

perform sentiment analysis.

2.1. Datasets and Lexicons

Table 1 provides a summary of a few online available

sentiment analysis lexicons and datasets. AFFIN [11]

lexicon consists of 3300+ English words labelled from -

5 to +5 scale with an integer variance. Similarly,

SentiWordNet [12], and Sentiment lexicon [13] provide

English words with sentiment score. However, the Urdu

language lacks in lexical resources. An Urdu sentiment

lexicon13 provides sentiment labels of Urdu words by

translating English language lexicon [13] into Urdu

using a dictionary lookup. Additionally, all synonyms of

translated words are also included in the lexicon. The

lexicon consists of 2,607 positive and 4,728 negative

sentiment words.

The number of datasets from microblogs, blogs, user

comments and review sites are constructed because

these platforms provide a good understanding of public

opinions. The IMDB review dataset [14] provides 50k

movie reviews with even split of 25,000 reviews from

positive and negative class. Similarly, Twitter US

airline sentiment4 labelled 14.5k tweets related to six US

airlines into three classes of positive, negative, and

neutral. Multi-language sentiment analysis5 provides

labelled public opinion from chat logs of WhatsApp,

Messenger, and SMS data in English, Mandarin, and

Malay language. Additionally, the efforts are made to

understand public opinion in Urdu by building Roman

Urdu6 and Urdu language sentiment [15] analysis

dataset. Roman Urdu dataset consists of 20,000 roman

Urdu sentences labelled into three classes. Urdu

language sentiment dataset consists of 999 Urdu

language political tweets manually labelled by three

judges.

3http://chaoticity.com/urdusentimentlexicon/
4https://www.kaggle.com/crowdflower/twitter-airline sentiment
5https://www.kaggle.com/weywenn/sentiment-analysis-

multilanguage
6https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set

2.2. Approaches

For sentiment detection in textual data, various

methods are introduced in the literature. Table 2

provides the summary of research done for sentiment

analysis. The work is distributed into three sections of

English, Roman Urdu, and Urdu according to language

focused in work. The methods used for sentiment

analysis of these languages can be categorized into three

classes 1) Lexicon-based Method, 2) Machine learning

Method, and 3) Hybrid Method.

2.2.1. Lexicon Based Method: Lexicon based

recognition approach classifies textual content utilizing

a list of labelled positive, negative, and neutral words.

In study [9], lexicon is developed for Turkish language.

Additionally, sentiment analysis of English and Turkish

tweets related to Syrian refugees is performed. The

classification of tweets into 5 categories of very

negative, negative, neutral, positive, and very positive

shows the positive sentiment of Turkish tweets

compared to English.

In [18], the Roman Urdu Opinion Mining System

(RUOMIS) is built for analysis of comments on mobile

review website. The lexicon is built by labelling

adjectives in content. The results show 100% recall but

the precision value is 27.1% only. The reason for poor

precision is noise and failure of POS tagger in

identifying adjectives correctly due to the unstructured

nature of Roman text.

Study in [20] use English translated Urdu lexicon

[15] for analysis of 124 Urdu comments. The

experiment shows the accuracy of 66% in sentiment

classification. Similarly, study in [21] use Urdu content

from blogs to for sentiment analysis. Lexicon is built by

identifying and labelling nouns and adjectives using

POS tagger. The accuracy of 66% in classification of

text shows good results. However, remaining parts of

POS-tagged text need to be analyzed and included in

lexicon to improve the accuracy. The research is done

for identification and labelling of words with sentiment

(SentiUnits) in [22]. The authors use POS tagger with

grammatical and semantic rules to identify and label

SentiUnits in Urdu text. The labelled lexicon is used for

sentiment analysis of Urdu corpus containing reviews

about movies and products. The results show 72% and

78% accuracy for movies and reviews, respectively. The

similar study is done in [1] by using SentiUnits for

sentiment classification of Urdu text. The study also

shows the improvement in results by applying negation

handling during sentiment classification of Urdu text.

The authors use Urdu tweets to determine the

political biases of Pakistani news channels in [8]. They

http://chaoticity.com/urdusentimentlexicon/
https://www.kaggle.com/crowdflower/twitter-airline%20sentiment
https://www.kaggle.com/weywenn/sentiment-analysis-%20multilanguage
https://www.kaggle.com/weywenn/sentiment-analysis-%20multilanguage
https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set

89

build an Urdu language sentiment lexicon by labelling

nouns and adjectives in Urdu tweets. In addition to

sentiment analysis, the aspect analysis of sentiment is

done to determine the biases of three news channels

towards the Pakistani Government. The paper [23]

compares the performance of three machine learning

algorithms i.e., Support Vector Machine (SVM),

Decision Tree, K-Nearest Neighbor (KNN), and lexicon

approaches for sentiment classification of Urdu text.

The results show that the lexicon approach improves

accuracy from 73.88% to 89.03% compared to machine

learning algorithms. In addition, the lexicon approach

performs better in terms of precision, recall, time-cost.

The reason for better performance of lexical approach is

that wide coverage of lexicon and an efficient Urdu

Sentiment Analyzer is developed that can efficiently

handle data from multiple domains.

2.2.2. Machine Learning Method: The study in [16]

uses Multinomial Naive Bayes (MNB) model with n-

gram and POS tags as features for classification of

English tweets into positive, negative, and neutral class.

The results describe the best performance of model with

bi-gram features. Additionally, the evaluation of model

on different size datasets shows the improvement in

accuracy of classification on large dataset. However,

Table 1: Summary of publicly available lexicons & datasets for sentiment analysis

 Name Data Size Language Classes

Lexicon

AFINN lexicon [11] 3,300+ words English Integer between -5 (negative) and +5

(positive)

SentiWordNet [12] - English Positive, Negative, and Objectivity

Sentiment Lexicon [13] 6,800 words English Positive and Negative.

Urdu Sentiment Lexicon1 7,335 words Urdu Positive and Negative.

Datasets

IMDB reviews [14] 50,000 reviews English Positive and Negative

Twitter US Airline

Sentiment 2

14,500 Tweets English Positive, Negative, and Neutral

Sentiment Analysis

Multi-Language3

1,531 samples Multi

Language

Very Satisfied, Satisfied, Neutral,

Unsatisfied, Very Unsatisfied.

Roman Urdu Dataset4 20,000 records Roman Urdu Positive, Negative, and Neutral

Urdu-Sentiment- Dataset

[15]

999 Tweets Urdu Positive, Negative, and Objective

Table 2: Summary of sentiment analysis research

Language Author Methodology Data

English

Öztürk and Ayvaz [9] Lexicon based 1,353,367 English & 1,027,930 Turkish Tweets

Pak and Paroubek [16] Machine learning 300,000 Tweets

Shoeb and Ahmed [17] Machine learning 489 Tweets

Mukwazvure and

Supreethi [3]

Hybrid Method 333,686 News Comments

Govindarajan [6] Hybrid Method 2,000 movie reviews

Roman

Urdu

Daud et al. [18] Lexicon based 1,620 Roman Urdu comments

Arif et al. [7] Machine learning Roman 1,600 Urdu/Hindi hotel reviews

Noor et al. [2] Machine learning 20,286 Roman Urdu reviews from Ecommerce

site

Ghulam et al. [19] Machine learning Roman Urdu text

Urdu

Rehman and Bajwa [20] Lexicon Based Urdu news

Hashim and Khan [21] Lexicon Based Public opinion on news headlines

Syed et al. [22] Lexicon Based 1,000 Reviews on Urdu Websites

Syed et al. [1] Lexicon Based Urdu corpus of movie reviews

Amjad et al. [8] Lexicon Based 26,614 Urdu news Tweets

Mukhtar et al. [23] Lexicon Based Urdu text from blogs

90

when the dataset is large enough, the improvement

cannot be achieved by only increasing the size of the

training data. Similarly, in [17], a study is done to

classify English tweets using K Nearest Neighbor

(KNN), Naive Bayes (NB), and Decision Tree (DT)

classifier. The results describe the Decision Tree as

outperforming classifier with 84.66% accuracy and

95.96% precision.

The sentiment analysis of hotel reviews in Roman

Urdu text is done in [7]. The corpus is built by

translating English text into Roman Urdu. The

translation of English text is done with one translation

tool to avoid irregularities in spelling. The SVM

classifier shows significant performance with 95%

accuracy with Term Frequency (TF)-Inverse Document

Frequency (IDF) features. However, the performance is

with no spelling inconsistencies which is one of the

challenging issues in the analysis of Roman Urdu text.

Similarly, [2] uses SVM model with Bag of Word

(BoW) features to classify Roman Urdu reviews from

an e-commerce site into positive, negative, and neutral

classes. In [19] the comparison of baseline machine

learning models (NB, Random Forest (RF), and SVM)

and deep learning model Long Short Term Memory

(LSTM) is done for sentiment classification of Roman

Urdu text. The comparison shows the better

performance of LSTM model with word embedding.

2.2.3. Hybrid Method: The study in [3] combines

lexicon and machine learning approach to classify

English news comments from technology, business, and

political domain. The lexicon is used for polarity

detection of text. The output of lexicon is used to train

SVM and KNN models. The results describe the

negative impact of small training data size and neutral

class on the performance of classifiers. In [6] NB and

Genetic Algorithms are combined as an ensemble

technique for analysis of English documents. Their

comparative experiments show the effectiveness of

hybrid technique for sentiment classification. The

comparison of both models with hybrid approach shows

the hybrid approach as the best performing model with

93% accuracy.

3. Emotion Analysis

In this section, first, we discuss existing emotion models

for categorization of emotions. Next, we present

available datasets and lexicons for analysis. Finally, we

discuss the approaches which exist in the literature for

emotion classification.

2.1. Emotion Models

To detect and analyze the emotions, they are

categorized with standard emotion models. Table 3

summarizes the existing emotion models. According to

Table 3: Summary of emotion models

Model Proposed Emotions Approach Structure

Ekman [24] Anger, disgust, fear, joy, sadness, surprise Categorical -

Shaver et

al. [25]

Anger, fear, joy, love, sadness, surprise Categorical Tree

Oatley and

Johnson-

Laird [26]

Anger, anxiety, disgust, happiness, sadness Categorical -

Plutchik

[27]

Acceptance, admiration, aggressiveness, amazement, anger,

annoyance, anticipation, apprehension, awe, boredom, contempt,

disapproval, disgust, distraction, ecstasy, fear, grief, interest, joy,

loathing, love, optimism, pensiveness, rage, remorse, sadness, serenity,

submission, surprise, terror, trust, vigilance

Dimensional Wheel

Circumplex

Russell [28]

Afraid, alarmed, angry, annoyed, aroused, astonished, at ease, bored,

calm, content, delighted, depressed, distressed, droopy, excited,

frustrated, glad, gloomy, happy, miserable, pleased, relaxed, sad,

satisfied, serene, sleepy, tense, tired

Dimensional Valence,

Arousal

OCC

Ortony

et al. [29]

Admiration, anger, appreciation, disappointment, disliking, fear, fears

confirmed, gloating, gratification, gratitude, happy-for, hope, liking,

pity, pride, sorry-for, relief, remorse, reproach, resentment, self-

reproach, shame

Dimensional Tree

Lovheim

[30]

Anger/rage, contempt/disgust, distress/anguish, enjoyment/ joy,

fear/terror, interest/excitement, shame/humiliation, surprise/startle

Dimensional Cube

91

psychology, there are 6 types of basic emotions

expressed by human beings [37]. These emotions are 1)

Happiness, 2) Sadness, 3) Fear, 4) Disgust, 5) Anger,

and 6) Surprise. Variety of emotion models are

presented to further classify these basic emotions.

Ekman [24] presents six discrete emotions as mentioned

in Table 3. Shaver et al. [25] and Oatley and Johnson-

Laird [26] define 6 categories of emotions including

love, anxiety and happiness. Plutchik [27] and

Circumplex Russell [28] provides two dimensional

emotion categorization model. Additionally, OCC

Ortony et al. [29] and Lovheim [30] distribute emotions

in three dimensions to create categories.

2.2. Datasets and Lexicons

Table 4 provides summary of available labelled

emotion datasets and lexicons. EmoSenticNet [31] is

online available emotion lexicon containing 13,171

words categorized into joy, sadness, disgust, anger,

surprise, and fear. Similarly, National Research Council

(NRC) Word-Emotion Association Lexicon (EmoLex)

[32] categorizes 14,000+ words into eight classes of

emotion. Additionally, NRC dataset is translated into

40+ languages including Urdu. Our manual inspection

of Urdu translated lexicon reveals that few English

terms are not translated to Urdu. Additionally, we note

that ATM translates multiple English terms to one Urdu

word, i.e., accused, accuser, and accusing are translated

to one word “Alzaam laga’. In English, these terms are

provided different labels, however, translated to one

Urdu term creates ambiguity of assigned label.

7 https://www.kaggle.com/c/sa-emotions

Therefore, manual cleaning of the lexicon is required to

use it for Urdu text.

EmoBank [33] dataset consists of 10k English

sentences labelled with six Ekman emotions using

Valence-Arousal-Dominance scheme. Similarly,

International Survey on Emotion Antecedents and

Reactions (ISEAR) [34] dataset provides 7,666 labelled

English sentences with seven emotions of anger,

disgust, fear, sadness, shame, joy, and guilt.

Furthermore, the emotion in text dataset57 consists of

manually label 40k tweets into 13 classes of emotion.

Additionally, 2,892 Facebook posts are categorized into

six classes using Valence-Arousal-Dominance scheme

[35]. Similarly, Affective text [36] classifies 1,200 news

headlines into Ekman model categories. Up to our

knowledge, there is no publicly available Urdu language

emotion labelled dataset. This shows the scarcity of

resource and huge research gap in emotion analysis of

Urdu content.

The brief overview of papers on emotion analysis of

text is given in Table 5. Keyword based method is used

in [39] for classification of English email content into

three categories of happy, sad, and angry. Besides

keyword spotting, semantic emotions are calculated

using a semantic network method for classification of

text. The proposed methodology is limited to certain

emotion-related texts, e.g., couple’s breakup. Therefore,

emotion detection from technical writings or scientific

Table 4: Summary of publicly available lexicons & datasets for emotion analysis

 Name Data Size Language Classes

Lexicon

EmoSenticNet [31] 13,171

words

English Joy, Sadness, Disgust, Anger,

Surprise, Fear

NRC-EmoLex [32] 14,000+

words

40+ languages

including Urdu

Anger, Fear, Anticipation, Trust,

Surprise, Sadness, Joy, and Disgust.

Datasets

EmoBank [33] 10,000

sentences

English Double annotation with valence,

arousal and dominance

ISEAR [34] 7,666

sentences

English Joy, Fear, Anger, Sadness, Disgust,

Shame, and Guilt

Emotion in Text5 40,000

Tweets

English Anger, Boredom, Empty,

Enthusiasm, Fun, Happiness, Hate,

Love, Relief, Sadness, Surprise,

Worry, Neutral

The valence and arousal

Facebook posts [35]

2,895

Facebook

posts

English Double annotation with valence and

arousal values

Affective Text [36] 1,200 News

Headlines

English Annotated with 6 basic emotions

from Ekman’s model

2.3. Approaches

https://www.kaggle.com/c/sa-emotions

92

papers is not possible because these texts simply do not

contain emotions.

Authors in [10] use lexicon based approach for

emotion analysis of 25 million English tweets related to

Donald Trump and Hillary Clinton. Based on emotion

analysis using NRC lexicon, they predicted the outcome

of US state election 2016. The proposed approach has

extensive applications as it is not only limited to the

political domain.

The study in [40] uses machine learning models of

SVM and KNN for emotion classification of tweets

according to Circumplex Model of Affect. In addition,

the authors manually label hashtags to use it as an

emotion label of tweet. The comparison of manually

labelling of complete tweet and automatic labelling of a

tweet using hashtags shows that hashtags can be used as

an emotion label of a tweet with 87% accuracy.

Additionally, in [41] online health communities (OHCs)

comments regarding cancer are classified using a

combination of lexicon approach and deep learning

models of CNN and LSTM. The analysis shows that

hybrid model performance improves because it captures

the hidden semantics in OHCs messages. Similarly,

Lexicon-based, Keyword based, and machine learning-

based emotion classification methods are combined for

classification of 15 emotions in suicide notes [42]. The

combination of Affective text lexicon with machine

learning models of SVM, KNN, and maximum entropy

shows that hybrid techniques exhibit a high robust

discriminative capability in emotion classification

especially when a large number of emotion instances are

available.

The little amount of literature is available in emotion

analysis of Roman Urdu content. The study in [43]

presents knowledge based approach to label Roman

Urdu text by developing an emotion ontology of

happiness, anger, disgust, surprise, and fear emotions.

The approach analyses syntax and the semantic

relationship of text to detect the emotion. The testing of

the proposed approach on manually labelled data shows

the average recall and precision of 85.40% and 92.87%,

respectively. The study presented in [44] made an effort

to detect joy, fear, anger, sadness, disgust, and shame

from Urdu language tweets about smartphones and

sports products. The SVM, RF, NB and KNN models

are tested on 1,000 sports and 1,200 smartphone tweets.

4. Open Problems in Urdu Text Analysis

The core approaches (lexicon based, machine

learning, and hybrid method), as mentioned in Section

2.2, used to perform text analysis of English can also be

used for Urdu but research and development effort is

required because of vast differences between English &

Urdu grammar, orthography, and morphology. For Urdu

language text analysis, first of all, we need a dataset and

there are rare datasets & corpora available for sentiment

as well as emotion analysis of Urdu text. To use the

lexicon based approach either for sentiment or emotion

analysis, we need annotated lexicon of Urdu. Few Urdu

lexicons have been created so far and most of them are

not publicly available while in the case of English, we

have a variety of lexicons available. Due to different

sentence structure, i.e., Subject-Object-Verb (SOV) and

position of preposition, as compared to English, we face

difficulty in Urdu text classification [45]. Due to

complex morphology and unstructured format of Urdu,

English morphological analyzers and POS taggers

cannot be exactly used [46].

Table 5: Summary of emotion analysis research

Language Author Methodology Data

English

Sailunaz

[38]

Survey - -

Ling et al.

[39]

Keyword

based

Emails Happy, Sad, Angry

Srinivasan

et al. [10]

Lexicon

based

English Tweets Plutchik’s Wheel of Emotions [27]

Hasan et

al. [40]

Machine

learning

English Tweets Circumplex Model of Affect

Khanpour

[41]

Hybrid

method

Online health

Communities’ Posts

Anger, Disgust, Fear, Joy, Sadness, Surprise

Yang et al.

[42]

Hybrid

method

English Suicide

Notes

15 emotion categories

Roman

Urdu

Nargis and

Jamil [43]

Knowledge

based

Roman Urdu Text or

Blogs

Happiness, Anger, Hurt, Caring, Fear

Urdu

Rehman

and Bajwa

[20]

Machine

learning

Smartphone and

Sports Tweets

93

5. Conclusion

In this paper, we perform a survey on techniques

used for sentiment and emotion analysis of text. We

explore the literature related to analysis of Urdu text

deeply to understand the challenges in analyzing low

resource language. We observe that field of sentiment

analysis for Urdu is growing despite lack of resources.

Additionally, emotion analysis task has more scarcity of

literature and resources for Urdu text. Building

resources, used in sentiment and emotion analysis tasks,

is still needed for the Urdu language. Furthermore, due

to the complex nature and challenges of Urdu text, a lot

of work is required to understand Urdu text context.

In the future, we will deploy and compare the

performance of existing models and resources for

sentiment and emotion analysis for Urdu text to provide

the benchmark for future research.

6. Acknowledgement

This research work was funded by Higher Education

Commission (HEC) Pakistan and Ministry of Planning

Development and Reforms under National Center in Big

Data and Cloud Computing.

7. References

[1] A. Z. Syed, M. Aslam, and A. M. Martinez-Enriquez,

“Sentiment analysis of urdu language: handling phraselevel

negation,” in Proceedings of Mexican International

Conference on Artificial Intelligence. Springer, 2011

[2] F. Noor, M. Bakhtyar, and J. Baber, “Sentiment analysis in

e-commerce using svm on roman urdu text,” in Proceedings

of icetic Springer, 2019, pp. 213–222.

[3] A. Mukwazvure and K. P. Supreethi, “A hybrid approach

to sentiment analysis of news comments,” in Proceedings of

ICRITO (Trends and Future Directions), Sep. 2015, pp. 1–6.

[4] N. Allouch, “Sentiment and emotion analysis: The

absolute difference” May 2018.[online]. Available:

http://blog.emojics.com/emotional-analysis-vs-sentiment-

analysis/

[5] A. Balahur and A. Montoyo, “Applying a culture

dependent emotion triggers database for text valence and

emotion classification,” Journal of Procesamiento dellenguaje

natural, no. 40, pp. 107–114, 2008.

[6] M. Govindarajan, “Sentiment analysis of movie reviews

using hybrid method of naive bayes and genetic algorithm,”

International Journal of Advanced Computer Research, vol. 3,

no. 4, p. 139, 2013.

[7] H. Arif, K. Munir, A. S. Danyal, A. Salman, and M. M.

Fraz, “Sentiment analysis of roman urdu/hindi using

supervised methods,” in Proceedings of ICICC, 2016.

[8] K. Amjad, M. Ishtiaq, S. Firdous, and M. A. Mehmood,

“Exploring twitter news biases using urdu-based sentiment

lexicon,” in Proceedings of ICOSST. IEEE, 2017, pp. 48–53.

[9] N. Öztürk and S. Ayvaz, “Sentiment analysis on twit- ¨ ter:

A text mining approach to the syrian refugee crisis,” Journal

of Telematics and Informatics, vol. 35, no. 1, 2018.

[10] S. M. Srinivasan, R. S. Sangwan, C. J. Neill, and T. Zu,

“Twitter data for predicting election results: Insights from

emotion classification,” IEEE Technology and Society

Magazine, vol. 38, no. 1, pp. 58–63, 2019.

[11] F. A. Nielsen, “A new ANEW: Evaluation of a word list

˚ for sentiment analysis in microblogs,” arXiv preprint

arXiv:1103.2903, 2011.

[12] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet

3.0: an enhanced lexical resource for sentiment analysis and

opinion mining.” in Proceedings of LREc, vol. 10, no. 2010,

2010, pp. 2200–2204.

[13] M. Hu and B. Liu, “Mining and summarizing customer

reviews,” in Proceedings of SIGKDD, ACM, 2004

[14] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,

and C. Potts, “Learning word vectors for sentiment analysis,”

in Proceedings of the 49th annual meeting of the ACLWEB:

Human language technologies,” ACLWEB, 2011

[15] M. Y. Khan, S. M. Emaduddin, and K. N. Junejo,

“Harnessing english sentiment lexicons for polarity detection

in urdu tweets: A baseline approach,” in Proceedings of ICSC,

IEEE, 2017, pp. 242–249.

[16] A. Pak and P. Paroubek, “Twitter as a corpus for

sentiment analysis and opinion mining.” in Proceedings of

LREc, vol. 10, 2010, pp. 1320–1326.

[17] M. Shoeb and J. Ahmed, “Sentiment analysis and

classification of tweets using data mining,” International

Research Journal of Engineering and Technology, 2017.

[18] M. Daud, R. Khan, A. Daud et al., “Roman urdu opinion

mining system (ruomis),” arXiv preprint arXiv:1501.01386,

2015.

[19] H. Ghulam, F. Zeng, W. Li, and Y. Xiao, “Deep learning

based sentiment analysis for roman urdu text,” Procedia

computer science, vol. 147, pp. 131–135, 2019.

[20] Z. U. Rehman and I. S. Bajwa, “Lexicon-based sentiment

analysis for urdu language,” in Proceedings of INTECH.

IEEE, 2016, pp. 497–501.

[21] F. Hashim and M. Khan, “Sentence level sentiment

analysis using urdu nouns,” Department of Computer Science,

University of Peshawar, Pakistan, 2016.

[22] A. Z. Syed, M. Aslam, and A. M. Martinez-Enriquez,

“Lexicon based sentiment analysis of urdu text using

sentiunits,” in Proceedings of micai. Springer, 2010

[23] N. Mukhtar, M. A. Khan, and N. Chiragh, “Lexiconbased

approach outperforms supervised machine learning approach

for urdu sentiment analysis in multiple domains,” Telematics

and Informatics, vol. 35, no. 8, 2018.

[24] P. Ekman, “An argument for basic emotions,” Cognition

and Emotion, vol. 6, no.3-4, pp. 169–200, 1992.

[25] P. Shaver, J. Schwartz, D. Kirson, and C. O’connor,

“Emotion knowledge: further exploration of a prototype

approach.” Journal of personality and social psychology, vol.

52, no. 6, p. 1061, 1987.

[26] K. Oatley and P. N. Johnson-laird, “Towards a cognitive

theory of emotions,” Cognition and Emotion, vol. 1, 1987

[27] R. Plutchik, “A psychoevolutionary theory of emotions,”

Social Science Information, vol. 21, no. 4-5, 1982

[28] J. Russell, “A circumplex model of affect,” Journal of

Personality and Social Psychology, vol. 39, 12 1980.

[29] A. Ortony, G. L. Clore, and A. Collins, “The cognitive

structure of emotions,” Cambridge Uni, 1988.

http://blog.emojics.com/emotional-analysis-vs-sentiment-analysis/
http://blog.emojics.com/emotional-analysis-vs-sentiment-analysis/

94

[30] H. Lovheim, “A new three-dimensional model for emo- ¨

tions and monoamine neurotransmitters,” Medical hypotheses,

vol. 78, no. 2, pp. 341–348, 2012.

[31] S. Poria, A. Gelbukh, A. Hussain, N. Howard, D. Das,

and S. Bandyopadhyay, “Enhanced senticnet with affective

labels for concept-based opinion mining,” Journal of IEEE

Intelligent Systems, vol. 28, no. 2, pp. 31–38, 2013.

[32] S. M. Mohammad and P. D. Turney, “Crowdsourcing a

word–emotion association lexicon,” Journal of

Computational Intelligence, vol. 29, no. 3, 2013.

[33] S. Buechel and U. Hahn, “Emobank: Studying the impact

of annotation perspective and representation format on

dimensional emotion analysis,” in Proceedings of the

European Chapter of the ACLWEB.” Volume 2, 2017

[34] K. R. Scherer and H. G. Wallbott, “Evidence for

universality and cultural variation of differential emotion

response patterning.” Journal of personality and social

psychology, vol. 66, no. 2, p. 310, 1994.

[35] D. Preot¸iuc-Pietro, H. A. Schwartz, G. Park, J.

Eichstaedt, M. Kern, L. Ungar, and E. Shulman, “Modelling

valence and arousal in facebook posts,” in Proceedings of the

7th Workshop on Computational Approaches to Subjectivity,

Sentiment and Social Media Analysis, 2016, pp. 9–15.

[36] C. Strapparava and R. Mihalcea, “Semeval-2007 task 14:

Affective text,” in Proceedings of SemEval, 2007

[37] K. Cherry, “The 6 types of basic emotions and their effect

on human behavior,” Jun 2019, (visited on 23 September,

2019). [online]. Available:

https://www.verywellmind.com/an-overview-of-the-types-

ofemotions-4163976

[38] K. Sailunaz, M. Dhaliwal, J. Rokne, and R. Alhajj,

“Emotion detection from text and speech: a survey,” Journal

of Social Network Analysis and Mining, vol. 8, no. 1, 2018.

[39] H. S. Ling, R. Bali, and R. A. Salam, “Emotion detection

using keywords spotting and semantic network,” in

Proceedings of ICOCI. IEEE, 2006, pp. 1–5.

[40] M. Hasan, E. Agu, and E. Rundensteiner, “Using hashtags

as labels for supervised learning of emotions in twitter

messages,” in proceedings of SIGKDD, USA, 2014.

[41] H. Khanpour and C. Caragea, “Fine-grained emotion

detection in health-related online posts,” in Proceedings of the

EMNLP 2018

[42] H. Yang, A. Willis, A. De Roeck, and B. Nuseibeh, “A

hybrid model for automatic emotion recognition in suicide

notes,” Journal of Biomedical informatics insights, vol. 5, pp.

BII–S8948, 2012.

[43] G. Z. Nargis and N. Jamil, “Generating an emotion

ontology for roman urdu text.” International Journal of

Computational Linguistics Research, vol. 7, 2016.

[44] L. Sana, K. Nasir, A. Urooj, Z. Ishaq, and I. A. Hameed,

“Bers: Bussiness-related emotion recognition system in urdu

language using machine learning,” in proceedings of BESC.

IEEE, 2018, pp. 238–242.

[45] S. M. J. Rizvi, “Development of algorithms and

computational grammar for urdu,” Ph.D. dissertation, Ph. D.

thesis, Pakistan Institute of Engineering and Applied Sciences

(PIEAS), 2007.

[46] S. A. Khan, W. Anwar, and U. I. Bajwa, “Challenges in

developing a rule based urdu stemmer,” in Proceedings of

WSSANLP, 2011

https://www.verywellmind.com/an-overview-of-the-types-ofemotions-4163976
https://www.verywellmind.com/an-overview-of-the-types-ofemotions-4163976

95

Understanding User Search Behavior of Humkinar Urdu Search Engine

Nazish Azam, Hafiz Muhammad Shafiq, Muhammad Amir Mehmood

Al-Khawarizmi Institute of Computer Science, UET, Lahore, Pakistan
University of Engineering and Technology, Lahore, Pakistan

{nazish.azam, hafiz.shafiq, amir.mehmood}@kics.edu.pk

Abstract

Search engines have become inevitable in the current

digital information age. Different search engines such

as Google, Bing, Yahoo, etc., provide access to the most

relevant information present on the World Wide Web to

users. These search engines not only require the

infrastructure to crawl the World-Wide-Web regularly

but also need a framework to gather user metadata to

understand user search behavior for improving user

experience. In addition, user metadata is required to

perform business analytics and digital forensics. User

information like IP address, location, type of device,

response time, user website activity, etc., help us to

know about user navigational pattern. In this paper, we

present a user search behavior study of regional search

engine called Humkinar Urdu Search Engine (USE) by

integrating an open source web analytics application

“Matomo”. We collect metadata of Humkinar users for

about 35 months. Summary reports generated by the

tool show different analyses which can help to

effectively monitor the search engine. Furthermore, we

present subjective test results and feedback to highlight

the preferences of USE users. The analysis and survey

can be used to improve the overall performance of

Humkinar Urdu search engine in terms of ranking and

personalization.

1. Introduction

In recent years, search engines have turned into a

significant source of multi-domain data. Our knowledge

source has moved from books and papers to web,

predominantly because of the way that search engines

give a wide variety of relevant data in a couple of

seconds [1]. About 98.8% Internet users utilize search

engines to get required information [2]. There are many

search engines available in different languages for

public, e.g., Google [3], Yahoo [4], Bing [5], Baidu [6],

DuckDuckGo [7], and many others [8]. “Baidu” is

specifically designed for Chinese region, “Yandex” is a

well-known search engine in Russia and similarly, there

are many other search engines available in different

languages.

38% of all Americans use a search engine, 31% read

news online, and 30% peruse the Internet just for

entertainment. During this online activity, users leave

“digital footprints” with their internet service provider

(ISP) or search engine, disclosing their interests [9].

Collection of user information is necessary as

government agencies and parties in civil litigation

regularly ask technology and communication

companies to turn over user data. In Pakistan, out of

around 205 million population, about 76% have mobile

phone subscriptions, 37 million people are active social

media users, and an estimated 22% of the population

uses Internet [10]. Other than this, user information

helps to improve user experience of website visitors.

Urdu Search Engine (USE) [11], named as

“Humkinar”, is a practical step to encourage research in

Urdu and facilitates such community who prefers to

search and get information in Urdu. On the basis of

above discussion, we have used a monitoring tool to

make USE better with respect to design, development,

content, and ranking. USE team needs to know what

their visitors are doing on site, where do they click, what

content they read and which links they follow. To attract

more people on USE, it is required to make it perform

efficiently by giving as much minimum delay as

possible.

For website performance improvement, user

behavior analysis is an important factor. It shows the

interests of the user, and its engagement can be

increased by upgrading most visited sections. For this

purpose, a large variety of solutions are available as

products or services, e.g., Matomo, AWStats, Elogic,

Google Analytics, and many more [12]. In most cases,

one has to append a small snippet of JavaScript in web

pages where user monitoring is required [13]. Also, user

activity analysis on a website helps to check the security

of a website indirectly. Another important fact to keep

in mind is that no one can find out about what your

clients need except the clients themselves. So why not

ask them? Our aim is to improve the user experience of

incoming visitors, that is why we are analyzing user

activities and their interests regarding USE.

In this paper, we describe the design, integration, and

usage of our user tracking framework. Our main

objective includes collecting user tracking details for

performance betterment, ranking, and personalization of

USE. We use an open source web analytics tool known

as “Matomo” (formerly Piwik) [14]. For user survey, we

made a questionnaire and got the feedback from 87

users. Our key findings in this study, for last 35 months

are mentioned below:

96

 23,022 people visit USE and total viewed pages are

117,439.

 Total searched queries are 54,710 out of which

15,694 are single word queries and the most

searched query is “Pakistan”.

 About 84.06% of visitors belong to Pakistan and

24.4% used GNU/Linux OS.

 Average page load time of USE is 1.6403s, average

network latency is 0.5116s, and average server

serve time is only 0.0064 seconds.

 From user survey, we found that 70.1% of users

know how to type in Urdu.

 From design point of view, 23% of users gave us 8

points showing a positive impression.

 59.8% of users said that the design and features of

USE are easy to use for searching and reading Urdu

content.

The remainder of the paper is organized as follows:

Section 2 describes the related work. In Section 3, some

tools are discussed which are applied to USE. Section 4

presents design and implementation. In Section 5, we

discuss the results obtained from the tool. Next, we

present a user survey of USE showing the feedback of

users in Section 6. Finally, Section 7 summarizes the

whole discussion.

2. Related Work

Famous search engine Google has developed a web

analytics application named as Google Analytics. In

article [15], a case study has been done using Google

Analytics showing prominent features, literature

review, real life application of the software and

guidelines for the first time users of Google Analytics.

Another article states that all search engines track user

behavior and recent development shows that search

engines try to integrate results from different collections

into their results to guide their users for relevant results

[16]. This is how users can be guided to quality content

based on personalization functionality. In another paper

[17], the authors have proposed a new ranking algorithm

for user-oriented web page ranking. They did it by

tracking the user’s time spent on web page and compare

it with Google’s PageRank algorithm. The study made

in [18], shows that the authors used AWStats and

Google Trends to visualize the statistics comprising of

number of unique visitors, page views, keywords, origin

of search, and geographic trends.

Eye-tracking analysis of user behavior in WWW

search engine has been done which investigates how

user interacts with result pages, browsing pattern and

views [19]. A quantitative study has been made to

explore that how the behavior of the Google users can

help web masters to improve their techniques to be in

top results on Google [20]. Search engines capture

users’ activities in the search log, which is stored at the

search engine server. An interface is proposed and

developed by [21] which acts as a layer between Google

and the searcher. This framework captures users’

queries before redirecting them to Google.

For large volume of user data, an intelligent system

is required to analyze the user behavior and show trend

prediction. Discovery of user information allows web

based organizations to predict user access pattern and

helps in future developments [22]. A methodological

framework was proposed in the study [23], which

predicts purchase behavior of websites audiences.

Instead of targeting individual user interests and

activities, they profile websites audiences.

Web server logs provide information like traversal

from one page to another, storing user IP address and all

the related information. In [24], a study has been done

in which authors have found different statistics such as

most visited web-pages, user IPs with most visits, and

type of errors users have to face, etc., using

WebLogExpert tool. Similarly in [25], authors have used

both web client data as well as web server logs to build

an automated data mining and recommendation system

for web usage via KNN classification method. User

click stream data was obtained via web client and other

information such as IP address, user name, server name,

etc., were obtained from web server logs.

The analysis of user behavior also helps in building

a better recommendation system for users while

searching on website. For this purpose, [26] has

proposed a new method through semantic enhancement

by analyzing web access logs. The

Table 1: Comparison of Google Analytics and

Matomo

Feature Google Analytics Matomo

Vendor Google Matomo

Edition Single
Self/Cloud

hosted

Installation No Easy to install

User interface Easy Easy

Link to website
Addition of

tracking ID

Addition of

JavaScript

Addition of plugin Not allowed Allowed

Number of users Limited Unlimited

Re-marketing

integration
Google Ads None

Data freshness Not guaranteed All time

Data Limited Unlimited

authors have built three models for this purpose, two of

them are for domain knowledge of website and third one

is an ontology based model. They have shown that their

proposed method enhances the web-page

recommendation system and performs better than the

most advanced web mining methods, i.e., PLWAP-

Mine. Furthermore, [27] has examined web-server logs

to find the number of visitors and their behavior to

enhance the usability of an educational website. For this

97

analysis, the authors have used logExpertLite tool and

found different statistics such as total hits, users,

bandwidth usage, unique IPs, etc., for 5 days of the

week. In this study, they have discussed how to increase

the accessibility and usability of a website from these

metrics.

3. Tools

There is a large variety of web monitoring tools

available on the Internet like AWStats, eLogic, Google

Analytics, ShinyStats, Webalizer, and many others.

Here, first, we provide a brief description of Google

Analytics and Matomo. Next, we discuss the rationale

behind our choice of analytical platform for studying

user behavior of USE.

3.1. Google Analytics

It is a service based solution which is provided by

Google to track traffic of a website. Free version is

perfect for small companies and provides multiple data

collection options across websites. Enterprise version is

required for integration with Google BigQuery,

Salesforce, advanced analysis, and access to raw data. A

maximum of 200 number of views per property can be

utilized while enterprise solution gives limit to 400

numbers. In order to use it, one just needs a Google

account and has to append a small JavaScript code

provided by Google Analytics in the footer of web

pages. Google Analytics Spreadsheet add-on is

available to access and manipulate data using Google

spreadsheet. Native re-marketing is done with Google

Ads. Google Ads, AdSense, and Search Console are

used for native data on-boarding [28].

3.2. Matomo

Matomo (formerly Piwik) is an open source web

analytics platform which provides detailed insights

about user activities and their engagement on a website.

Real-time data updates can be received containing

detailed view of visitors and their activities. It also

provides row evolution feature which allows to compare

current and past metric data for various reports. Page

transitions can be seen through it which help to view

what visitors did before, and after viewing a specific

page. The dashboard of this platform is customizable

and can be extended by adding a wide variety of widgets

and plugins. Major advantage of this tool is that one has

complete control over it as this can be installed on web

server side. Using Matomo APIs, data accessibility is

easy. Advance reports can be collected by adding

manual queries in the database. Adding custom

dimensions and settings is another feature provided by

Matomo. It gives privacy protection by not sharing user

data with advertising companies. It uses database for

archival and storage. Data formatter is used to format

the data in presentable format [14]. Many other features

of this tool are discussed later in this paper.

3.3. Comparison

Table 1 provides a brief comparison between

Matomo and Google Analytics. Although Google

Analytics is easy to use and there is no need for any type

of installation, but being a search engine website, USE

should own the complete user data, privacy and web

hosting. Also, there are bandwidth and user limitations

while using Google Analytics services. Moreover, it is

not allowed to customize available plugins. Due to such

restrictions, we have to use Matomo that is an open-

source solution and easily customizable

4. Design and Implementation

In this section, first, we briefly discuss USE, its

major components, and features. After that, we provide

brief description about hosting and dashboard

customization of Matomo. Finally, in the end, we

discuss integration of tool with USE along with data

acquisition and rendering.

4.1. Urdu Search Engine

 USE is an Urdu language search engine which can be

accessed at www.humkinar.com.pk. USE is comprised

of three major components: Cloud Infrastructure (CI),

Information Retrieval (IR), and Search Management

(SM). CI is responsible for incremental web crawling

services, development, testing and deployment of the

work. On the other hand, IR performs linguistic and

textual analysis on raw content while SM deals with

building of indexes for available documents and apply

ranking algorithms to present meaningful results to the

user. Figure 1 presents a workflow diagram for USE. It

has a distributed crawler that crawls and indexes web

documents continuously. Customized ranking

algorithms are being used to display most relevant and

trending results to the user. An adaptable web interface

is developed to serve results according to the query of

user. For indexing and search solutions, “Apache Solr”

is used by USE. Primary source of information storage

and retrieval is Apache Hadoop framework. USE has

developed their own filters for checking language, age,

size and profanity of the documents. It has its own

developed summary module to present summarized

result according to the query of the user. Another major

achievement of USE is that it has given SMS facility to

users so that they can get latest and updated news by

using SMS facility through their smartphones.

To keep all the above mentioned functionalities safe and

updated, there is a dire need to monitor all the activities

on USE. Unique requirements of USE include self-

98

hosted tool so that it can have total control. Based on

these requirements, a monitoring tool is designed for

debugging, user behavior analysis, trends, ranking,

personalization, and security checking. The next section

briefly describes the design and implementation of the

tool developed for USE.

4.2. Self-Hosting of Matomo

In our case, we use “self-hosted” approach to install

Matomo on our web-server. Before its installation, it is

required to make sure that you have a web server, shared

hosting or dedicated server. If web server is not

available then “Cloud Hosted” Matomo can be used for

user analytics. By fulfilling all requirements, we

successfully integrated version 3.7.0 of Matomo with

Figure 2: Matomo structure

USE. It has a user-friendly graphical interface which is

also customizable. We customized different plugins

according to the requirements.

4.3. Dashboard Customization of Matomo

After providing login credentials, dashboard of

Matomo can be accessed and there we have quick links

to various sections of the analytics tools. The real-time

section shows two subsections namely “real-time IP”

and “searches”. This is a custom plugin that shows only

the summary of currently active IP addresses and

searches made. Dashboard is the main analytics section

of Matomo which can be customized according to the

requirements. Different metrics can be used to track user

behavior like evolution over the period, reports, device

type, operating system, top searches, best performing

pages, visitor logs, out-links etc. Default analytics

features of Matomo are somehow limited in their usage.

For example, default location provider of Matomo

identifies the location of a user based on the language

they use which is not very accurate. To tackle this

problem, we added GeoIP2

Table 2: Yearly based analytics of Humkinar

(October 24, 2016 - October 01, 2019

Attributes 2016 2017 2018 2019
Total visits 859 4,560 9,661 7,942

Unique visits 244 2,104 3,640 5,390

Total page
views

6,948 22,267 71,896 16,328

Total search

keywords
3,916 11,101 33,926 5,767

Bounce rate 23% 46% 42% 63%

Total outlinks 227 1,379 7,642 5,747

Table 3: General statistics

Attributes Values
Total visits 23,022

Unique visits 11,378

Average page load Time 1.6403s

Average time spent by visitor 14 min 21s

Total page views 117,439

Total searches 54,710

Total outlinks 14,995

(PHP version) which uses GeoIP2 database and

MaxMind’s PHP API to find accurate location of the

user. Another custom analytics feature was added in

Matomo which helps us to record the document

position. This position is then used for ranking of search

results in Humkinar. Similarly, instead of using default

Figure 1: Architectural diagram of Humkinar USE

99

reports, we have used custom reporting APIs, not

limited in usage, to get our desired information in JSON

or other formats.

4.4. Integration and Data Acquisition

After installation of Matomo on USE platform, a

script is provided by Matomo that we append at the

footer of those web pages that should be monitored. It

logs all activities being carried out on the frontend and

sends to back-end monitoring server. For USE, it

includes information such as entered queries, click

events, number of new and recurring users, IP, browsers

information etc. Figure 2 shows a high level view of

work-flow diagram for user monitoring at USE. Client

enters a query on search engine and information about

user and his query is stored in Matomo stats collector.

This data is then sent to database for archival and

storage. Data formatter converts the received data into

presentable format and passes it to web dashboard. User

is not disturbed at all in the whole process and he sees

only search results on frontend of USE as a reply.

Furthermore, in this study, we have analyzed data of

October 24, 2016 to October 01, 2019.

5. Results

In this section, we present our findings for user

behavior monitoring on USE with Matomo. First section

describes yearly based statistics of Humkinar. Then we

discuss other metrics like visitor browser, device type,

event logs etc. After that, we discuss about the metrics

that are very important for search engine websites such

as searched keywords, clicks, user Geo-location, and

website performance for different sections etc. Table 3

shows general statistics of USE.

5.1. Yearly Based Analytics

Table 2 shows statistics for year 2016 (start from 24

October), 2017, 2018, and 2019 (up till 01 October). For

each year, we are presenting attributes and their

respective values. Attributes include total visits, unique

visits, total page views, total search keywords, and total

out-links. The statistics show that total number of visits

is increasing every year, i.e., in 2016 total visits were

counted 859 and in 2019 total visits count is 7,942. It

can be seen that bounce rate is increasing every year as

the users are increasing. The reason is that as USE is not

only a search engine but a portal as well and provides

latest content on its home page. Hence, it is quite

obvious that some users just visit USE to read the latest

content and leave the page after reading. Overall, these

statistics show that USE is getting more attention year

by year.

5.2. Visitor Browser

Information about the visitor browser is really

supportive for solving the browser inconsistencies.

Designers need to keep in mind that cross browser

testing is necessary to avoid the most common problems

[29]. Hence on the basis of this point, we obtained the

information about it to avoid any cross-browser

inconsistency. We found that 55.89% of visits are from

Chrome browser, so USE developers should pay more

attention to this for display of USE. Other browsers

include Firefox, Opera, Safari, and others. More than 15

different types of browsers and their types are found in

our record while tracking the users of USE, e.g., Mobile

Safari, Chrome Mobile etc.

5.3. Device Type

We observe that more than 80% of the users use

desktop/laptop to visit USE. Other devices include

smartphone, tablet and phablet. This information is

really helpful as it suggests to improve the site visibility

with respect to desktop devices. Device type

information helps to make the website responsive with

respect to different screen sizes. It is also possible to

show more on large screens and less on small screens.

5.4. Event Logs

 These type of logs provide two levels of information,

user queries and corresponding clicks on search results.

It can be used to know user interest on the
Table 4: Number of unique searches for different

tabs

Tab Name Number of unique searches

Web 3,892

Books 872

Islam 1,148

News 1,035

Poetry 966

Sports 270

Videos 559

Wikipedia 266

Famous websites 187

website e.g., most clicked results and corresponding

queries, images, tabs visit etc. Keeping this information

in mind, further changes can be made in these sections

of website to attract more users. In event logs section, a

sample shows that 0.1% of visits contain search term

“Pakistan” and clicks on Urdu Wikipedia outlink.

5.5. Site Search Keywords

Matomo also provides searched keywords

information for each user. We observe that a total of

100

54,710 queries are searched and "Pakistan" keyword is

at top. We also analyzed the length of searched

keywords i.e., how many are single word, two words

and so on. Most users search single word query on USE

and their total count is 15,694. Similarly, for two-word,

three-word, and four-word queries, we have frequency

values of 2,036, 1,069 and 548 respectively.

5.6. Website Tabs Usage & Search Statistics

As USE has many sections (tabs) e.g., web, news,

poetry, books, etc., here we present the usage

distribution of each section. Obtained statistics show

that most people visit the home page of USE with about

24% share. Other top visited sections are web, poetry,

Islam, news and videos tabs with a share of 13.5%, 11%,

3.2%, 1.9% and 1.1% respectively. These statistics also

indicate the interest of users on USE at section level. It

also suggests which section should be further improved

to increase user engagement. Similarly, we also collect

information about number of search queries for different

tabs. Table 4 shows unique search statistics in different

tabs of USE. We have mentioned the number of unique

search keywords for each tab. Out of total searches,

9,195 searches are unique keywords.

5.7. Visitor Log

 To analyze the user behavior, we made a visitor log

displaying its profile and details as each and every minor

information is important to be logged. Table 5 shows the

user-level details of a sample visitor. It has

Table 5: Visitor profile attributes

Attributes Values

IP address 66.249.93.88

Visitor profile ID 1362e2e13b0b8819

Browser type Chrome mobile

OS type Android 6.0

Device type Smartphone, Motorola

Location United States

Total time spent 3min 34s

Number of actions 5

page views 1

different attributes about the visitor like IP address, user

ID, browser type, Geo-location etc. A sample taken

from record shows that a user from the United States

with IP address 66.249.93.88 visits USE through

Android 6.0 using chrome mobile browser in Motorola

Smart-phone. He spends 3min 34s on USE and performs

5 different actions. He finds 1 item of his choice and

redirects to the respective link. His actions include

www.humkinar.com.pk/Poetry, www.punjnud.com and

some other outlinks.

5.8. Website Performance Statistics

The performance monitoring of our website with

respect to page load time, network latency, and server

serve time is also calculated. As it is not affordable to

overlook the significance of website load speed because

clients who are baffled by a slow page speed are

probably going to leave the site. This is why it is

important to improve the website load time to enable

clients to get where they’re speeding up. We found that

average page load time of USE is 1.6403s, average

network latency is 0.5116s, and average server serve

time is only 0.0064s.

5.9. Others

 We find that 40 different versions of operating

systems like Windows, Linux, Ubuntu, Android, iOS,

etc., are used to visit the USE. By analyzing these

statistics, we observe that Linux is the most used

Operating System (OS) with 24.4% of the total users.

We also observe that USE visitors belong to more than

50 different countries with Pakistan at the top position

with 84.06% share. Other countries include United

States, Australia, India, Saudi Arabia etc. These

properties may seem less important but they actually

guide the developers to avoid any limitations in their

website. Another important information about the user

is to find the channel type from where he/she is

accessing the site. In our case, we found three channels,

i.e., search engine, websites, and social network. It

means that users are visiting USE through other search

Figure 3: Search platform preference for Urdu content

Figure 5: Urdu typing methods

101

engines, from some website redirection, or from any

social network like Twitter, Facebook etc.

6. User Survey for Humkinar Urdu Search

Engine

In this section, we discuss the user survey results and

feedbacks regarding USE. To observe the user behavior

and interest on Humkinar, we conducted a survey in

which different questions regarding the features and

search results of Humkinar were asked. We got a total

of 87 responses from both males and females subjects.

Out of the 87 users, 69% were males and 31% were

females. Most of them belong to the age of 20-30 as

majority of the subjects were students. We asked them

to fill the questionnaire by visiting Humkinar and

checking the features and functionalities step by step

and answer the questions accordingly. It was necessary

to ask them about Urdu typing experience as Urdu

typing is the key functionality for our search feature.

Most of them answered Yes, i.e., 70.1%, while 29.9%

answered in No, which shows that majority of users

already know how to type Urdu. Figure 3 shows that

65.5% of the users said that they use Google to find

Urdu documents while remaining 34.5% use other

platforms to search Urdu content.

Figure 4: Subjective test results – Humkinar design

From the design and features point of view, we

prepared a separate section containing questions related

to design view only. To get the overall feedback about

design from a user, we used 1-10 linear scale range, i.e.,

1 shows very bad and the number goes on to 10 showing

very good. Figure 4 shows the chosen values by users

regarding design of Humkinar. Majority users, i.e., 23%

chose scale value 8. 71.3% users voted that they like the

color scheme and presentation of Humkinar frontend.

Humkinar uses Nafees Nastaleeq Urdu font and 97.7%

users liked its rendering style and readability. For Urdu

typing, Humkinar provides three typing methods: 1)

Automatic Urdu Typing 2) On-screen Urdu Keyboard

3) Roman Urdu Typing. Figure 5 provides division of

users based on the Urdu typing methods. For search

results, an individual section was made to ask search

result questions for different tabs of Humkinar. 59.8%

users said that it is easy to find their required results

using this platform, 26.4% selected the option of ”Very

Easy”, and 13.8% of the users found it difficult to search

Urdu content using Humkinar.

Overall, the feedback was satisfying as majority of

the responses were positive. We also got comments

from each and every user at the end of questionnaire and

many useful suggestions were given by them, e.g., add

more sections like cooking, health, horoscope, currency

rates, biography page for famous personalities etc.

Some of them proposed that we should also add voice

search option to find query results. We can conclude that

the overall survey feedback was good enough to

implement new functionalities in Humkinar for the ease

of users and to make it more adaptable.

7. Conclusion

In this study, we analyzed Urdu Search Engine (USE)

user behavior and obtained different statistics. For this

purpose, we have used open-source solution “Matomo”

and customized it according to our requirements. With

this tool, we have analyzed last 35 months user search

behavior on USE. For this interval, our findings show

that USE is visited 23,022 times and total page views

are 117,439. Total searched queries are 54,710, top

query is “Pakistan” and most search queries are single

word query (15,694). About 84.06% visitors belong to a

single country, i.e., Pakistan and most of them used

Chrome browser (55.89%) with Linux (24.4%) OS.

While loading the USE website, total load time is only

1.6403 seconds. By incorporating click information of

visitor for search query, we updated ranking algorithm

of search results. Further, we presented user survey

results, total 87 participants, regarding USE design,

content, and features. It was found that 65.5% users use

Google to search Urdu content. 71.3% users liked the

interface of USE. Overall feedback is agreeable and it is

helpful for us to improve the quality of USE with respect

to design, features, and content. In future, we plan to use

“Matomo" stack personalization” to implement

personalization feature in Humkinar for enriched user

experience.

8. Acknowledgement

This research work was funded by Higher Education

Commission (HEC) Pakistan and Ministry of Planning

Development and Reforms under National Center in Big

Data and Cloud Computing.

102

9. References

[1] Mike Cafarella and Doug Cutting. Building nutch: Open

source search. Queue, 2(2):54, Jan 2004.

[2] Daniel C. Fain and Jan O. Pedersen. Sponsored search: A

brief history. Bulletin of the American Society for Information

Science and Technology, 32(2):12–13, 2006.

[3] Google. www.google.com/ (visited on 30 Sep, 2019).

[4] Yahoo. www.yahoo.com/(visited on 30 Sep, 2019).

[5] Bing. https://www.bing.com/(visited on 30 Sep, 2019).

[6] Baidu. https://www.baidu.com/(visited on 30 Sep, 2019).

[7] Duckduckgo. https://duckduckgo.com/(visited on 30

September, 2019).

[8] Alex Chris. Top 10 search engines in the world, 2018.

https://www.reliablesoft.net/top-10-search-engines-in-the-

world/(visited on 30 September, 2019).

[9] Jayni Foley. Are google searches private-an originalist

interpretation of the fourth amendment in online

communication cases. Berkeley Tech. Law Journal, page

447,2007.

[10] DataReportal Follow. Digital 2019 pakistan (january

2019) v02, Feb 2019.

[11] Humkinar urdu search engine.

https://www.humkinar.com.pk/(visited on 30 September,

2019).

[12] Rick Tansun. 10 web analytics tools for tracking your

visitors, Mar 2009.

[13] Web analytics: Why they matter — siteimprove (en).

[14] Free web and mobile analytics software.

https://matomo.org/(visited on 30 September, 2019).

[15] Suraj Chande. Google analytics -case study. 01 2015.

[16] Dirk Lewandowski. Search engine user behaviour: How

can users be guided to quality content? 28:261–268, 01 2008.

[17] Songhua Xu, Yi Zhu, Hao Jiang, and Francis C. M. Lau.

A user-oriented webpage ranking algorithm based on user

attention time. In AAAI, 2008.

[18] Francesco Brigo, Simona Lattanzi, Michael O Kinney,

Nicola Luigi Bragazzi, Laura Tassi, Raffaele Nardone, and

Oriano Mecarelli. Online behavior of people visiting a

scientific website on epilepsy. Epilepsy & Behavior, 90:79–

83, 2019.

[19] L. A. Granka, T. Joachims, and Geri Gay. Eye-tracking

analysis of user behavior in www search. In Proceedings of

the 27th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR

’04, pages 478–479, New York, NY, USA, 2004. ACM.

[20] Bartomeu Riutord Fe. User behaviour on google search

engine. International Journal of Learning, Teaching and

Educational Research, 28:104–113, 2014.

[21] Fadhilah Mat Yamin. Interfacing google search engine to

capture user web search behavior. International Journal of

Electronic Commerce Studies, 4(1):47–62, 2013.

[22] Xiaozhe Wang, Ajith Abraham, and Kate A. Smith.

Intelligent web traffic mining and analysis. Journal of

Network and Computer Applications, 28(2):147–165, 2005.

[23] Saar Kagan and Ron Bekkerman. Predicting purchase

behavior of website audiences. International Journal of

Electronic Commerce, 22(4):510–539, 2018.

[24] N. Goel and C. K. Jha. Analyzing users behavior from

web access logs using automated log analyzer tool, 2013

[25] D.A. Adeniyi, Z. Wei, and Y. Yongquan. Automated web

usage data mining and recommendation system using k-

nearest neighbor (knn) classification method. Applied

Computing and Informatics, 12(1):90 – 108, 2016.

[26] T. T. S. Nguyen, H. Y. Lu, and J. Lu. Web-page

recommendation based on web usage and domain knowledge.

IEEE Transactions on Knowledge and Data Engineering,

26(10):2574–2587, Oct 2014.

[27] N. Kaur and H. Aggarwal. Web log analysis for

identifying the number of visitors and their behavior to

enhance the accessibility and usability of website.

International Journal of Computer Applications, 110, 2015.

[28] Google Analytics Solutions - Marketing Analytics &

Measurement. https://www.google.com/analytics/(visited on

01 October, 2019).

[29] Nepal Barskar and C.p. Patidar. A survey on cross

browser inconsistencies in web application. International

Journal of Computer Applications, 137(4):37–41, 2016.

