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Abstract 
 

The paper presents the design and construction of a 

multilayered phrase structure treebank. The treebank 

consists of three layers for phrases, grammatical 

functions and semantic roles. A small phrase tagset 

(consisting of 12 tags) is used as the primary label of the 

phrase. Phrase label is followed by grammatical 

function (mainly inspired by lexical functional 

grammar).  It is followed by the semantic role label 

using propbank roles. 1,300 sentences from CLE Urdu 

Digest Corpus are annotated using the treebank 

guideline1. 

 

1. Introduction 
 

     Treebank is an important linguistic resource for 

syntax analysis of languages. Creating a treebank 

involves choosing the theoretical model, creating the 

annotation guidelines and then annotating the corpus. 

The annotated corpus is used to create syntactic parsers 

and other syntax analysis tools. 

Urdu is an Indo-Aryan language spoken mainly in 

Pakistan and India [1].  Urdu and Hindi share common 

grammar. However, there are differences in script, 

vocabulary and phonology.  

The current work is part of a bigger project 

introducing intonation in Urdu Text to Speech System. 

One goal of the project is creation of phrase structure 

parser for the system. For this reason, a phrase structure 

Urdu Treebank is planned.  The treebank design 

introduces three different layers of annotation to model 

phrase structure (constituents), their grammatical 

functions and semantic roles. This paper presents a 

description of the treebank creation task.  

In subsequent sections, Section 2 presents the 

important treebanks and major works for Urdu/Hindi 

treebanks. Section 3 compares different treebank design 

options to create our treebank. Section 4 describes the 

                                                           
1 The author was affiliated with DHA Suffa University, Karachi when 

this work was done. 

design principles and a brief description of different 

layers of the treebank. Conclusion and Future work is 

mentioned in Section 5. 

 

2. Literature Review 
 

There are two major types of syntactic annotation: 

phrase structure and dependency structure. The phrase 

structure analysis of sentence was introduced by 

Chomsky [2]. The first major treebank, Penn Treebank 

has phrase structured annotation [3]. The Penn Treebank 

was inspiration for many treebanks for other languages.  

Penn Treebank (PTB) has around 25 phrase labels. 

Figure 1(a) shows a phrase structure of an English 

sentence annotated using PTB guidelines. Figure 1(b) 

has its representation in bracketed notation. The 

bracketed notation is in text format, so it can be 

processed by computer applications.  

As different languages and different treebanks use 

different set of phrase labels in design, Han et. al. [4] 

introduced a common tagset after analyzing 25 different 

treebanks covering 21 languages. They introduced 9 

universal phrase labels namely Noun Phrase (NP), Verb 

Phrase (VP), Adjectival Phrase (AJP), Adverbial Phrase 

(AVP), Prepositional Phrase (PP), Sentence (S), 

Conjunction Phrase (CONJP), Coordinated Phrase 

(COP) and others (X). 

The other type of syntactic annotation is dependency 

structure. Its primary focus in not on the word order or 

constituency, but it deals with the syntactic relations 

between the words. A dependency structure along with 

corresponding phrase structure is presented in figure 1. 

The most important milestone is the introduction of 

universal dependencies [5]. There are more than 100 

treebanks annotated using universal dependencies [6].  
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a. 

 

 

 

 

 

 

 

b. (S    

(NP Casey)  

 (VP will  (VP throw  

   (NP the ball) ))) 

c.  

 

 

 

 

 

 

 

 
 

Figure 1 : (a) 

phrase structure, (b) its bracketed notation and (c) 

dependency structure for the English sentence Casey 

will throw the ball. 

 

For Urdu (and Hindi), there was no freely available 

treebank at the start of this project. There were earlier 

works on computational grammar of Urdu (and Hindi). 

Urdu Pargram implements major parts of Urdu grammar 

using Lexical Functional Grammar (LFG) framework 

[7].  An important syntactic structure bank is Hindi Urdu 

Treebank (HUTB) [8] that has Urdu corpus annotated 

using Panini style dependencies. The dependency 

structure can be automatically converted to the phrase 

structure. An additional layer of dependencies based on 

LFG’s f-structure is also proposed for HUTB [9]. 

Urdu.Kon.TB [10] is another Urdu treebank that uses 

a rich feature based pos tagset and a big phrase tagset.  

A parser was also developed using this treebank of 1400 

sentences.   

 

3. Comparison and Design Principles 

 
The previous section presented some important 

treebanks generally for all languages and specifically 

for Urdu and Hindi. In this section, we compare the 

approaches used in these treebanks and find which 

approach is better for the design of our treebank. 

The first question is whether the syntactic bank will 

have phrase structure or dependency structure 

representation. The dependency structures have become 

more popular due to the introduction of universal 

dependencies in language processing applications. 

However, our team have a bigger goal of creating a text 

to speech system and using syntactic information to 

predict prosody/intonation of the system. 

We find that most of the work related to syntax-

prosody interaction involves phrase structure models 

[11],[12] as phrase structure grammar is more 

commonly used by linguists. Hence, we decided to 

adopt the classical method of phrase structure treebank.   

After deciding to create phrase structure treebank, we 

analyzed the existing treebanks (described in previous 

section) on the basis of following criteria. This analysis 

recommends the design principles for our treebank. 
 

1. How is the structure of the tree? 

2. What is the granularity of the phrase label? 

3. How additional information is encoded? 
 

These criteria are discussed in the following 

subsections. 

 

3.1 Structure of Tree 
 

There are many ways to construct parse tree 

corresponding to a given sentence. There are linguistic 

theories such as X-bar theory that ask for strictly binary 

trees. HUTB has binary trees because they are inspired 

by X-bar style work. 

Other theories and traditions prefer flatter trees 

having head and all its dependents on the same level. 

Penn Treebank and Urdu Pargram have flat structures 

having head and all the adjacent modifiers on the same 

level of tree. 

The simplicity of annotation scheme to facilitate the 

annotator is one of our primary design policies. Hence, 

we prefer the flat structures as they are easy to annotate 

and many members of treebank community use it for its 

simplicity.  

 

3.2 Granularity 
 

The second issue is the granularity of the tags. Some 

schemes e.g. Penn Treebank use more phrase tags (27 

for PTB). Multiple tags for the same/similar phrases are 

used to highlight the difference in structure and/or 

words used in the phrase. In PTB, most of the phrases 

have two versions, one for the general usage and the 

other for the phrases having wh-word. For example, 

“my books” is an NP and “whose books” or “how many 

books” are WHNP.  

The phrase tagset of Urdu.Kon.TB, in this regard, is 

inspired by Penn Treebank. It has 26 main tags. Some 

of these tags have function subtags. The tags NPQ, 

ADJPQ, QWP and SQ etc, are the tags for question 

sentences/phrases. Similarly, there are four tags 
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corresponding to the verb complex i.e. VCmain, VP, 

VPI and VCP.   

The other schemes e.g. Multilingual Tagset, HUTB 

and Urdu Pargram does not differentiate the phrases on 

the basis of their internal structure or usage. For this 

reason, PTB has 27 tags and Multilingual Tagset has 12 

tags. So, following our design policy of choosing 

simpler annotation scheme, we prefer smaller tagset 

approach, and considered Multilingual Tagset as the 

starting point. 

HUTB also uses a small tagset. We did not use some of 

its tags and the reasons are explained in the discussion 

of our tagset in section 4. 

 

3.3 Additional Information 
 

Penn Treebank introduced function tags that 

concatenate additional information e.g. grammatical 

role etc. to the phrase labels. The function part is 

attached with the main label by a hyphen. See the 

example. 

    
1. (S (NP-SBJ He)     

   (VP left 

   (NP-TMP yesterday))) 

 

HUTB uses -pred function tag for modeling small 

clause. So NP, AP, degP and NumP has -pred suffix e.g. 

NP-pred. Similarly, Urdu.Kon.TB uses function tags to 

encode case information of the phrase head. 

Our treebank used the concept of function tag in a 

systematic way (as depicted in example 2 in section 4) 

to represent different layers of syntactic and semantic 

information. 

4. Urdu Treebank Design 

 

The basic design principles of Urdu Treebank were: 

(a) a phrase structure bank, as it helps in syntax-

intonation interface. However, a phrase to 

dependency convertor is part of the future work. 

(b) smaller tagsets, if possible, to help annotators. The 

idea of smaller tagset is in line with the universal 

phrase labels [4] and propbank [13]   

(c) a modular design, so different applications may 

retrieve the required annotation information from the 

treebank. The encoded semantic roles are not for 

immediate use. The parser will ignore this layer, 

however they can be used in the semantic parser in 

future. 

                                                           
2 This paper presents the design of the treebank and pilot annotation 

of 1300 sentences. The further work is mentioned, but that is not in 

the scope or not a contribution of this paper. 

The Urdu Treebank consists of three layers: phrase 

labels, grammatical function and semantic role. The text 

is annotated in the form of XML representation. In this 

paper, we show the equivalent bracketed notation that is 

widely comprehensible. The labels of each bracketed 

phrase encode all the three layers of the representation.  

The labels of each layer are separated by a hyphen. 

Following is the template of annotation scheme. 

 
2. (PhraseLabel-GrammaticalFunction-

Semanti cRole-ChunkId  

word1/pos1 word2/pos2 …. 

wordn/posn) 
 

The chunkId part is explained in 4.2.9. An example from 

English using our representation scheme is following 

 
3. (S (NP-SUBJ-Agent Casey)  

(VP will   

(VP throw  
(NP-OBJ-Theme the ball)     ))) 

 

Following section discusses the details of the corpus 

and the layers of annotation. 

 

4.1 POS Tagged Corpus  
 

We used CLE POS tagged Urdu Digest Corpus [14] 

for syntactic annotation. The corpus consists of 

sentences having unique ids. The corpus was manually 

edited to deal the common segmentation problems of 

Urdu text The token are separated by space and 

multiwords have Zero Width Non Joiner (ZWNJ) 

character between its components.  The corpus was 

tagged by using CLE POS tagset [15].  

The tasks of annotation was divided in three steps. 

The first step is of pilot annotation for testing and 

revising the annotation guidelines. In this step, 200 

sentences were annotated. Annotation scheme and 

guidelines are revised  according to the feedback of the 

annotators. In second step 1100 more sentences were 

annotated. In the third step, the whole of the remaining 

corpus (around 6,000 sentences) will be annotated2. 

 

4.2 Phrase Labels 
 

The first layer of treebank consists of phrase labels. 

We are inspired by the small tagset introduced by Han 

et. Al [4]. At the design phase, a list of 10 phrase labels 

are identified. During the pilot annotation phase two 
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more phrase labels are added to the list. The description 

of phrase labels are given below.  

 

4.2.1 S and SBAR.  The phrase label S is used for 

main/matrix/independent sentences and clauses. SBAR 

is used for subordinate clause/sentence. Penn Treebank 

has SBAR, SINV and SQ for different types (and word 

order) of clauses, however we do not use these labels 

that are designed for English syntax. The main reason 

for SBAR is that the POS tagset differentiate between 

coordinating and subordinating conjunctions. So we 

want to keep this distinction in all the layers (if 

possible). Some examples of S and SBAR are following. 

 
4. (S vuh[he] chAhtA[want] he[is]  

(SBAR kah[that]  

(S sEb[apple] kHAyE[eat]))) ) 
'He wants to eat apple.' 

5. (NP laRkA[boy] (SBAR jo[who]  
(S sEb[apple] kHA[eat] 

rahA[progressive] he[is]) ) )  
'the boy who wants to eat apple' 

4.2.2 VC (Verb Complex). The phrase label VC is used 

for verbs, auxiliaries, light verbs and particles/adverbs 

of the verbs.  The object is not part of verbal complex as 

we followed the analysis used in Urdu Pargram [7]. 

 

6. (S (NP vuh[he]) (NP kitAb[book])  
(VC parH[read] hi[intensifier] 
nahIN[not]   rahI[progressive] 

hE[is]) ) 
'She is not reading the book.' 

Urdu has Noun+LightVerb and 

Adjective+LightVerb complex predicates [16] e.g. Yad 

'memory.noun' kar 'do.verb' for 'memorize' and sAf  

'clean.adj' kar 'do.verb' for clean. In our annotation 

scheme, the noun or adjective is not the part of VC as 

these act syntactically as noun or adjective phrases. 

 
7. (S (NP vuh[he]) (NP sabaq[noun]) (NP 

yAd[memory) (VC kar[do] 

rahA[progressive] tHA[was]) ) 

'He was memorizing the lesson.' 

 
4.2.3 Noun Phrase (NP). Noun Phrase has noun and its 

modifiers, specifiers and intensifiers. The CLE POS 

tagset considers the adverbials like andar 'inside' and Aj 

'today' as a noun because these are syntactically similar 

to nouns. We use the same argument to label the 

following as a noun phrase. Following are some 

examples of NP. 
 

8. (S (NP vuh[he) bHI[too] )  

(NP ye[this] acHcHI[good]kitAb[book]) 

(VC parHtA[read] hE[is] ) )  

'He also reads this good book.' 

9. (S (NP tum[you] (NP 

kal[yesterday]) (NP andar[inside])  
(VC AyE[come]  tHE[was]) ) 

'You came inside yesterday.' 

4.2.4 AdjP, QP, DMP and ValaP. Adjective Phrase 

(AdjP), Quantifier Phrase (QP), Demonstrative Phrase 

(DemP) and Vala Phrase (ValaP) are usually (not 

always) embedded inside the noun phrase (NP).  

One of the goals of annotation guideline is to make 

speed of annotation faster, if possible, without 

compromising on the quality of 

representation/modeling. Hence, it is decided that if the 

phrase consists of a single word (e.g. an adjective only) 

inside the noun phrase then the annotator will not 

enclose the word with the phrase brackets and phrase 

label. In example 8, the adjective acHcHI is not enclosed 

by AdjP. However, if the adjective has modifier or 

intensifier then AdjP will be created. For example: 

 
10. (NP  

(AdjP buhat [very] acHCHI[good] 

sI[particle]) kitAb[book] ) 

  'very good book' 

The similar guideline applies for QP, DemP and 

ValaP used inside the NP. If any of these phrases appear 

at clause level i.e. directly inside S (or SBAR) then we 

always put the bracket even around the single word. See 

the following example.  

 

 
11. (S (NP kitAb[book])  

  (ADJP acHcHI[good]) hE[is])  
   'Book is good.' 

The labels DemP and ValaP were not part of the set 

of   phrase labels listed in the design phase. However, 

the pilot  annotation provides the cases for which these 

labels are required. Like other pos categories, 

demonstrative can also have particles like intensifiers 

and focus particles. Hence we use the general rule that 

if the category word has some other word attached to it 

as a modifier or particle then the whole sequence is 

enclosed in the phrase label. See the following example: 
 

12. (NP  
 (DMP kOI[any] bHI[intensifier])  

bAt[matter.noun] ) 
   'any matter' 

The ValaP phrase is used in the constructions 

having the pos vAlA (roughly translated as 'one'). See 

the examples: 
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13. (NP (ValaP (NP tasvIr vAlI) 

kitAb[book])) 

  'books with/having pictures' 

It must be noted that we introduced ValaP instead of 

VP, DMP instead of DP and VC (verbal complex) 

instead of VP as the later ones have their formal 

definition and usage in different syntactic theories and 

nomenclatures. Hence, we used longer or different 

names for the new labels introduced in our design. 
 

4.2.5 Pre-and-Postpositional Phrases. Urdu has 

postpositions (that follow noun phrase). There are some 

borrowed positions from Arabic and Persian [17] that 

are rarely used in Urdu. Hence, the phrase labels PP 

(postpositional phrase) and PrP (prepositional phrase) 

are used in the treebank guideline. The examples are: 
 

14. (PP tum[you] nE[ergative]) 

 'You'  

15. (PP gHar[home] tak[till])  

 'till home'    

16. (PrP sivAE (NP mErE)) 

'except me' 

It must be noted that neither the pos tagset nor the 

phrase labels distinguish between case markers and 

postpositions as distinguished in Urdu Pargram. This is 

done for the sake of simplicity (at phrase layer) and 

similar syntax. The functional difference between nE 

and tak is modelled through the grammatical function 

layer. 

As described earlier, the adverbial nouns like andar 

'inside' and Upar 'above' etc. are the head of the noun 

phrase as in the following example: 
 

17. (NP(PP gHar[house] kE[of]) 

andar[inside] )) 

   'inside the house' 

4.2.6 Adverbial Phrase. The adverbial phrase has 

adverbs as the head word. For example: 
 

18. (S vuh[he] (ADVP bA_AsAnI[easy]) 

(VC AyA[came])) 

   'He came easily.' 

In Urdu, adverbial function is usually expressed by a 

prepositional phrase or noun phrase. For example, the 

following sentence has a PP. However, both (18) and 

(19) will the same grammatical function in the second 

layer of annotation.  
 

19. (S vuh[he] (PP (NP (AsAnI[easy] 

sE[with])) (VC AyA[came])) 

  'He came easily.' 

4.2.7 X. The phrase label X is used for fragments that 

cannot have a phrase label from the above list. 

 

4.2.8 Conjunction. The conjunction is modelled by 

enclosing the components into a parent phrase label. 

For example, 

 
20. (NP (NP sEb[apple]) yA (NP 

Am[mango])) 

  'apple and mango' 

We do not introduce any phrase label e.g. conjunction 

phrase for enclosing the conjuncted components. 

 

4.2.9 Discontinuous Phrases. We find examples of 

discontinuous phrases during the pilot annotation phase. 

The discontinuous NP in Urdu was earlier discussed in 

[17]. Consider the following example. 

 
21. (S (NP vuh[he]) (VC#1 rO[cry] 
(ADVP kiyoN[why]) (VC#1 rahA hay ))  

'Why is he crying ?' 

In this example, the VC is not contiguous. We assign the 

same chunk id to all the components of discontinuous 

phrases. 

   

4.3 Grammatical Function 
 

The second layer of treebank is of grammatical 

function. As depicted in (2), the grammatical function 

follows the phrase label separated by a hyphen. The set 

of grammatical functions is inspired primarily by lexical 

functional grammar. Following is a brief introduction of 

grammatical functions. 

4.3.1 Subject and Object. The syntactic subject and 

object have the corresponding grammatical functions. 

See the following example. 

 
22. (S (NP-SUBJ laRkI[girl])  
 (NP-OBJ kitAb[book[)  

 (VC paRHtI[read] hE[is]) ) 

 'The girl reads  book.' 

Universal Dependencies have three different labels 

for subject. nsubj (nominal subject), csubj (clausal 

subject) and npaassubj (nominal subject of passive 

construction). However, we do not follow this scheme 

because the information about nominal (noun phrase) vs 

clause is already represented through phrase label. 
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4.3.2 Oblique (OBL). The oblique grammatical 

function (OBL) is used with those compulsory 

arguments that are not the syntactic subject or object e.g. 

the source/goal of the motion verbs, non-canonical 

second argument [18] and genitive marked argument in 

N+V  complex predicate.  

23. (S (NP-SUBJ vuh[she]) 
 (NP-OBL  gHar[home])  

 (VC ponhcHI[reached]) ) 
 'She came home.' 

24. (S (NP-SUBJ vuh[she]) 

(PP-OBL  (NP sANp[snake]) 

sE[from]) 

(VC dartI[fear] hE[is]) ) 

'She fears snake.' 

4.3.3 Adjunct (ADJ). The non-mandatory arguments 

are marked as ADJ (adjunct).  Any adverbial function, 

whether syntactically realized as NP, PP or ADVP are 

marked as having ADJ grammatical function. For 

example, both ADVP and PP in examples (18) and (19) 

in 4.2.6 (Adverbial Phrase) are marked as having ADJ. 

4.3.4 COMP. The dependent clauses have COMP 

grammatical function.  We do not differentiate between 

COMP and XCOMP for the sake of simplicity. For 

example: 

 

 
25. (S (NP-SUBJ vuh[he])  

 (VC chAhtA[want] he[is])   
 (SBAR kah[that] (S-COMP (NP-SUBJ  

 sEb[apple]) (VC kHAyE[eat]))) ) 
 'He wants that he eats apple.' 

4.3.5 Predicate Link (PDL). The grammatical function 

PDL (Predicate Link) is used in the copular 

constructions. For example: 

26. (S (NP-SUBJ laRkI)girl] )  
 (ADJP-PDL aqalmand[wise])  

 (VC hE[is])) 

 'The girl is wise.' 

27. (S (NP-SUBJ vuh[he])  

 (NP-PDL sadar[president]) 

 (vC banA[made])  

 'He became president.' 

4.3.6 INTJ. This grammatical function was introduced 

as the result of pilot annotation. It occurs with NPs 

having addressees. For example: 

28. (S (NP-INJ bETI[daughter]) 

(NP-SUBJ tum[you]) (NP-ADJ 

kab[when]) 

(VC AI[come]) ) 

'Daughter, when did you came?' 

4.3.7 POF (Part of Function). Part of function marks 

the noun or adjective part of the complex predicate.  In 

4.2.2, we mentioned that these noun/adjective are not 

phrasal  part of the VC (Verb Complex). However these 

are functional related with the verb, hence we 

introduced a functionaltag to encode this relation. The 

example (7), described in 4.2.2, with the grammatical 

function layer  becomes: 

29. (S (NP-SUBJ  vuh[he])  
(NP-OBJ sabaq[noun])  

(NP-POF yAd[memory) (VC kar[do] 

rahA[progressive] tHA[was])) 

'He was memorizing the lesson.' 

4.3.8 Other grammatical functions. For the annotation 

guideline, we introduced only the sentence/clause level 

grammatical functions. The other types of grammatical 

function (e.g. modifiers/specifiers of the noun) are not 

part of the scheme. Our assumption is that there is one 

to one correspondence between such phrase labels and 

grammatical functions i.e. the grammatical function 

ADJ should follow the phrase label ADJP used inside 

NP and the grammatical function SPEC (as used in LFG 

framework) should attach with  DMP etc.   

 

4.4 Semantic Role 
 

Semantic Role is the third layer of treebank. We 

used the Propbank roles, as these are (a) specially 

designed to have a small set of roles and (b) an Urdu 

corpus has already been tagged using these roles [19] 

and Urdu specific roles e.g. for dative subjects, causer 

and intermediate agent were already introduced. For 

example: 

30. (S (NP-SUBJ-ARG0_GOAL Ali ko[dtv]) 

(NP-OBJ-ARG1 THanD[cold])  

   (VC lagi[hit]) 
     'Ali felt cold.' 

31. (S (NP-SUBJ-ARGA Ali nE[ergative]) 

(NP-OBL-ARG0_MNS Ahmed sE[from] ) 

(NP-OBJ-ARG1 sEb[apple] )  
   (VC katvayA[cut.caus]) 

 'Ali caused Ahmed to cut 

apple.' 

 

5. Conclusion and Future Work 
 

In this paper, we describe the design of a multilayer 

annotation scheme of Urdu corpus and then annotation 

of 1,300 sentence using this annotation scheme. The 

immediate purpose of this treebank is to create parse 

trees for the Text to Speech System. 
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We used small sets of tags to annotate the phrase, 

grammatical functions and semantic roles. Most 

importantly, we introduced demonstrative phrase, 

Interjection grammatical function and modeling of 

discontinuous phrases. 

As further work, more sentences are annotated and 

probabilistic parser is created. However, the creation of 

the parser is not in the scope or contribution of this 

paper.  
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Abstract 
 

Sentiment analysis is a data mining technique, which 

measures the inclination of people’s opinions. Recent 

studies have shown that the sentiment lexicon can be 

developed using automatic and manual tagging 

techniques. The seminal works on Urdu lexicon done so 

far do not actually denote a broad Lickert scale for data 

tagging and also do not cover all the open word classes. 

The current study aims to develop a sentiment lexicon 

and test its validity using manual and automatic 

methods. The dictionary-based method is used to design 

this lexicon using three authentic Urdu dictionaries. The 

data was tagged on a five point lickert scale i.e. -2 to +2 

using the formulated guidelines. The lexicon is 

composed of four-word classes namely nouns, verbs, 

adjectives and adverbs. Once the lexicon was developed 

using manual tagging techniques it was tested both 

manually and automatically. The manual testing yielded 

an inter annotator agreement of 75% while the 

automatic testing included the comparing of the 

sentiments of the developed lexicon with the UCI 

Corpus. The result yielded a percentage accuracy of 

84%. The lexicon was validated for its accuracy by both 

the results.  

 

1. Introduction 
 

Sentiment analysis (SA) is one of the fastest growing 

fields of Natural Language Processing (NLP) and text 

mining under the umbrella of Artificial Intelligence (AI) 

[1]. SA measures the inclination of people’s opinions 

through NLP, computational linguistics and text 

analysis. Sentiment analysis has emerged from human 

behavior of decision making by consulting friends or 

family about their opinions in daily life.  

SA can also be used to extract and analyze subjective 

information from Web that includes social media 

comments, online reviews and other similar text 

sources. The analyzed data helps in calculating the 

public's sentiments or opinions toward certain product, 

people or ideas and reveal the contextual polarity of the 

information [2]. 

Two main approaches can be used for the sentiment 

analysis i.e. machine learning approach and lexicon-

based approach. In machine learning approach, the data 

is classified by training a classifier on the labeled data 

[3]. In the lexicon-based approach, lexical items from 

dictionary are assigned positive and negative polarities. 

The lexicon is composed of a defined list of sentiment 

words along with their intensities and polarities [4]. The 

lexicon-based approach involves the calculation of 

sentiment from the semantic orientation of phrases and 

words that occur in a sentence [5] 

Lexicon based approach is considered as a simple and 

reliable as compared to machine learning approach 

since it avoids the need to develop a labeled training set. 

Moreover, it is also difficult to ensure the correctness of 

labeled data in machine learning approach. To develop 

a sentiment lexicon, some researchers use dictionary or 

corpus-based approaches. Corpus based approaches 

involve the determining of the patterns of co-occurring 

of words to determine the sentiments of the words and 

phrases. The dictionary-based approach helps to 

compile the sentiment words and use the antonyms and 

synonyms in WordNet to determine the sentiments of 

the lexical items [6]. 

Depending on the nature of the data and choice of the 

users, the process of sentiment analysis can be 

performed on three different levels. These three levels 

of analyses are; 1) document level sentiment analysis, 2) 

aspect level sentiment analysis and 3) sentence level 

sentiment analysis [3]. In Sentence level sentiment 

analysis, each sentence is classified as positive, negative 

or neutral. Here the sentence is considered as a separate 

unit expressing a single opinion. 

The aim of our research is to develop an Urdu 

sentiment lexicon marked on a five-component Likert 

scale ranging from -2 to +2. The developed lexicon 

comprehensively covers the four major word classes i.e. 

nouns, verbs, adverbs and adjectives. Conclusive 

guidelines are developed to annotate the data with 

different polarities. The study also aims to test the 

accuracy of the Urdu sentiment lexicon by using manual 

and algorithm-based approaches. 

The current study is organized as follows: Section 2 

labeled as literature review highlights some seminal 
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research works related to the topic, Section 3 highlights 

the methodology undertaken for the research. Section 4 

covers the results of data analysis, Section 5 provides 

the discussion of the results, and Section 6 concludes the 

research and discusses the future dimensions. 

 

2. Literature Survey 
 

Due to unavailability of resources in other languages, 

sentiment analysis in multiple languages often involves 

transferring knowledge from one resource-rich 

language to other resource-poor languages [7]. Majority 

of multilingual sentiment analysis systems employ 

English lexical resources such as SentiWordNet. A 

popular approach towards SA is to use a machine 

translation system to translate texts from languages into 

English. The original text is translated into English, and 

then English SA resources such as SentiWordNet are 

employed [7]. However, translation systems pose 

various problems such as; sparseness and noise in the 

data [8]. Sometimes, translation system fails to translate 

essential parts of the original text which can possibly 

reduce the text’s original sentiments [9].  

SentiWordNet assigns WordNet synsets to three 

categories: positive, negative, and neutral by using 

numerical scores ranging from 0.0 to 1.0 to indicate the 

degree to which the terms included in the synset belong 

to the corresponding category. SentiWordNet is built by 

performing quantitative analysis of glosses for synsets 

[10]. One drawback of SentiWordNet is that it assigns 

polarity at the syntactic level but fails to assign polarities 

to phrases such as “getting angry” or “celebrate a party” 

which correspond to concepts found in the text to 

express positive or negative opinions [11]. 

Moreover, multilingual lexical resources specific to 

sentiment analysis are also developed. The NTCIR 

corpus of news articles in English, Chinese, and 

Japanese is made up of information on sentiment 

polarity and opinions for sports and political news data 

[12]. 

Different techniques can be used in the extraction and 

tagging of lexicons. The extraction of SentiUnits using 

shallow parsing techniques in order to create a sentiment 

lexicon can be considered as one of the most authentic 

method [13]. SentiUnits are expressions which carry 

sentiment information in the sentence. 

Cambria et al. [11] proposed a SenticNet, lexical 

resource based on a multi-disciplinary approach to 

identify, interpret, and process sentiment in the Internet. 

SenticNet is more suited for a concept-level sentiment 

analysis and can also be utilized to evaluate texts based 

on common-sense reasoning tools that require large 

input. It employs a Sentic computing methodology, in 

particular, to evaluate texts at document or sentence 

level. It performs the task of building a collection of 

concepts, including common-sense concepts, supplied 

with positive or negative polarity labels. Unlike 

SentiWordNet, SenticNet does not assume a neutral 

polarity. It guarantees high accuracy in polarity 

detection with the availability of multilingual tools as 

well. 

Many researchers use Semantics in creation of 

lexicon for performing SA. For the SA of twitter, a 

lexicon-based approach is presented called SentiCircles 

[14]. This approach considers the patterns of words that 

occur mutually according to different contexts, get their 

semantics and then update the sentiment lexicon 

accordingly by updating the pre-assigned polarity and 

strength of these patterns. Sentiment Knowledge is 

encoded into pre-trained word vectors for improving the 

performance of SA, where the proposed method is based 

on external sentiment lexicon and a convolution neural 

network. 

Remus et al [15] worked with German inquirer, which 

is a German sentiment lexicon supplied with positive 

and negative labels. It was constructed using Google 

translate by translating words and terms into the German 

language. The words without any sentiment were 

removed from the German Inquirer. SEL is a Spanish 

emotion lexicon that contains 2036 words marked with 

the Probability Factor of Affective use (PFA) as the 

measure of their expression of basic emotions: joy, 

anger, fear, sadness, surprise, and disgust, on the scale 

of null, low, medium, or high. This lexicon was marked 

manually by 19 annotators who had to agree on a certain 

threshold for a label on the word to be included in the 

lexicon. Probability Factor of Affective use was 

developed by the authors of SEL to incorporate 

agreement between annotators in the decision-making 

process of labeling the sentiment on a word. 

Mobarz et al. [16] created a sentiment Arabic lexical 

Semantic Database (SentiRDI) by using a dictionary-

based approach. The database has many inflected forms, 

i.e., it is not lemma-based. Moreover, the authors 

reported insufficient quality and plan to try other 

alternatives.  

Different researchers have also developed Urdu 

sentiment lexicons. An Urdu corpus, labeled with 

semantic role by using cross lingual projection, is 

developed [17]. Syed [18] proposed an innovative 

sentiment annotated lexicon for Urdu based on 

SentiUnits. Syed started by extracting SentiUnits i.e. 

positive and negative expressions, from a given Urdu 

text, using shallow parsing technique. Hashim and Khan 

[1] developed a sentiment analyzer based on Urdu 

Nouns and Adjectives for sentence level sentiment 

analysis. Hashim used Urdu news data from headlines 

by using a lexicon based on nouns and adjectives. 

Mukhtar and Khan [19] used a lexicon-based approach 
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for sentiment analysis of Urdu blogs, using a publicly 

available Urdu Sentiment Lexicon [20]. They included 

adjectives, nouns and negations; as well as verbs, 

intensifiers and context-dependent words. The 

developed Urdu sentiment analyzer applies rules, use 

lexicon and perform Urdu sentiment analysis by 

classifying sentences as positive, negative or neutral.   

A lot of work has been done previously on the 

difficulties, strategies and the utilization of sentiment 

analysis of English language. The sentiment analysis 

techniques designed for English language cannot be 

utilized for Urdu language due to its different script, 

morphological and syntactic patterns. Because of the 

different structure of Urdu language, other languages 

SA cannot be employed for resolving the issues of Urdu 

language. Moreover, Urdu Sentiment Lexicons 

developed so far have covered the categories of nouns, 

verbs and adjectives while little or no attention has been 

paid on adverbs. However, this study stands out as it 

proposes comprehensive guidelines for developing an 

Urdu sentiment lexicon. This research also proposes a 

five component Likert scale ranging from -2 to +2 

whereas the sentiment lexicons for Urdu language 

developed so far do not actually put forward such a 

comprehensive five level Likert scale. A maximum of 

three scale i.e. -1 to +1 Likert scale for Urdu sentiment 

Lexicon has been anticipated so far. Moreover, this 

developed lexicon comprehensively covers the four 

major word classes i.e. nouns, verbs, adverbs and 

adjectives.  

 

3. Methodology 
 

This section elucidates the research procedure, 

sampling technique and the aspects of data analysis tool 

and procedure.  

The research is mixed method in nature and the 

research design is cross sectional. The methodological 

procedure is divided into two phases: 

i. Development of Urdu Sentiment Lexicon 

ii. Testing of Urdu Sentiment Lexicon 

 

3.1. Development of Urdu Sentiment Lexicon 
 

Manual tagging techniques such as dictionary-based 

methods were used to develop Urdu Sentiment Lexicon. 

For the manual tagging of the data, a comprehensive set 

of guidelines were also developed. The established 

guidelines provide an elaborative framework of tagging 

various word classes namely: nouns, verbs, adjectives 

and adverbs. Five point Likert scale comprising of -2, -

1, 0, 1, 2 values was used to assign polarities to lexical 

items. The development of sentiment lexicon  was 

further divided into two stages: 

 

3.1.1. Data Extraction. At the first stage the lexical 

items to be tagged are extracted from a selected corpus 

[21] and around 35 M words were extracted. The sample 

undertaken for the development of Sentiment Lexicon 

included around 21556 words which mark the most 

frequently occurring words from the selected corpus 

which were already assigned with POS tags [21]. The 

extracted POS categories with their numbers are 

presented in Table 1 : 
Table 1 POS categories and number of words in each 

category 

POS Categories Number of words 

Nouns 15826 

Verbs 3097 

Adjectives 1986 

Adverbs 646 

 

3.1.2. Data Tagging. At the second stage, the extracted 

lexical items were tagged according to the developed 

guidelines by a team of linguists. Three authentic Urdu 

dictionaries [22] [23] [24] were also used to analyze the 

lexical items. The postulates of the formulated 

guidelines are as follows: 

1. Assign higher polarities to the words that give clear 

sense of positivity or negativity while assign lower 

polarities to words that show rather vague sense. 

Neutral should be only those words that do not 

show any orientation. 

2. Words that show some positive or negative sense 

without any context should be tagged according to 

their prior polarities. Moreover, words that depict 

strong positivity or negativity are assigned stronger 

polarities i.e. +2 or -2. For instance, the polarity of 

/ تدوس / /friend/ /d̼o:st̼/ is +2 and the polarity of /دشمن/ 

/enemy/ /d̼uʃmən/ is -2. 

3. Words having multiple parts of speech tags whose 

polarities change according to the POS category are 

assigned respective polarity for each tag. For 

instance; the polarity of the word / محسن / /mohsɪn/ 

(Noun) name will be assigned a 0 polarity, while 

/ حسنم / /friend/ /mohsɪn/ (Adjective) will be marked 

as +2. 

4. The polarity of the words increase with the increase 

in the degrees of adjectives. For instance, the words 

 pathetic/ /bəd̼t̼əri:n/ will/ /بدترین / bad/ /bəd̼/ and/ /بد/

be assigned -1 and -2 polarities respectively. For 

adjectives ending at 'ی', orientation of the root word 

should be checked and assign the polarity 

accordingly. For instance the adjectives like; /قومی/ 
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/national/ /kɔ:mi:/ and / /اندھیری /dark/ /ənd̪ʰe:ri:/ 

will be assigned 1 and -1 polarities respectively. 

5. The singular words will have low polarity strength 

whereas; their plurals will have higher strength of 

polarity. Polarity increases with the increase in 

numbers. For instance, the singular noun /مشکل/ 

/difficulty/ /muʃkɪl/ and its corresponding plural 

form /مشکلات/ /difficulties/ /muʃkɪla:t̼/ /will be 

assigned -1 and -2 polarities respectively. 

6. Nouns that represent ranks, titles or respect will be 

tagged with higher polarities. For example, /صاحب/ 

/Sir/ /sa:hɪb/ and / حضرت /hazrat/ /həzrət̼/ will be 

assigned +2 polarity. 

7. Words showing sense of certainty either positive or 

negative will be given higher polarities and those 

showing uncertainty will be assigned lower 

polarities. For instance, the adverbs /اچانک/ 

/suddenly/ /ətʃa:nək/ and /روزانہ/ /everyday 

/ro:za:na:/ will be assigned a polarity of -1 and 1 

respectively since  /اچانک/ represents a sense of 

uncertainty and /روزانہ/ represents a sense of 

certainty. 

8. Verbs that convey some proper meaning as a word 

will be given higher polarities as compared to the 

words that themselves do not give proper meaning 

and need associating words with them. For instance 

 stays/ /ræht̪:/ will/ /رہتی/ study/ /pəɽhna/ and/ /پڑھنا/

be assigned +2 and +1 polarities respectively since 

 has proper meaning attached to it whereas  /پڑھنا/

 needs associating words to deliver its /رہتی/

complete meaning. 

 

3.2 Testing of Urdu Sentiment Lexicon 

 
The developed Urdu Sentiment Lexicon was tested 

both manually and automatically: 

 

3.2.1. Manual testing process. Manual testing process 

comprised of two steps: 

1) 10% reference of the untagged original data was 

sampled automatically and marked manually by an 

expert linguist according to the guidelines  

2) Another linguist assigned polarities to the original 

data set. Then the results of 10% tagged reference 

were compared with the polarity assigned original 

data to depict an inter annotator agreement between 

the two data sets. A threshold of 75% accuracy was 

established to check the quality of the data. The 

tagged source data found below the above-

mentioned accuracy was sent back to the linguist 

for the further review. 

 

3.2.2 Automatic testing process. For the purpose of 

analyzing the reliability of our lexicon, a baseline 

system was also developed and the accuracies were 

computed. The lexicon was  tested using a subset of 500 

sentences extracted from Roman Urdu sentiment dataset 

UCI machine learning repository [25] .These 500 roman 

Urdu sentences were then transliterated into Urdu 

before being processed. Following algorithm was used 

for automatically tagging the sentiment of a given input 

sentence S : 

a) Remove special symbols and punctuations from 

the sentence S 

b) Compute total positive words (tpw) in a sentence 

S 

c) Compute total negative words (tnw) in a sentence 

S 

d) Now assign sentiment to S using the following 

rules 

i. If tpw>tnw, assign positive sentiment to S 

ii. If tnw>tpw, assign negative sentiment to S 

iii. if tpw=tpw, assign neutral sentiment to S 

After the application of the above algorithm, the 

accuracy of the lexicon was determined. 

 

4. Results  
 

This section elaborates the results obtained after the 

lexicon is manually and automatically tested. 

 A lexicon of around 21556 words was developed. 

The developed lexicon was manually tested and a 75% 

inter-annotator agreement was achieved. Around 25% 

data showed a mismatch of polarities due to the 

subjectivity of the annotator and the influence of the 

pragmatic stance during the data tagging process. 

For the further validation of the lexicon, an automatic 

process was also used. A sample of 500 sentences 

(already assigned with a positive, negative or a neutral 

sentiment) from UCI corpus was taken. Then, the 

sentences were automatically tagged using our lexicon 

and the marking of lexicon and UCI corpus was 

compared. Through this process, an overall accuracy of 

84.0% was achieved. Both manual and automatic testing 

results validated the lexicon for its validity and accurate 

nature. 

 

5. Discussion 
 

Since the lexicon was tagged on a five-point Likert 

scale which implies that word can be assigned a 
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sentiment of being positive, very positive, neutral, 

negative or very negative. The polarities of the lexical 

items can greatly be influenced by the annotators’ 

subjectivity, opinion, pragmatics and contextual domain 

in which the word is occurring.  For instance, words 

like; /حکومت/ /government/ /hʊku:mət̪/ can have 

different orienta tion. If the annotator is a supporter of 

the current government then he would mark it as +1 but 

if he is not a supporter so he will mark it as -1. 

Also, if the adjective /تیز / /fast/ /t̪e:z/ is considered then 

the word would carry a positive sentiment but, in the 

sentence,  

 /وہ بہت تیز ہے/

vo: bo:hət̪ t̪e:z hæ: 

she very cunning  is  

She is very cunning, 

The same word would carry a -2 sentiment due to the 

negative sense enacted by the word. Due to all these 

subjectivity problems, it was instructed to the linguists 

to not to think the contexts of the words rather mark 

them in their dictionary meaning that's why three online 

dictionaries were used for the analysis. 

In addition to this, there were certain words whom 

meaning varied by the addition of diacritics. For 

instance the word سونا can either be سُونا/su:nɑ:/ desolate/ 

or  سونا /sleep/ /so:nɑ:/. Also, the word classes vary due 

to the presence of diacritics where سُونا is an adjective 

and سونا is a verb. That is why, we used POS tagging and 

separated the words into their different classes to mark 

them easily and get the inter- annotator accuracy. 

The data was also validated using a corpus-based 

approach and the polarity of the whole sentence was 

determined by the sum of the polarities of individual 

lexical items in the sentence.  The testing also posed the 

good accuracy of 84%. However, there were certain 

sentences where the polarities assigned by the algorithm 

of the developed Urdu Lexicon and already assigned 

polarities of the UCI corpus showed a discrepancy. For 

instance, 

ے آئے/کر ک الله الله / 

/Thank God  they came/ 

/əlla:h əlla:h kərke: a:e:/ 

The above sentence had a negative sentiment attached 

in the UCI corpus while the sentiment assigned by the 

developed lexicon using automatic means was positive. 

Since, we being the Muslims attach positive sentiment 

to الله i.e +2 and same was assigned in the Sentiment 

lexicon. So, a mismatch was found. The reason might be 

that they marked the sentence in the contextual sense but 

we did not consider the context while marking the 

lexical items. 

 

 

6. Conclusion and Future Directions 
 

The sentiment lexicons hold a great importance in 

defining the semantics of particular lexical items. The 

current study defines the development of an Urdu 

sentiment lexicon. The current research can be regarded 

as authentic since it consists of a wide repository of 

lexical items (nouns, adjectives, verbs and adverbs) 

marked on -2 to +2 Likert scale. Also, the manual testing 

results yielded an accuracy of 75% and the accuracy was 

further validated by the automatic testing method where 

the percentage accuracy attained was 84%. The findings 

of this lexicon can further be applied on bigrams 

including collocations and phrasal verbs and the 

repository of the words can be enhanced. However, this 

data can also be further validated using machine 

learning techniques in future. 

The developed lexicon can also be used to create a 

business intelligence system and can provide aid in the 

sentiment analysis of a particular corpus, which can 

include online reviews, feedbacks and twitter 

comments. The opinion mining of news data can also be 

executed through it. Moreover, this lexicon can be 

integrated in any programming language to develop an 

automated sentiment analysis system. 

Since the lexicon was automatically tested and an 

overall accuracy of 84% was achieved, this  number 

could be further improved by modification of the 

algorithm and the percentage accuracy of the lexicon 

can be taken to 95% and above. 

Different dimensions can further be explored e.g, 

polarity of modifiers, negations, pronouns and lexically 

borrowed words from English can be studied. The 

population of adjectives in the lexicon can be increased 

to further improve the lexicon since the adjectives hold 

a great stance in defining a sentiment. 
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Abstract 

 
    Whenever a word is borrowed it is resyllabified 

according to the phonology of the language it is 

adopted. This research paper identifies resyllabification 

and discusses the phonotactics of the resyllabification 

of the consonant clusters in the English borrowed words 

of Urdu language. For this purpose, words having 

consonant clusters were selected from Urdu dictionary. 

All existing CC combinations at onset and coda 

positions were determined and most common word for 

each CC cluster combination was selected. The stimulus 

for data collection contained the target combination 

word in a sentence. The data was collected from 

respondents with different gender, age and educational 

background from Lahore, Pakistan. The data was 

analyzed by three researchers and PRAAT was used 

wherever the researchers found any confusion. It is 

found that epenthesis occurs at onset position except 

when the consonants in the consonant clusters have 

same place of articulation and /j/ comes at post-initial 

position in 2-cluster combination. 

 

1. Introduction 
 

English has developed an important part in 

communication throughout the world. In Pakistan, 

English is learnt and spoken as a second language as 

communication in English is a basic need of majority of 

jobs in Pakistan [13]. Due to this importance of English 

language, Urdu language has borrowed many words 

from English.  

Every language has its own phonological rules. 

English follows its own phonotactic rules and stress 

patterns while Urdu has its own. In accordance to 

rhythm, English is stress-timed language [14]. The 

stress pattern of Urdu and English are also different. 

Rehman (2015) in his book points out some interference 

of L1 on second language which is English in case of 

Pakistan. He argues that the difference can be seen at 

two levels. One is the segmental features and the other 

at non-segmental features. 

    In segmental features, we see the replacement of 

certain sounds with others like the replacement of dental 

fricatives /θ/ and /δ/ with /th/ and /d/ or the non 

aspiration of /p,t,k/. in case of non-segmental features, 

we see a difference of rhythm in Pakistani English as 

language in south Asian countries are syllable-timed 

while English is stress-timed language [13]. This 

difference leads us to the conclusion that English is 

different from Urdu on Phonological grounds. Thus the 

phonotactic rules for Urdu are also different from 

English. Syllable templates of Urdu as described by 

Nazar (2002) are different from that of English. Urdu 

language has only one consonant cluster at the coda 

position [11] while in English, consonant clusters can be 

seen both at onset and coda positions [14]. As the 

phonotactics rules of every language are different, this 

difference might have effect on the pronunciation of a 

second language by a non-native speaker. The current 

study was aimed at discussing the study of consonant 

cluster phonotactics of English borrowed words in Urdu 

language. The study is specific with the resyllabification 

of consonant clusters that occurs due to borrowing of 

English words in Urdu language. 

 

2. Literature Review 
 

    Whenever cultures come in contact with each other, 

they affect the languages which are seen by the 

phenomenon of borrowing [7].  

 

2.1. Borrowing 

 
    Borrowing is the process in which linguistic items are 

imported from one linguistic system to another. The 

history of borrowing can be traced back to the work of 

Haugen in 1950. Haugen has defined borrowing (as 

cited in Hoffer, 2002) as the “the attempted reproduction 

in one language of the patterns previously found in 

another”. The types of borrowing can be explained with 

reference to original pattern or model. If the borrowed 

item is similar to the model, it is termed as import. While 

if it is an inadequate version of the model i.e. the original 

speaker would not recognize the borrowed term, it is 

substitution. Borrowing can be discussed further by the 

terms used to express borrowing. The terms used in 
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borrowing relate to the process rather than the result 

(Hoffer, 2002). 

Hoffer (2005) citing Hockett (1958) defines these terms 

as follows: 

Loanwords: In this the speaker may adopt the idea or 

term and the source language for each. 

Loanshifts: In this the native word is used in another 

linguistic system with new meaning. 

Loan-transation: “The native language uses an item-

for-item native version of the original”. 

Loan-blends: Loan-blends consist of two elements. 

One element is a loanword and the other element is from 

native language [8] 

 

2.2. Resyllabification 

 
    Both English and Urdu possess different syllable 

structure and phonotactics. Like all other languages, 

Urdu also imposes certain restrictions on the 

syllabification of borrowed words. Thus these English 

words have become part of Urdu language after 

undergoing the process of resyllabification [1]. 

However Trask (1996) defines resyllabification as “a 

process which applies during a derivation to move 

segments from one syllable to another” [15]. Usman, 

Farooq, & Masood (200) in their article concludes that 

words of English when spoken in Urdu, they undergo 

resyllabification and are resyllabified according to the 

templates and phonological rules of Urdu. 

English and Urdu contain different syllable patterns [1].  

 

2.3. Syllable 

 
    Syllables are considered to be the basic and an 

important phonological unit. The definitions of syllable 

seem ambiguous but a native speaker can easily identify 

the number of syllables in a word by just tapping the 

fingers. This shows the importance of the syllable in the 

rhythm of speech. Roach defines syllable in two ways. 

He defines a syllable phonetically and phonologically. 

On phonetic grounds, syllables are defined as the sounds 

having a centre with little or no obstruction to the flow 

of air and which have relatively loud sound. The other 

way of defining a syllable is on phonological grounds.  

By phonological grounds we mean as to how a syllable 

is defined with respect to neighboring sounds. This 

takes the review of looking at the possible combinations 

of sounds in the production of a syllable. The study of 

the possible combination of phonemes in a language is 

termed as phonotactics. This involves the study of what 

can come at the beginning of a syllable, at the centre and 

at the end of the study of how many entities can come in 

combination to form a part of syllable [14]. The centre 

of the syllable is said to be loud and in other words more 

prominent than other sounds in the syllable. This is also 

termed as the theory of prominence which points out 

that some sounds in an utterance are more prominent or 

sonorous than other sounds. This forms the sonority 

hierarchy of sounds [4]. Trask also defines syllable by 

chest-pulse theory. According to which syllable is 

defined as an utterance produced as a result of single 

respiratory movement or a single opening and closing of 

respiratory tract [15]. A syllable is also defines as a 

smallest unit of speech which consists of a single vowel 

or can exist in combination with consonants [9].  

 

2.4. Structure of Syllable 

 
    The syllable can thus have an optional consonant at 

the initial and final position with a mandatory vowel at 

the centre of the syllable. This gives vowel a CVC 

structure. The division of syllable that is now usually 

followed is the division of syllable into onset and rhyme, 

with rhyme further divided into nucleus and a coda as 

shown in figure 1 [15]. The following terminology is 

widely used: 

Onset: the opening segment of a syllable, coda: the 

closing segment of a syllable and nucleus: the central 

segment of a syllable [5]. The structure of syllable can 

thus be drawn as follows: 

           Syllable 

 Onset        Rhyme 

  Nucleus      Coda 

    (Roach, 2003) 

2.5 Syllable structure of English 

 
    English follows the same syllable structure. It differs 

on the basis of the different phonotactics rules.  

Roach (2003) discusses the structure of syllable of 

English by starting with what comes at the onset of 

English words. According to roach, if a word start with 

a vowel, we can say that the word has zero onsets. And 

if the word has a single consonant at the start of the 

syllable or we can say that if the word has one consonant 

before the peak of the syllable, the consonant in the 

onset position will be referred as initial consonant. 

In case of a consonant cluster having two consonants 

(CC) at the onset position, two sorts of combinations are 

Figure 1: Syllable Structure 
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seen in English. One combination includes the 

combination of s with a small set of words /p, t, k, f, m, 

n/. The position of the s is named as pre-initial 

consonant position and the other words are said to be at 

the initial consonant position. The other sort of 

combination is when we see words like /pleɪ/, /traɪ/. 

These types of words begins with a set of about fifteen 

consonants followed by a small set of words /l, r, w, j / 

which are referred as post initial consonants.  

In case of three consonant clusters, we have a distinct 

number of consonants that can come at the three 

positions; s at the pre-initial position, p, t, k at the initial 

consonant position and l, r, w, j at the post-initial 

consonant position [14]. 

A cluster of four consonants is seen at the end of the 

syllable. If we have no consonant at the coda position, 

we can say that there is a zero-coda. If there is just one 

consonant after the vowel at the end of the syllable, we 

call that consonant as final consonant. All consonant 

phonemes can take the position of the final consonant 

position except h, r, w, j. With a consonant cluster of 

two consonant at the end of the syllable we can have two 

combinations: 

a) Pre-final consonant + final consonant 

b) Final consonant + post-final consonant 

The pre-final consonant position can be taken by a small 

set of consonants: m, n, ŋ, l, s. The examples of words 

having pre-final and final combination are /bʌmp/, 

/bent/, /bænk/ etc. Similarly post-final position can be 

taken by the consonants: s, z, t, d, θ. The examples of 

final and post-final combination are /bets/, /bedz/, 

bægd/ etc. we can have a combination of four 

consonants at the end of the syllable. With a 

combination of three consonants, we can have the 

following combinations: 

a) Pre-final + final + post-final-consonant 

b) Final + post-final 1 + post-final 2 

Pre-final, final and post-final combination is seen in the 

following words: helped /helpt/, banks /bænks/. Post-

final 1 and post-final 2 is found in the words: fifths 

/fɪfθs/, next /nekst/. With a consonant cluster of four 

consonants, we can have the following combinations: 

a) Pre-final + final + post-final 1 + post-final 2 

b) Final + post-final 1 + post-final 2 + post-final 

3 

The examples of (a) are seen in twelfths /twelfθs/ 

prompts /prɒmptd/ while (b) is found in sixths /sɪksθs/ 

and texts /teksts/. [14] 

 

2.6. Syllable structure of Urdu 

 
 Urdu is the national language of Pakistan and 

is spoken by almost 104 million people all around the 

world [6]. The vocabulary of Urdu is the result of the 

absorption of words and phrases from other languages 

and Urdu easily modify the words according to its own 

grammar [11]. The modification of these words is done 

by the process of resyllabification. For taking into 

account the process of resyllabification, we first need to 

study the syllable structure of Urdu language. Ghazali 

(2002) in his article writes that there is no as such 

significant research on the phonology of the Urdu 

language. However considerable work has been done on 

the syllable templates of Urdu. Nazar (2002) lists ten 

syllable templates that are found in Urdu language: 

1. CVV 

2. CVC 

3. CVVC 

4. CV 

5. CVCC 

6. VV 

7. VVC 

8. CVVCC 

9. V 

10. VCC 

    He also writes that Urdu uses both long and short 

vowels. He uses VV for a long vowel and V for a short 

vowel in the syllable. He, therefore, divides the above 

mentioned syllable templates into two groups based 

upon the presence of the vowel present. 

CVV    CV 

CVVC    CVC 

CVVCC    CVCC  

VV    V 

VVC    VC 

    VCC 

    Urdu language has a simple onset having a single 

consonant at the onset position. The presence of a short 

vowel at the start of the syllable is less favorable. At the 

start of the syllable, mostly long vowel exists. He also 

writes that Urdu also restricts a short vowel at the end 

of the word. The most popular templates in Urdu are 

CVV and CVC. At coda position, Urdu language has a 

consonant cluster of two consonants occurring together. 

Even this syllable template exists a little in Urdu 

language. The frequency mentioned by Nazar (2002) for 

the syllable template CVCC and CVVCC is 3.2 and 0.3 

percent respectively which is much less as compared to 

the frequency percentage of the syllable templates CVV 

and CVC which is 39 and 20 percent respectively. Nazar 

(2002) declares the template CVVCC as super-super-

heavy syllable. Nazar (2002) has worked out just the 

syllable templates of Urdu language [12].  

Ghazali (2002) also lists eleven syllable templates of     

Urdu in his article ‘Urdu Syllable Templates’: 

1. CV 

2. CVC 
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3. CVCC 

4. CVV 

5. CVVC 

6. CVVCC 

7. V 

8. VC 

9. VCC 

10. VV 

11. VVC 

    He however discusses that Urdu only has six syllable 

templates. The other syllable templates are derived 

ones. He further elaborates that there is no as such 

restriction on the consonants that can occur in the 

template CV however in templates if the consonant in 

the onset and coda position can be same if they belong 

to the set /t̪ /, /t /, /l/, /s/, /b/, /m/, /p/, /tʃ/. he further 

elaborates that by the reference of Hussain (1997) that 

when there are two consonant in a cluster, the first 

consonants is limited to voiceless fricatives or nasals 

and second consonant in that cluster will be limited to 

stops. Ghazali (2002) also enlists the consonants that 

can take the position of the first consonant in that 

consonant cluster: / l, z, r b, k, t̪ /. He also explains that 

CVV is the most frequent used syllable template used in 

Urdu. The possible reason that he gives to the question 

as to why CVV is more common as compared to CVC 

despite the fact that CVC is a complete template is the 

fact that saying CVV is easier as compared to the 

template CVC. In his conclusion, Ghazali (2002) argues 

that Urdu has only has six fundamental syllable 

templates (CV, CVC, CVV, CVCC, CVVC, CVVCC). 

Among these templates, CVV is most frequently spoken 

(37%) while template CVVCC is least (0.4%) used [6]. 

 

3. Methodology 

 
    The current investigation deals with the borrowed 

words having consonant clusters. A qualitative research 

was considered more suitable as a research design. The 

research was conducted in Lahore, Punjab where mostly 

Urdu is spoken as a native language and English is 

spoken as a second language. Owing to this importance 

of the language, it has affected the lexicon of Urdu 

language. A number of words from English language 

have become part of the lexicon of Urdu language. The 

population of the research was all those speakers who 

speak Urdu as their native language and learn English as 

second language. The sample was selected on the basis 

of the convenience in University of the Punjab. People 

from different fields of education were selected. On an 

average, data was collected from 8 students belonging 

to different educational background and four 

respondents were selected from the clerical staff of 

different institutes who have very less chance of 

speaking English as a second language. 

As in qualitative research the main aim of data 

collection is saturation. After collecting data from this 

small sample, it was seen that there was no difference of 

results i.e. saturation was reached. The data collected 

from all the respondents was same. Words were selected 

from Urdu Dictionary “firoz-ul-lughat Jamiya” by Feroz 

Sons and a daily Urdu newspaper “Express”. From all 

the borrowed words, the borrowed words having 

consonant clusters were selected for the study. These 

borrowed words were selected on the assumption that 

place of articulation has any role on epenthesis in the 

consonant clusters. Each combination of consonant 

cluster was selected according to the manner of 

articulation. For pre-initial and initial position, 

combination of /s/ with every possible phoneme was 

selected. In case of initial and post-initial position, first 

the combination of voiced and voiceless plosives were 

seen with /l, r, w, j/ and one word for each combination 

was selected. The same was done for all manner of 

articulation i.e. fricatives, affricatives, nasals, lateral 

approximants and approximants.  

     The possible combinations of voiced and voiceless 

consonants were seen with post-initial consonants /l, r, 

w, j/ and one word having one of the combination was 

selected. The same was done at the coda position. After 

collecting these words, Urdu sentences were made using 

these words to avoid any interference of the English 

language during the pronunciation of these words. A 

closed room was selected for the recordings of the 

respondents to avoid any disturbance of noise. The 

respondents were asked to read the phrases thrice and 

they were recorded for the analysis of the pronunciation 

of the selected words. The pronunciation of the selected 

words was analyzed by three Urdu speaker researchers. 

In case of confusion PRAAT was used in analyzing any 

word that created confusion during the analysis of the 

results. 

 

4. Analysis  

 
    The results of the research can be divided in to four 

groups: 

i. Consonant clusters having different place of 

articulation: 

    The words having two consonants in consonant 

clusters at onset position showed epenthesis between 

them. The words that showed resyllabification in 

consonant clusters are speech, skirt, plaster, smuggle, 

sweeper, brown, and glass. The resyllabified 

pronunciation of the above mentioned words are: 

/səpi:tʃ/, /səkɜ:t/, /səmʌɡ(ə)l/, /səwiːpər/, /bəraʊn/  and 

/gəlɑ:s/ respectively. In case of “skirt” out of twelve 
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respondents eight respondents inserted a vowel between 

/s/ and /k/ and pronounced the word as /səkərt/. 

When the consonant cluster has three consonants in it, 

consonants having different place of articulation 

showed epenthesis in the first two consonants and a 

syllable break after them. The words in the data that 

showed this phenomenon are spring /səp.rɪŋ/, screen 

/sək.ri:n/, squash /sək.wɒʃ/. 

ii. Consonant clusters at onset position having same 

place of articulation: 

    The words having consonant clusters in which the 

consonants shared the same place of articulation did not 

show epenthesis or resyllabification in them. This 

phenomenon was specific to only alveolar consonants. 

The words selected that showed these results are: staff, 

snow, slow, string. All the respondents pronounced 

these words without any epenthesis. 

iii. Consonant clusters at onset position having /j/ at 

post-initial position: 

    The words having /j/ at post-initial position as in tube, 

duty, music, news, and lubrication also did not show any 

epenthesis or resyllabification in consonant clusters. All 

the respondents pronounced these words without any 

epenthesis. 

iv. Consonant clusters at coda position: 

    The words having two or three consonant in 

consonant cluster at coda position did not show any 

epenthesis in coda position consonant clusters. The 

words that showed this result are: jump, tent, belt, risk, 

brand, gold, golf, conference, games, lunch, gift, script, 

tax, product, thanks, accounts, next, funds, torch. In all 

these words the consonant cluster structure remained 

intact. 

Only one combination out of the selected words showed 

epenthesis at coda position i.e. /lb/. The word selected 

for this combination was bulb which all respondents 

pronounced as /bʌləb/. This strange result requires a 

detailed study. 

 

5. Discussions 

 
    The research was started with the hypothesis that 

manner of articulation plays a role in the 

resyllabification of the consonant clusters. After 

collecting the data, the data showed that manner of 

articulation has no relation with resyllabification in 

consonant clusters. 

    The comparison of syllable structure of Urdu and 

English shows that Urdu also has a consonant cluster at 

coda like English. By looking at the results of the data 

during the research, it was seen that at coda position, a 

native Urdu speaker does not change the structure of the 

consonant cluster at coda position. The structure of the 

coda in the syllable of English borrowed words remains 

intact i.e. no epenthesis is seen at coda position in the 

English borrowed words in Urdu language. However the 

results show one exception in the form of epenthesis at 

coda position in “bulb” which all the respondents 

pronounced as /bʌləb/. This result requires a detailed 

study to find out the reason behind the epenthesis which 

was absent in all combinations in words selected 

according to manner of articulation. 

    However the research shows that epenthesis takes 

place at onset position with some exceptions. The 

consonants in the consonant cluster having same place 

of articulation did not show epenthesis in the consonant 

clusters as was seen in staff, snow, slow, street, and 

string. All these words have consonant clusters at onset 

position having consonants that have same place of 

articulation. It can be said that when consonants in a 

consonant cluster have same place of articulation, the 

tongue has to put less effort if the production of those 

sounds. We then see no insertion of vowel between 

consonant sounds that share same place of articulation. 

Another interesting finding is seen when /j/ comes at 

post-initial position, no epenthesis is seen. This research 

is in contrast with the research conducted by Ahmed, 

Anwar, & Iqbal (2017) where they gave the result that 

an Urdu speaker always adds a vowel between 

consonant clusters at onset postion [1].  

 

6. Conclusion 

 
The findings of the research are: 

1. The analysis of the words shows that epenthesis, 

which is the major reason of resyllabification in 

consonant clusters, is seen at onset position e.g. in 

case of words spring, skirt, shrink, etc. but in case 

of consonant clusters at coda position no epenthesis 

is seen like in words jump, belt, brown, glass, golf, 

games, tax etc except when the consonant clusters 

contains consonants /lb/ which all respondents 

pronounced as /ləb/ as the word used during the 

research ‘bulb’. This strange result requires a 

detailed study. 

2. In case of resyllabification at onset position, it is 

found that 

 Whenever the consonants in the consonant 

clusters have same place of articulation which 

is specific to alveolar position we see no 

epenthesis as was seen in words street, slow, 

staff, smuggle. 

 The other combination where we see no 

epenthesis is the combination of sounds with 

/j/. Whenever /j/ comes at post-initial position 

no epenthesis is seen. This phenomenon was 

seen in words news, duty, music, view, and 

human. 
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Abstract 
 
    Over the past 40 years, Keyword Spotting (KWS) 

remained in focus by both academia and commercial 
companies. However, the majority of these systems were 
developed and evaluated for rich resourced languages 
like English, German, etc. This is because it requires 

thousands of hours of transcribed speech data to train 
KWS systems, which is not available for most of the 
under-resourced languages like Urdu.  To address this 
challenge, the area of zero-resource or unsupervised 

speech processing emerged, i.e. to extract meaningful 
features and learning language structures directly from 
unlabeled raw speech data. This paper presents a 
completely unsupervised KWS system that searches all 
of the instances of an input keyword in reference audio 

file(s), given the keyword present in the reference file(s), 
without requiring any labeled data and speech 
recognition. PRUS corpus was used to train GMM 
without any supervision. Input keyword and reference 

audios Gaussian Posteriorgrams were compared using 
Segmental Dynamic Time Warping (SDTW).  Top N 
minimum distances were taken to obtain the closely 
related segments of the reference file, which are more 
probable to be the desired keyword. The proposed 

system showed the precision up to 91.50 % and 79.20 % 
for cross-speaker and same speaker respectively. 
 
 

1. Introduction 

Spoken Term Detection (STD) a.k.a. Keyword 

Spotting (KWS) is a task of automatically detecting a 

spoken term (referred to as Query) along with its 

location within a continuous speech. It is on the rise due 

to its variety of applications such as shortlisting of 

audios from large repositories of online lectures like 

Coursera [27], conference recordings (e.g. TED talks), 

radio and television archives. Wake-word applications 

(to activate or initiate a voice interaction with devices), 

phone call monitoring and routing are some other 

important applications of KWS.      

STD remained a hot research topic for more than 

four decades, and a lot of methods have been proposed 

which can be categorized into 1) Large Vocabulary 

Continuous Speech Recognition methods (LVCSR) – 

used for audio indexing and speech data mining, 2) 

Keyword/Filler Methods a.k.a. Acoustic Keyword 

Spotting and 3) Query-by-Example (QbyE) method. 

However, the majority of these techniques were 

developed and evaluated for resource-rich languages 

like English, German, etc. because of their reliance on 

thousands of hours of transcribed audio data. For 

example, in traditional Keyword/Filler models, 

word/phone level transcribed data is required to train a 

speech recognizer [8] [12] [21].  

Unfortunately, such resources are not available for 

many of the world’s languages such as Urdu. With the 

recent development of the internet, media technologies 

and smartphones, it is quite easy to obtain audio data 

than the transcription work. It’s not only a time taking 

activity; but also requires a reasonable level of linguistic 

knowledge for performing annotations. This is the 

reason that most of the academic and commercial 

organizations develop STD systems for a few hundred 

languages [26].  

As we are living in a digital and communication age 

in which digital media can be produced and gathered at 

a pace that far surpasses our capacity to transcribe it, a 

common question “how much can be directly learned 

from the speech signals alone, without any 

supervision”? In addition to this, speech applications 

are becoming popular and available for many languages 

on the cost of increasing method complexities and their 

dependency on transcribed resources [23], it is difficult 

to envision that the required resource collections would 

cover all 7,000 human languages around the globe [2]. 

This makes a related query that “what unsupervised 

techniques can be performed well in contrast to the 

traditional supervised training techniques”. This creates 

a related question “what techniques can be performed 

well using unsupervised techniques in comparison to 

more conventional supervised training methods”. Our 

motivation to answer these two questions lead us to 

explore the development of an unsupervised STD 

system for a low resource language Urdu. 

Urdu is the 6th most popular Asian language, the 

national language of Pakistan and the authorized 

language of 6 Indians states with more than 175 million 

speakers all over the world [31]. As the national 

language of Pakistan, most of the educational material, 

radio and television programs, and conversational 
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audios are available in Urdu. This plethora of available 

speech files creates a need for an efficient KWS for 

Urdu language. Limited efforts have been made in the 

past [17], but unfortunately, there are no publicly 

available automatic KWS for Urdu. 

This paper presents an unsupervised STD system for 

Urdu language. To train the model from an unlabeled 

speech data, a Gaussian Mixture Model (GMM) was 

used to represent each audio frame with a Gaussian 

Posteriorgram (GP) vector, and a Segmental Dynamic 

Time Warping (SDTW) method is used to compare the 

GPs of the spoken query term (hereinafter called 

Needle) and the target speech utterance (hereinafter 

called Haystack) [36] to find one or more occurrences 

of the needle.  

In addition to this, the proposed KWS system 

searches all of the instances of the needle with their 

locations in the haystack(s) without doing speech 

recognition, given the keyword is present in the 

reference file. For this purpose, a Phonetically Rich 

Urdu Speech (PRUS) Corpus [37] used to cluster 

speech frames without any transcribed data. Top N 

minimum distances were then taken to get the closely 

related segments of the haystack file with the 

assumption that these speech frames are the most 

probable to be the desired keyword. The proposed 

system showed the precision up to 91.50% and 79.20% 

for cross and the same speaker respectively, given the 

needle is present in the haystack. 

 

2. Literature Review 
 

     STD has been a hot research area over the past 4 

decades but in recent years STD has received increased 

attention by both academia and commercial 

communities [38]. Chen et.al [3] summarizes STD past 

research efforts and encapsulates proposed methods in 

three categories.  

    The first category defines Large Vocabulary 

Continuous Speech Recognition (LVCSR) based 

methods. LVCSR based methods have been extensively 

used in audio data mining and indexing and found to be 

well accurate for a variety of tasks [39]. Continuous 

speech files are transcribed into words using Automatic 

Speech Recognizer (ASR) and then text-based 

searching techniques used for efficient spotting of the 

required keywords [40].  

    The second type of STD methods are Keyword or 

Filler methods aka Acoustic Keyword Spotting, models 

the keywords and non-keywords using Hidden Markov 

Models (HMMs) and spotting is made through the 

decoding graphs where keywords and fillers appear in 

parallel [42] [43] [44]. This type of KWS mostly used 

in scenarios where keywords are pre-defined and 

speech data comes in real-time. Such types of 

applications are like voice commands and wake word 

applications (e.g. Hey Siri, Ok Google, etc.). Ketabdar 

et.al [14] proposed a system that used the HMMs 

posterior based scoring approach for keyword and non-

keyword elements [7]. For each frame, the state 

posteriors are combined with the posteriors of keyword 

and non-keyword to identify the keyword for each 

frame resulted in identifying the presence of the 

keyword in the whole utterance. 

   Query-by-Example (QbyE), is the third type of 

techniques developed for the development and 

evaluation of STD systems. QbyE is one of the earliest 

KWS methods [32], have two main steps including 1) 

template representation – how audio files of needle(s) 

are to be represented (e.g. in the form of lattices or 

posteriorgram feature vectors, etc.), and 2) template 

matching – how needles are to be matched with the 

haystack to find the desired needle. Various research 

efforts have been over the past decades [28] [33] [34] 

for unique template representation methods and 

variants of Dynamic Time Warping (DTW) [20] used 

for template matching phase [26]. 

    The recent resurgence of Neural Networks (NN) as 

Deep Neural Network (DNN) gives a high rise to the 

KWS research area. Recently, Abdulkader et.al [1] 

proposed a model for KWS in narrowband audio, for 

computationally constrained devices by making use of 

DNNs, cascading, multiple-feature representations, and 

multiple-instance learning. In order to reduce the rate of 

false positives, they trained two classifiers on two 

different representations, Mel Frequency Cepstral 

Coefficient (MFCC) and Perceptual Linear Prediction 

(PLP) features. Moreover, Chen et.al [3] proposed a 

novel QbyE-STD method using Long Short-Term 

Memory (LSTM) based feature extractor. They showed 

that their presented KWS approach has low 

computation cost with high precision, can be efficiently 

used for small computational power devices. 

    Although, all of the above described methods shown 

to be very effective for the KWS task, assume the 

availability of large quantities of labeled speech data for 

training and testing of complex statistical language and 

acoustic models. For instance, one major drawback of 

LVCSR based KWS systems is Out-Of-Vocabulary 

(OOV) words, which is the main reason that LVCSR 

based methods best performed for well-resourced 

languages [30][39][40]. Similarly, Keyword/Filler 

based methods require prior knowledge of keywords 

and non-keyword elements to build special decoding 

graphs [3].  Chen et.al [3], to train DNN based KWS 

system, 19,000 audio files from 200 individuals used as 

positive examples whereas for negative examples a 

repository of audio samples of various meeting 

recordings were used. QbyE techniques normally take 

thousands of examples of needles, decoded by using 

ASR to acquire their lattice representation as templates 

and make detection decisions by comparing them 
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against the haystacks. Moreover, the available 

techniques are computationally expensive due to their 

base on ASR. Therefore, these KWS methods were not 

suitable in low-resource contexts, and the reasons 

commercial firms focus on a few hundred languages of 

the world. 

    Transcription of the speech files, a major barrier in 

producing resources for under-resourced languages 

because it is not only an expensive process but also a 

time-consuming task. To address this challenge, the 

area of zero-resource or unsupervised speech 

processing emerged, by extracting meaningful features 

and learning language structures directly from 

unlabeled raw speech data [9][11][26][33][35]. With 

the advancements of Internet and multimedia 

technologies, it is quite easy to get audio data without 

transcription which makes it possible to develop speech 

processing solutions for under-resourced languages 

such as Urdu. 

    In the past, there are limited research efforts for the 

development of KWS for Urdu language. Irtza et.al [17] 

reported a KWS for Urdu language using filler 

modeling to compute non-keyword elements. A 

phoneme recognizer (PR) was used to model all phones. 

The audio input file is processed using PR and KWS, an 

achieved overall accuracy of 94.59%.  Another work 

[45] also has been carried out for Urdu KWS task, but 

was developed only for five words of Urdu and 

achieved an accuracy level of 98.1%.  

    As far as our background knowledge and literature 

review, currently there is no completely unsupervised 

publically available KWS system developed for Urdu 

language because there are very limited standardized 

audio dataset which can be used for the development 

and evaluation of the KWS for Urdu language. Keeping 

in view the high demand of Urdu KWS system, we have 

developed a completely unsupervised QbyE-STD 

system (using the baseline approach proposed in [26]) 

by using the currently limited available gold-standard 

resources [37]. 

         

3. Methodology 
 

     We have developed an unsupervised STD system for 

Urdu that output all the occurrences of a needle (Q) in a 

given haystack (X), provided the input keyword (i.e. 

needle) is already present in the reference audio file (i.e. 

haystack). Our approach is most similar to the one 

proposed in [26] with the difference that we have used 

this approach and tune the parameters for Urdu 

language which is more phonetically rich than the 

English. Instead of using any phoneme recognizer, raw 

speech files were modeled using a Gaussian Mixture 

Model (GMM) without any supervision and get 

Gaussian Posteriorgram (GP). Segmental DTW 

(SDTW) was used to compare the distance between Q 

and X and generate the list of minimum distances in 

descending order.  

    Figure 1 illustrates the abstract level architecture of 

the developed KWS for Urdu. The acoustic model was 

trained, resulted in GPs of the training data. GMM was 

applied to get GPs of both of the Needle Q and haystack 

X. SDTW window was moved over the X and get 

occurrences (x1, x2...) of Q in X. This task is done 

without doing any explicit speech recognition. 

 

 

 

 
 

Figure 1: High-level architecture of the system. 

 

3.1. Gaussian Mixture Model (GMM) 
 

    Posteriorgram is basically a probability vector which 

is used to represent the probabilities of the Gaussian 

components in a given speech frame. It is mostly used 

in the phonetic posteriorgram. Formally, if we represent 

speech by n frames: 

 

𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑛)                                      (1) 

 

The Gaussian probability vector is defined as in [26]: 

 
𝐺𝑃(𝑆) = (𝑞1 , 𝑞2, … , 𝑞𝑛)                        (2) 

 

        Figure 2 demonstrates the process of computing 

GP vectors of both Q and X. Acoustic model was 

obtained by applying GMM on each frame of each 

audio file in the training data, to get a raw GP vector of 

each frame. This becomes a critical task when you do 

not have any labeled data. As reported in [26], training 

was performed by assuming that there are the same 

labels on all frames of the dataset which induces a 

problem of not discriminating between phonetic units in 

the posteriorgrams vector. Probability distribution on a 

large mass is concentrated on some dimension and the 

remaining dimensions have very little probability. To 

solve this problem, a speech/non-speech detector was 

applied to the training data by extracting the MFCC’s 

and then GMM on them. 
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Figure 2: Computing Gaussian Posteriorgrams 

Vectors using GMM 

 

       Each element in GP(s) is representing a vector 

which can be calculated by using GMM. For example 

any qj = (P(c1jsi),P(c2jsi),−−−,P(cmjsi),), where c is 

representing the components of GMM and m is the size 

of Gaussian components. In this case, there are 45 

Gaussian components which clustered the training data 

into 45 clusters. For needle Q and haystack X, 

probabilities were computed with respect to 45 clusters 

resulted in the probability vector of size 45 for each 

frame. Hence, the GP matrix M size is number of frames 

time’s Gaussian components (Matrix Size (M) = No. of 

frames ∗ Gaussian components) 

    For both audio files of needle Q and haystack X, each 

speech file divided into windows aka frames of 25 msec 

along with the overlapping step size of 10 msec, to 

avoid missing any information of the signal at the 

window boundaries. For each frame, the probability 

vector of size 45 was obtained by passing it through the 

GMM processor to make it GP vector. Figure 3 provides 

the visualization of needle Q framing and its respective 

GP vector with 45 GP elements. Similarly, the 

probability vector of size 45 for haystack X will be 

computed, and the visual representation of file X is 

similar to Q file. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Visualization of needle file. 

 

3.2. Segmental Dynamic Time Warping 

(SDTW). 
 

        SDTW is the modified version of well renowned 

DTW algorithm [20], and has demonstrated its success 

in unsupervised pattern discovery in audio files [26] 

[45] [47].  It works by finding the distance between the 

elements of both (needle and haystack) signals and then 

finds a path with minimum distance between these 

elements. To find Q in X, SDTW was applied to GP 

vectors of both Q and X. The distance between two GP 

vectors computed using equation (3): 

 

𝐷 = −𝑙𝑜𝑔 (𝑝. 𝑞)                                (3) 

 

        Where p and q are two posteriorgram vectors. As 

both p and q are probability vectors, dot product was 

used as a similarity measure to find the distance 

between them. By applying SDTW, there is a need to 

handle the following two constraints: 1) Adjustment 

window condition and 2) the step length of the start 

coordinate of the DTW search [26]. Fixation of the 

adjustment window size will restrict the shape and 

ending coordinate of the warping path, but if use 

different starting coordinates then the warping path will 

be automatically in the diagonal regions of the DTW 

grid. Therefore, we used overlapping window strategy 

and every time move window (adjustment window size) 

R steps for the next search. The reason for using the 

overlapping window is to avoid redundant computation 

and to check the warping path across the boundary of 

segments. Size of Q is fixed in this case and just need to 

care about the segments of the X. Window will be 

moved R steps forward in X and no of warping path (by 

equation (4)) will come as an outcome,  where each path 

represents the warping between Q and X. 
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(𝑛−1)

𝑅
                                      (4)                                     

 

3.3 System Flow 
 
    Figure 5 demonstrates the flow of the reported Urdu 

KWS system. The steps are as follows: 
 

1. Raw input speech of both Q and X given to the 

system.  

2. Remove the silence from Q and X by using Voice 

Activity Detector (VAD), because while 

comparing Q with the frames of X, the silence was 

also compared ended up in false results. 

3. MFCC (i.e. 13 coefficients) vectors are extracted 

from Q, X and training data. 

4. GMM is applied to the MFCC vectors of training 

data (audio file of about 1 hour speech) to make the 

optimum number of phonetic clusters. 

5. GP vectors (as shown in Figure 3) of MFCCs are 

calculated for both Q and X. 

6. By taking overlapping frames from the GP vector 

of Q and X, SDTW is applied using the dot product 

(cosine similarity [15]) as the distance measuring 

method. 

7. Results are sorted in ascending order of cost. 

 

  

 
 

Figure 5: The system flow diagram 

 

4. Experimental Setup 
 

4.1. Types of Experiments 
 

    Two types of experiments were performed including 

1) Same Speaker – training and testing audio files are 

in the voice of the same speaker, and 2) Cross Speaker 

– training audio files speaker is different from the test 

audio files speaker. For the same speaker experiments, 

15 words (i.e. needles) were selected whereas for cross 

speaker experiment, 2 words were selected.  

 

4.2. Dataset 
 

    For the development and evaluation of the proposed 

KWS system for Urdu language, PRUS [20] corpus was 

used. It is not as larger as the other available benchmark 

speech corpora for English (e.g. TIMIT [48], 

Librispeech [49], etc.), but for Urdu it is the only 

publically phonetically rich (covers almost all of the 

Urdu language sound) gold standard corpus. It contains 

708 audio files in .wav format, in total 90 minutes of 

Urdu speech. 

 

4.3. Training and Testing Data 
 

    For the same speaker experiments: for each needle, 

all of the audio files in the dataset were used for training 

of the GMM except for those files contained the selected 

needle in the respective experiment. For instance, the 

word “پاس” (occurred in 8 audio files out of 708) is 

selected as a needle in experiment number 1. GMM will 

be trained in those 700 audio files which do not contain 

the selected needle. Now, out of the 8 files having the 

needle in each file, 7 files will be selected as haystack 

files whereas needle word will be extracted from the 

remaining 1 audio file.  

For cross speaker experiments: all of the 708 audio files 

were used to train GMM, whereas 2 words were 

recorded from another speaker as a needle.  

 

4.4. Evaluation Measures 

 
    To evaluate the developed unsupervised KWS for 

Urdu language, Precision (P) was used as an evaluation 

measure because of the constraint “needle(s) must be 

present in the haystack(s)”. This implies that only true 

positives and false positives can be computed for the 

proposed system. We have P@N [8]: the precision of 

the top N hits, where N is the number of occurrences of 

a needle in the haystack.  

 

5. Results and Analysis 
 

    The summarized results of the experiments for same 

and cross speaker are shown in Table 1 and Table 2 

respectively, where N shows the number of needles’ 

occurrences, P@N shows the precision of finding N 

number of Q instances in X, and P@3 represents the 

precision of locating Q in those X files which contains 

3 occurrences of Q. Similarly P@5 and P@10 indicates 

precision of respective X files. Cells with value ‘NA’ 

show that there is no X available with the required 

number of occurrences for that specific Q. The last row 
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in both tables shows the average precision of all 

experiments. 

    It is clear from Table 1 that the average P@3 (82.30 

%) outperforms whereas the mean P@10 (76 %) 

performed worse than all other. It can also be seen that 

the average P@N (79.20 %) is comparative to that of 

P@5 (80 %). It is clear from the average precision 

results and individual keyword results that the precision 

decreases as the number of occurrences of a needle 

increases. Another possible reason for this precision 

degradation could be the middle vowels, as GMM 

performed best on 45 phonetic clusters although there 

exist 67 different phonemes in Urdu language. 

 

Table 1: Summarized experimental result for same 

speaker. 

 

Needle N P@N P@3 P@5 P@10 

 NA 0.83 0.83 0.72 8 پاس

کیا  28 0.7 0.75 0.6 0.55 

 0.71 1 1 0.9 26 بعد

ںینہ  15 0.71 0.42 0.5 0.62 

 NA 1 1 1 6 جاتا

 NA 0.71 0.75 0.75 6 صاحب

ریغ  5 0.6 0.625 0.6 NA 

 0.9 1 1 0.85 23 ساتھ

 NA 0.55 1 0.75 6 والے

 NA 0.71 0.5 0.6 6 پہلے

لئےیک  14 0.73 0.75 0.71 1 

 NA 1 1 1 6 جانے

 0.71 1 0.75 0.73 11 کرنے

 NA 1 1 1 5 سامنے

ریبغ  10 0.83 1 0.83 0.83 

Avg. 

Precision 

79.20% 82.30% 80% 76% 

 

 

    The cross speaker experimental results are shown in 

Table 2. It can be seen that the average P@5 (100%) 

outcompeted all other average precisions (i.e. 91.5 %).  

The proposed system located the needle “ ہیقسطنطن ” 

perfectly in all settings. The possible reason could be 

the uniqueness of the needle due to its larger phonemic 

counts, quite unique phonetic sequence, and this word 

is not commonly used in conversational Urdu speech. 

Whereas the needle “بغداد” correctly spotted only when 

the number of occurrences is 5 while in other settings 

the performance is decreased. The shorter phonemic 

length and common phonetic sequence could be the 

probable reasons for this low precision. 

    The proposed KWS performed better in cross speaker 

settings as compared to the same speaker. One obvious 

reason could be the number of needles chosen for the 

experiments, which are too less in cross speaker 

scenario. Another important observation for this low 

precision in same speaker context, could be the length 

of phonemes in each needle as in same speaker 

experiments the average needle length is 3 whereas in 

cross speaker settings it is 9 which implies that needles 

with shorter phonemic counts are harder to locate as 

compared to the needles with larger phonemic count. 

It has also been found that the produced results seem to 

strongly dependent upon the type (unique) of words. 

Words present as substring may increase false-positive 

results. For example, the word “Tania” and “Aania” are 

almost the same because “Aania” is present as a 

substring. Our system saying these words are the same 

and that is not true. As far as our domain knowledge and 

literature review, this is the first attempt to develop an 

Urdu KWS system in a completely unsupervised 

manner. The initial results demonstrate that there is still 

a big room available to improve Urdu KWS. 

 

Table 2: Summary of results of cross speaker 

experiments 

 

Needle N P@N P@3 P@5 P@10 

ہیقسطنطن  10 1 1 1 1 

 0.83 1 0.83 0.83 10 بغداد

Avg. 

Precision 

91.5% 91.50% 100% 91.50% 

 

 

6. Conclusion and Future Work 
 

    Availability of the large datasets is a crucial 

requirement for the majority of the existing KWS 

techniques as they require huge datasets to train the 

model, which makes these methods unsuitable for low 

resource languages like Urdu. Keeping in view the high 

demand for the KWS system for Urdu, this paper 

reports an unsupervised STD system for Urdu.  

Without any transcription, the model is trained by 

extracting MFCCs directly from speech files. GMM is 

applied to the training data to make the phonetic 

clusters, and generate GPs for both of the needle and 

haystack. Segmental DTW, a modified version of the 

well renowned DTW signal alignment method, used to 

compare the GP vectors of the input keyword and the 

reference audio file. Warping path with minimum score 

indicates the frames associated with this path are closer 

to each other. Experiments were performed for both 

same and cross speaker settings, and observed that the 

proposed system performed better in cross speaker 

scenarios as compared to the same speaker context.   

    The proposed system has some limitations such as 1) 

the major constraint “given the word is present in 

haystack”, 2) it reports all the occurrences of a needle 

in a given haystack but, it does not tell either the word 

is present or not, and 3) length normalization of vectors 
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because DTW returns different scores for different 

lengths of vectors. To overcome all of these limitations 

is the future goal of this work to obtain more 

satisfactory results along with examining this method 

on other low resource regional languages such as Pashto 

or Punjabi.  

  

7. Conclusion and Future Work 
 

    The code and the dataset described in this article are 

freely available for research purposes and can be 

downloaded from https://github.com/ab-101/Key-

Word-Spotter. 
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Abstract 

    Parsing in Natural Language processing is a vast domain 

which serves as a pre-processing step for different NLP 

operations like information extraction, etc. Multiple parsing 

techniques have been presented until now. Some of them unable 

to resolve the ambiguity issue that arises in the text corpora. 

This paper performs a comparison of different models 

presented in two parsing strategies: Statistical parsing and 

Dependency parsing. The comparison has been made on very 

famous Penn Treebank corpus specifically involving its Wall 

Street Journal Portion. 
 

1. Introduction 
 

    In Natural Language Processing (NLP), Parsing acts as an 

essential and key component to many problems. Parsing is 

the analysis of syntax or commonly called syntactic analysis 

in which we process the sentences following the rules of a 

formal grammar. Parsing involves uncovering the meaning, 

content and underlying structure that makes up a sentence. 

Every Language has a unique grammar thus making parsing 

process unique as well. Languages can be divided into two 

categories: 

Segmented Languages: Those languages whose words are 

space-delimited e.g. English and Spanish language 
Un-Segmented Languages: In un-segmented Languages word 

segmentation is required as a pre-processing step before further 

processing E.g. Chinese and Japanese Languages 

    A language is not just a ‘bag of words’ or else there would 

be no need for grammar. Grammatical rules apply to sentences 

where a sentence in a language is a group of strings that consists 

of two things: a subject and a predicate. A subject is defined as 

a Noun Phrase (NP) and predicate as a verb phrase (VP). E.g. 

In an English Sentence ‘Sam went to school’, ‘Sam’ is NP and 

‘went’ is VP. Parsing has many applications in Natural 

Language Processing. For Example, Machine translation, text 

summarization and question answering are few areas of NLP in 

which immense work is being performed, etc. Parsing serves as 

an initial step for these problems. The result of parsing a 

sentence using a formal grammar is a tree structure. A sentence 

can have exactly one or many such tree structures. The 

grammar that is usually used is CFG (context-free grammar).  

One of the major challenges in Parsing is dealing with 

ambiguities in the sentence. Ambiguity refers to sentences that 

are subjective, open to interpretation and can have multiple 

meanings. Three types of ambiguities are present in a sentence 

when parsing is performed namely Syntactic Ambiguity, 

Lexical Ambiguity, and Semantic Ambiguity. 

Syntactic Ambiguity: Sentences can be parsed in multiple 

syntactical forms. E.g. ‘I heard his cell phone ring in my 

office’. The Phrase ‘in my office’ can be parsed in a way that 

modifies the noun or vice versa modifies the verb. 

Lexical Ambiguity: Sentences having Lexical ambiguity can 

have words with multiple assertions. E.g. ‘book’ is used as a 

noun when used in a sentence as ‘He loves to read books’. On 

the other hand, it can also be used as a verb when used in a 

sentence as ‘He books an appointment at the dentist’. 

Semantic ambiguity: It is related to the interpretation of the 

sentence. E.g. ‘I saw a man with the telescope’. It can be 

deduced as if I saw a man holding a telescope. Or I saw a man 

through a telescope. Parsing of sentences happens in multiple 

stages: 

a) Dividing a sentence into tokens. These tokens are used as 

input to some other tasks like parsing. 

b) Tagging each token with parts of speech. 

 Eight parts of speech are observed in the English language –

verbs, nouns, pronouns, adverbs, adjectives, conjunctions, 

interjections and prepositions. 

1.1.  Types of parsing 

Two main types of parsing will be discussed in this paper and a 

comparison of performances for both the types will be made. 

Following are the types: 

i. Statistical Parsing 

ii. Dependency Parsing 

 

1.1.1. Statistical Parsing 

    In Natural Language processing statistical parsers are the 

type of parsers which associate grammar rules with probability. 

The Statistical parser is an algorithm that looks for a tree that 

maximizes the probability P (T|S). PCFG (Probabilistic 
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Context-Free Grammar) which is an extended form of CFG is 

used as an underlying grammar. The probability of a parse tree 

of a sentence can be computed by firstly calculating the 

probability of the productions used in the derivation of the tree 

and then taking the product of these probabilities. Following 

three main tasks are involved in statistical parsing: 

 

1. Determine the likely parse trees for the sentence. 

2. Assign probabilities to each derived parse 

3. Select the most probable parse (highest probability) 

 

    Statistical parsing requires a corpus of hand-parsed text. For 

this purpose, we have Penn treebank (Marcus 1993). Penn 

Treebank is extensively used since it is the largest annotated 

dataset for English. In recent years Penn Treebank has been 

immensely used and considered as a standard for training and 

testing statistical parsers. Parseval measures are used to 

evaluate the Penn Treebank parsers. From many Parseval 

measures most commonly used ones are and labelled recall 

(LR) and labelled precision (LP). Sometimes Bracketed 

precision (BP) and bracketed recall (BR) are also used which 

are less strict measures then LP and LR. 

 

1.1.2. Dependency Parsing 

    Identifying a sentence and allocating a syntactic arrangement 

to it is the major task of dependency parsing. In the 

dependency-based method, the head-dependent relation 

provides an estimate to the semantic relationship between 

arguments and their predicates. 

The translation of a sentence to its dependency structure is done 

in two subtasks: 

 Classify the structure for all head-dependent 

relationships.  
 Classify these relations with their correct dependency 

relations.  

  
A tree of dependency parsing is a coordinated diagram (a 

directed graph) which fulfills the stated following limitations: 

 It consists of a single assigned root hub that does not 

have any approaching segments or arcs. 
 With the exemption of the root hub, every vertex has 

precisely one approaching segment or arc. 
 From every vertex in V, a unique way exits from the 

root hub. 
In short, the stated requirements guarantee that every word has 

a distinct head, to which the dependency tree is linked, and a 

unique root hub by which one can pursue a unique guided path 

to each word of the sentence. 

    The idea of projectivity forces an extra restriction and is 

firmly identified with the setting free nature of human dialects. 

If there is a way from the head to each word that lies between 

the head and it’s dependent, then an arc from a head to its 

dependent is considered as projective. A dependence tree is 

therefore said to be projective if every single one of the arcs is 

projective There are, in any case, numerous impeccably 

substantial developments especially in dialects with a generally 

adaptable word that leads to non-projective trees. 

    Presently the assignment of Syntactic parsing is very 

unpredictable because of the way that a given sentence can have 

numerous parse trees which we call as ambiguities. Consider a 

sentence "Book that flight." which can frame various parse trees 

dependent on its uncertain grammatical speech tags except if 

these ambiguities are settled. Picking a right parse from the 

numerous conceivable parses is called as syntactic 

disambiguation. 

The two main methods of dependency parsing are: 

 

a) Transition-based dependency parsing 

b) MST (Maximum spanning tree) dependency parsing 

 

    Transition based parsers commonly have a linear or quadratic 

complexity. MST based parsers divides the dependency 

structure into small parts called ‘factors’. The components of 

the principle MST parsing algorithm are edges that consists of 

the head, the edge name and the dependent (child). This 

algorithm has quadratic complexity. (Bernd Bohnet., 2010). 

Treebanks have a critical job in the advancement and 

assessment of dependency parsers. Having human annotators 

legitimately create dependency structures for a given corpus. 

The most generally utilized syntactic structure is the parse tree 

which can be produced utilizing some parsing algorithms. 

These parse trees are valuable in different applications like 

sentence grammar checking, co-reference goals, question, and 

their answers, data extraction or all the more significantly it 

assumes a basic job in the semantic analysis stage. We can 

likewise utilize a deterministic procedure to decipher existing 

principal based treebanks into dependency trees using head 

rules. The significant English reliance treebanks have to a great 

extent been removed from existing assets, for example, the 

Wall Street Journal segments of the Penn Treebank (Marcus et 

al., 1993). The later OntoNotes venture (Hovy et al. 2006, 

Weischedel et al. 2011) expands this methodology going past 

customary news content to incorporate conversational phone 

speech, newsgroups, weblogs and talk programs in English, 

Arabic and Chinese. 

 

2. Literature Review 
 

    Following is the previous work for statistical parsing and 

dependency parsing. 

2.1. Statistical Parsing 

 

    Magerman [9] presented a statistical parser called SPATTER. 

It achieves the best accuracy by building a complete parse for 

every sentence in the corpus. SPATTER is based on a decision-

tree learning technique. Using the PARSEVAL evaluation 

measure, SPATTER on the Penn Treebank Wall Street Journal 

corpus achieves 86% precision P (see equation 1) and recall R 

(see equation 2), and 1.3 crossing brackets CB (see equation 3) 

per sentence for sentences with a word length of 40 or less. For 

sentences having word length between 10 and 20, SPATTER 

achieves 91% P, 90% R, and 0.5 CB. 
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P = number of Correct Components / number of Components 

in parser output                                                                     (1) 

R = number of correct Components / number of Components in 

gold standard                                                                          (2) 

CB = number of Components in parser output that cross gold 

standard Components / number of Components in parser 

output                                                                                     (3)  

                                              

   In 1996 Collins [10] presents his first model for statistical 

parsing. Below equation 4 demonstrates a conditional model 

capable of parse selection, where for a given sentence S in the 

corpus, the probability of a parse tree T is calculated directly. 

Input to the model is a Part of Speech (POS) tagged sentence 

which produces a tree as an output. For a given sentence S in 

the corpus and its tree T, the conditional model for Collins 

represents the probability in the following manner: 

The most likely parse under the model is then: 

 

T (best) = argmax T (P (T |S))                                               (4)                       

 

    Collins (1996) model showed an improvement in Precision 

and Recall when compared with Magerman’s (1995) results. 

    Collins presented a new model in 1997 [11] which improved 

on the previous results of Collins conditional model (1996). 

This approach is based on a generative model. The Collins 

(1997) accounts for word-word dependencies when generating 

a parse tree. This model focuses on the modeling of the parses 

and deals with the flat trees of the Penn Treebank corpus. This 

generative version of Collins parser corpus shows an 

improvement of 2.3% on the conditional model of Collins 

(1996). It achieves 88.1% P and 87.5% R on Wall Street 

Journal. 

    In [12] Collins (1999) few problems were observed with the 

generative model for Collins (1997). It was noticed that Collins 

model is no longer a model for predicting maximum likelihood 

because of how the dependency probabilities were estimated.  

Another deficiency is its way of considering all dependency 

relations as independent. Due to these reasons, Collins 

presented another modification to his previous model. 

    Charniak [13] (2000, 1999) after presenting his first model 

for statistical parsing in 1997 Charniak presented another 

statistical Treebank parser. It outperformed the Collins 

generative model presented in 1997. Charniak’s main 

advantage to Collin’s is generating candidate parses using a 

simple probabilistic chart parser. Charniak’s model showed an 

improvement of 0.45% in labelled recall (LR) and labelled 

precision (LP). The model achieved average Precision and an 

average recall of 91.1% on sentences with length less than 40. 

For sentences with length less than 100, the model achieved 

89.5% average precision and recall on Penn Treebank corpus. 

Over the previously best results, Charniak’s model achieves an 

error reduction of 13% for single parser on this test set. 

    Henderson and Brill [14] presented an approach where they 

combined the results/prediction of three current existing 

parsers. They combined Charniak’s 1997 model with Collins 

1997 and Ratnaparkhi 1998 model to better understand the 

capabilities of parsers and to check if they yield better results. 

This combination of three parsers gave the best results with 

Labelled precision of 92.1% and Labelled Recall of 89.2% on 

the development set while achieving LP of 92.4% and LR of 

90.1% on the test set of Penn Treebank. These are best-known 

results up till now. 

    Parser presented by Bod [15] claims to give a better 

performance in terms of Parseval measures. It improved on the 

Charniak’s result by achieving 89.7% LP and LR on sentences 

with 100 words. For sentences with 40 words or less Bod’s 

model achieves 90.8% LP and 90.6% LR. Although it is 

debatable whether an increase of 0.2% in LP and 0.1% in LR is 

considered an improvement. Bods’ model takes arbitrary 

structural and lexical dependencies into consideration when 

computing probabilities of a parse tree as it is based on Data-

Oriented Parsing (DOP).  

    Collins in 2000 and Collins and Duffy in 2002 [16] presented 

two approaches in which they improved the performance for 

Collins 2000 model by re-ranking the parses using a different 

model on the outcome of Collins’ 1999 model.  LP improved 

from 88.1% to 88.3% while LR improved from 88.3% to 89.6% 

on Collins 1999 model. For Collins 2000 model using a variant 

for boosting LP improved to 88.3% and LR to 89.6%. For 

Collins and Duffy 2002 model by using a DOP like approach 

using a voted Perceptron LP improved to 88.6% and LR to 88.9 

%. 

 

2.2. Dependency Parsing 

 

    A huge interest has been seen in Dependency Parsing lately 

for applications such as relation extraction, machine translation, 

synonym generation, and lexical resource augmentation. The 

main reason for using dependency structures is because they are 

highly effective to study and parse while still training much of 

the predicate-argument information needed in a lot of 

applications. 

    Most of these parsing models have concentrated on trees that 

are projective, including the effort of Eisner (1996), Yamada 

and Matsumoto (2003), Collins et al. (1999),  Nivre and Scholz 

(2004), and McDonald et al. (2005). 

A parsing model presented by Nivre and Nilsson in 2005 allows 

to include edges that are non-projective, into trees using learned 

edge transformations in the memory-based parser. The method 

varies in examining efficiently the full span of non-projective 

trees. The main focus was that the dependency parsing can 

serve as the main search point for an MST in a directed graph. 

This specifies the regular projective models of parsing that are 

based on the Eisner algorithm (Eisner, 1996) to have a better 

efficient of O (n 2). By using the spanning-tree illustration, to 

cover non-projective dependencies we extend the work of 

McDonald et al. (2005) on online large-margin discriminative 

training methods (McDonald, Pereira, and Ribarov; 2005) 

    Nowadays there has been an increase in the usage of 

dependency representations through many tasks of natural 

language processing (NLP). Stanford dependency is 

extensively used in both NLP and biomedical text mining. 
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Stanford Dependency was originally extracted from constituent 

parses but the production of parse trees from the raw text was 

quite time. The approaches hence designed specifically for 

dependency parsing such as Covington, minimum spanning 

tree (MST), Eisner and Nivre should perform faster, assuming 

that they have low time complexity. The different approaches 

are compared in terms of their collective accuracy and speed 

and characteristic errors are reported. The parsing models are 

trained using the training set extracted from the Penn Treebank 

that consists of sections 2 through 21, different parsers of 

dependency were compared such as MaltParser package v1.3 

selected models, the MSTParser 0.4.3b, and the rule Based 

RelEx parser 1.2.0. We used F1-score other than accuracy 

because the typical Stanford dependency representation parsers 

can generate a variety of different dependencies for every 

sentence. The fastest parsers were the Malt package, Nivre, and 

Covington. Nivre Eager and MSTParser (Eisner) and they 

achieved better F1scores when the interaction between model 

and features was not used. If parsing a huge amount of data, and 

speed is important, the experiments suggest that the top choice 

is to use parsers included in the Malt package. (Cer, D. M., De 

Marneffe, (2010, May)). 

 

3. Performance Evaluation 
 

    Many different parsers have been presented in the above 

section having unique abilities and different performances each 

trying to perform well than the previous. The main question is 

what type of parsers should be used in which context. The 

decision to apply these models depends on the type of the 

problem under study. To facilitate the decision making a 

performance overview of all the parsers is given below. 

 

3.1. Statistical Parsing 

 

    Table I shows the performance of multiple Statistical Parsers 

over the Parseval Measures. 

• In [9] it was shown that previous syntactic natural language 

parsers used were not capable of handling ambiguous large-

vocabulary text. They had poor performances on standard 

datasets like Wall Street Journal of Penn Treebank which led to 

the new approach presented by Magerman called SPATTER 

(Statistical Pattern Recognizer). It is based on decision-tree 

learning technique and has accuracy way better than any parser 

published up till 1995. SPATTER requires very less linguistic 

knowledge and is compared against state of the art grammar-

based parsers. Decision trees provide a ranking system by 

assigning a probability distribution to the possible choices, 

which not only specifies the order of preference but also gives 

a measure of the relative likelihood that each choice is the one 

which should be selected. The limitation of the searching 

strategy of SPATTER is its possible consumption of available 

memory before completing the search. But conveniently this 

memory exhaustion occurs on sentences which SPATTER most 

likely will get wrong anyway. So little or no performance loss 

is observed due to this search errors. 

•  The study in [10] reveals that Collins and Magerman both use 

lexicalized PCFG which is associating a head word to every 

non-terminal present in the parse tree. Collins parser performs 

almost equally as SPATTER when it is trained and tested on 

Wall Street Journal portion of Penn Treebank. The advantage 

of Collins 1996 model over SPATTER is the simplicity of its 

architecture and working. Still, many improvements can be 

made by using a more sophisticated probability estimation 

techniques like deleted interpolation or estimation on relaxing 

the distance measure for smoothing could be used. Another 

limitation of Collins 1996 model is that it does not account for 

valency when calculating the parse. 

• Collins [11] attempt to address the flaws of the model 

presented in 1996 by putting forth 3 models. It shows that sub-

categorization and wh-movement can be given a probabilistic 

treatment thus resulting in the statistical interpretation of the 

concepts causing an increase in performance by adding useful 

information to the parser’s output. The average improvement of 

Collins 97 over the previous model is 2.3%. Model 1 presented 

has clear advantages when handling unary rules and distance 

measures. Model 2 and 3 can apply condition on any structure 

that has been previously generated while Collins 96 lack in this 

treatment.  

• [12] Is an update of previous works of Collins. It addresses 

the limitation of Collins 1996 and 1997 related to punctuation 

as surface features of the sentence. Previous models failed to 

generate punctuation and are considered a deficiency of the 

model. Collins 2000 uses a technique that is based on boosting 

algorithms for machine learning for re-ranking the best outputs 

using additional features.  

• The major invention of Charniak’s [13] 2000 model is the use 

of maximum entropy inspired model which results in an 

increase of 2% in performance due to its strategy of smoothing 

and to combine multiple conditioning events for testing. 

Maximum entropy inspired approached has certain advantages 

over the probabilistic model and has recommended itself for use 

due to its novel approach of smoothing. Most important 

progress accomplished by using Charniak’s model over 

conventional deleted interpolation is the flexibility achieved 

due to simpler maximum-inspired-model which let us 

experiment with different conditioning events and to move up 

to Markov grammar without significant programming. This 

model uses Markov processes to generate rules. The additional 

features incorporated boost the performance. The main goal for 

Charniak’s parser is to generate model flexible enough to allow 

changes for parsing to more semantic levels.  

• To solve some of the fundamental problems of Natural 

Language processing like parsing some authors including 

Henderson and Brill [14] may adopt a unique approach to 

combine the previous parsers to obtain better results. Collins 

along, with Charniak and Ratnaparkhi model, are experimented 

to explore different parser combination. With poor parser being 

introduced during the experiments, Techniques like parser 

switching and parser hybridization still gave better results. For 

more powerful parser combinations the results can be improved 

further. 
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• Bod 2001 [15] presents results that are comparable to the 

results of previous models like Charniak and Collins 2000. The 

main goal of the Bod model is to achieve maximal parse 

accuracy by applying constraints of several words in a fragment 

and to the depth of lexicalized fragments. Many previous 

models applied constituent lexicalization on Wall Street portion 

of Penn Treebank while Bods 2001 DOP based model uses 

frontier lexicalized approach. The results obtained from Bods 

models claim that using frontier lexicalization yields better 

results and is a better alternative to constituent lexicalization. 

Another difference of Bod with other models is its use of 

treebank grammar as an underlying grammar of its DOP model. 

Another future area could be the application of Markov 

grammar on the DOP model which will further improve the 

results. 

• The main advantage of this model presented by Collin and 

Duffy [16] is the application of the perceptron algorithm on 

exponentially big representations of parse trees. It is 

computationally efficient and leads to a polynomial-time 2 

algorithm for training and testing phases of the perceptron. It 

can stretch to more complex domains. Due to its different 

parameter estimation when compared to Bod and other models 

the computation is manageable. 

TABLE I: Performance of all statistical parsers on penn 
treebank corpus  

Parsers 

Evaluation Measures 

LP LR CB 

Magerman 1995 

[9] 
86% 86% 1..3 

Collins 1996 [10] 86.3% 85.8% 1.14 

Collins 1997 [11] 88.6% 88.1% 0.96 

Henderson and 

Brill [14] 
92.4% 92.1% - 

Collin 2000 [12] 90.4% 90.1% 0.73 

Charniak 2000 

[13] 
90.1% 90.1% 0.74 

Bod 2000 [15] 90.8% 90.6% - 

Colins and Duffy 

2001 [16] 
88.6% 88.9% - 

 

3.2. Dependency Parsing 

 

3.2.1. Deterministic Dependency Parsing 

    Collins and Charniak are one of the best accessible parsers 

prepared on the Penn Treebank, utilize statistical models for 

disambiguation that utilize dependency relations. The Yamada 

and Matsumoto method of deterministic dependency parser and 

that of Collins and Charniak, when prepared On the Penn 

Treebank, gives a nearly equal accuracy. The parser depicted in 

this paper is like that of Yamada and Matsumoto in that it 

utilizes an algorithm of deterministic parsing in blend with a 

classifier actuated from a treebank. Be that as it may, there are 

likewise significant differences between the two 

methodologies. Most importantly, while Yamada and 

Matsumoto utilizes a severe algorithm of bottom-up(basically 

shift-reduce parsing), the present parser utilizes Nivre’s 

algorithm, which uses bottom-up and top-down approaches 

together to increase the accuracy. The experiment was carried 

out on two sets whose result is shown in table II and IIA.  

 Set G which contained grammatical roles   from Penn  

 Set B contained the function tags for grammatical 

roles with normal bracket labels (S, NP, VP, etc.). 

And the evaluation metrics used are: 

 Unlabeled attachment score is the measure of words 

that are root and are correctly identified as head. 

 Labelled attachment score is the measure of words that 

are root and are correctly identified as head and their 

dependency type. 

 Dependency accuracy is the measure of words that are 

non-root and are correctly identified as heads. 

 Root accuracy is the measure of root words correctly 

identified as roots. 

 Complete match is the measure of sentences whose 

unlabeled dependency structure is correctly identified. 

TABLE II: PERFORMANCE OF DETERMINISTIC DEPENDENCY 

PARSERS ON PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ 

2004) 

 

 

Parsing 

Models  

Evaluation metrics  

Dependency 

Accuracy 

Root 

Accuracy 

Complete 

Match 

Charniak 92.10% 95.20% 45.20% 

Collins 91.50% 95.30% 43.30% 

Yamada  

and 

 Matsumoto 

90.30% 91.60% 38.40% 

Nivre  

and  

Scholz 

87.30% 84.30% 30.40% 
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TABLE IIA: PERFORMANCE OF DETERMINISTIC DEPENDENCY  

PARSERS ON  PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ 

2004) 

Evaluation 

metrics 

Data sets  

Grammatical 

Roles from 

Penn II 

(Experiment # 

1) 

Function 

Tags for 

Grammatical 

Roles 

(Experiment 

#2) 

Combinati

on of both 

Experimen

ts 

Unlabeled 

Attachment 

Score 

85.8% 87.1% - 

Labelled 

Attachment 

Score 

84.6% 84.4% 86.0% 

 

3.2.2. Constituent-to-Dependency Parsing 

    PENN2MALT disposes of the deep information in the 

dependency tree. In the new strategy, the topicalized phrases 

and words are connected to their respective semantic head. 

Other than this the new approach used a richer collection of 

arced labels than that used in PENN2MALT. MALTPARSER 

depends on a parsing system that constructs a parse tree 

gradually while continuing through the sentence one token at 

any given moment. By utilizing this type of system, a rich 

history-based list of capabilities for the SVM classifier is made, 

that can be used for choosing activities. MSTPARSER predicts 

a parse tree by expanding a function of scoring over the space 

of all parse trees. The scoring function is a weighted sum of 

single connections or links. Table III describes MALT Parsers 

and MST Parser for different parsing sets. 

TABLE III: PERFORMANCE OF MALT AND MST DEPENDENCY 

PARSERS ON PENN TREEBANK CORPUS (17.JOHANSSON,R., & 

NUGUES,P.(2007)) 

 

 

 

3.2.3. MIRA (18. McDonald, R., Crammer, K., & Pereira, 

F. (2005)) 

    It is an online learning algorithms which intuitive and easy 

to comprehend and implement. To form dependency structures 

the extraction rules of Yamada and Matsumoto were used. For 

the evaluation and development of sets, the tagging system of 

Ratnaparkhi was used and POS tags were assumed as the input 

for the system. 

    For large margin multi-class classification, Crammer and 

Singer established an approach (equation #5) which was then 

extended to structured classification by Taskar. 

EQUATION # 5 (18. MCDONALD, R., CRAMMER, K., & 

PEREIRA, F. (2005)) 

 
    The above-mentioned equation #1 optimization is directly 
mapped into the online framework by the margin infused 
relaxed algorithm (MIRA). On every attempt, while applying 
the change to the parameter vector MIRA tries to maintain the 
standard and keep it as small as possible, to classify an instance 
correctly the margin should be at least equal to the loss of 
classifying incorrectly. This can be done by substituting the 
following changes in the original algorithm (equation #5) 
present online and form another (equation #6). 

EQUATION # 6 (18. MCDONALD, R., CRAMMER, K., & 

PEREIRA, F. (2005)) 

 

 
 

    To apply dependency parsing using MIRA, we can just 

consider the parsing as a multi-class classification problem in 

which, every dependency tree is considered as one of the 

classes of the sentence. Nevertheless, this clarification fails in 

reality as a normal sentence has a lot of possible dependency 

trees thus making it exponentially complex. To overcome this 

issue another equation #7 was created. 

EQUATION # 7 (18. MCDONALD, R., CRAMMER, K., & 

PEREIRA, F. (2005)) 

 

 

 

 

 

Parsing 

sets 

Parsing models 

 MALT 

PARSER 

   MALT 

PARSER 
    MST 

PARSER 

MST 

PARSER 

LABEL

ED 

UN 

LABELE

D 

LABELE

D 

UNLABEL

ED 

PENN2

MALT 

 

90.30% 

 

91.36% 

 

92.04% 

 

93.06% 

NEW 

CONV

E-

RSION 

87.63% 

 

90.54% 
86.92% 91.64% 
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TABLE IV: PERFORMANCE OF MIRA DEPENDENCY PARSERS ON 

PENN TREEBANK CORPUS 

Parsing 

Models  

Evaluation measures  

Accuracy Root  Complete  

Y&M 90.30% 91.60% 38.40% 

N&S 87.30% 84.30% 30.40% 

AVERAGE 

PERCEPTI

ON 

90.60% 94.0% 36.50% 

MIRA 90.90% 94.20% 37.50% 

 

Accuracy: number of words whose parents are correctly identified. 

Root: number of trees in which the root is identified correctly.  

Complete: number of sentences whose dependency was correctly identified. 

 

4. Conclusion 
 

    Comparison between parsers leads us to examine the 
similarities and differences between multiple models and the 
scenarios in which they tend to perform better. The famous 
CKY parsing algorithm can represent the ambiguities that occur 
while parsing efficiently but it is not able to resolve them. So 
statistical and dependency models are designed to overcome the  
Limitations of the previous ones thus showing an increase in 
the overall measures of evaluation.  
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Abstract 
 

We present a corpus of Urdu political data annotated 

at aspect and sentiment level. The corpus contains 8760 

tweets regarding four different aspects (Members, 

Projects, Party and Actions) of three political parties 

(PTI, PMLN and PPP) of Pakistan. We also present the 

results of a baseline system developed using the corpus 

for analyzing its reliability. It can be seen that the 

classifiers have achieved reasonable scores for aspects 

categorization and sentiment classification tasks. 

 

 

1. Introduction 
 

    Sentiment analysis is defined as a task of 

automatically identifying opinions expressed in a text 

[1]. The text to be analyzed can be a feedback regarding 

a product or service, a political review or a social media 

comment [2]. The sentiment analysis can be done at 

document level, sentence level and also at aspect level 

[3]. In case of document level sentiment analysis, the 

task is to assign an overall sentiment to the document. 

On the other hand, sentence level sentiment analysis 

assigns a polarity value to each individual sentence of 

the document. The aspect level sentiment analysis 

provides an in-depth analysis by assigning sentiments to 

different aspects of entities mentioned in a text.  

    There are different approaches that have been used 

for performing sentiment analysis. These approaches 

include lexicon based approach; machine learning based 

and hybrid techniques [4]. In lexicon based approach, a 

sentiment lexicon is used for assigning sentiment to text 

by aggregating the sentiment scores of words present in 

the text.  In machine learning based approaches, a 

sentiment tagged corpus is used to train machine 

learning models using supervised learning approach.  

After training models, they are used for assigning 

sentiments to input text. Another commonly used 

approach is using a hybrid technique. In hybrid 

techniques, a combination of machine learning models 

and lexicon is used for performing sentiment analysis. 

    Nowadays sentiment analysis has become an 

important task in the area like business intelligence (BI) 

in which a company wants to know the sentiment of 

customers towards their products or services. They use 

this analysis in decision making and overcoming their 

weaknesses. Another important area in which sentiment 

analysis is used is called social media monitoring 

(SMM) in which social posts are analyzed for finding 

opinions towards different entities [5]. Sentiment 

analysis is also used in disease surveillance systems for 

monitoring social media content mentioning symptoms, 

prevention and fear regarding a disease in different areas 

[6]. Another important area in which sentiment analysis 

is used is analysis of political data [7].  

    In this work, we are presenting a corpus for aspect 

based sentiment analysis (ABSA) task for Urdu political 

data which can be used as a gold-standard for automatic 

aspect-based sentiment annotation.   

    The rest of paper is organized as follows. Section 2 

contains related work. Section 3 explains the 

methodology used for corpus development and its 

statistics. Section 4 contains baseline results and Section 

5 is based on conclusion and future work.  

 

2. Related Work 
 

A corpus for ABSA in political debates has been 

presented in [7]. The corpus consists of transcribed 

speeches from the two presidential debates of the 2016 

US election. The authors have annotated the corpus and 

provided baseline results for aspect based sentiment 

analysis using Support Vector Machine (SVM) 

algorithm. 

    The authors in [8] have presented an Italian corpus for 

aspect based sentiment analysis of movie reviews. The 

corpus contains sentences that have been manually 

annotated according to various aspects of movies and 

also polarities expressed toward them. 

    Two French language datasets for the purpose of 

development and testing of aspect based sentiment 

systems have been presented in [9]. The first dataset 

consists of 457 restaurant reviews (2365 sentences).The 

second contains 162 museum reviews (655 sentences). 

Both datasets were developed as part of SemEval-2016 

Task 5 "Aspect-Based Sentiment Analysis" where seven 

different languages were represented, and are publicly 

available for research purposes. 
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    A Turkish sentiment corpus comprised of user 

reviews annotated using semi-automatically is 

constructed in [10]. The corpus contains Turkish hotel 

reviews dataset which has 1000 reviews and 5364 

sentences. The corpus also contains root forms of words, 

their usage, POS tags and sentiments. 

    An Arabic Laptops Reviews (ALR) dataset [11] for 

ABSA has been prepared according to the annotation 

scheme of SemEval16-Task5. The annotation scheme 

addresses two problems: prediction of aspect category 

and sentiment polarity label prediction. An evaluation 

procedure that extracts n-grams' features and uses a 

Support Vector Machine (SVM) classifier has also been 

described. in order to allow researchers to gauge and 

compare the performance. The results of evaluation 

show that there is a need for improvements in the 

performance of the SVM classifier for the aspect 

category prediction problem. On the other hand, the 

SVM's accuracy is actually high for sentiment polarity 

label prediction. 

    The work in [12] provides a human annotated Arabic 

dataset (HAAD). HAAD comprises of books reviews in 

Arabic which have been annotated by humans with 

aspect terms and their polarities. The paper also reports 

a baseline results with common evaluation techniques 

for the purpose of future evaluation of ABSA systems. 

 

3. Urdu ABSA Corpus for Political Domain 
 

This section describes the methodology that has been 

used for developing the corpus. 

 

3.1. Corpus Collection and Preprocessing 
 

We have collected 8760 tweets containing user 

comments regarding the following three political parties 

of Pakistan: Pakistan Tehreek-e-Insaaf (PTI), Pakistan 

Muslim League Nawaz (PMLN) and Pakistan People 

Party (PPP).  The tweets have been collected in Urdu 

language using tweeter API. For searching relevant 

tweets, we have used the keywords indentified for each 

aspect in search queries. 

After collecting the data, the next step is 

preprocessing. In preprocessing step, we have done the 

following tasks: 

 Removal of special characters like hash tags, 

emoticons and punctuation marks like; '?, !, ;'. 

 Resolving segmentation issues like incomplete 

words, issues of extra spaces between letters of 

words and presence of Zero Width Non Joiner 

(ZWNJ). 

 Removal of duplicate tweets  

 Removal of URLs and hyper links from the tweets. 

 

3.2. Aspect-based tagging 
 

The corpus has been designed for conducting aspect 

based sentiment analysis of the reviews of people 

regarding the above mentioned political parties of 

Pakistan. The reviews are analyzed for finding 

sentiments regarding the following four aspects: 

 
3.2.1 Member 

    This aspect refers to the positive, negative and neutral 

comments of users regarding members of a party. For 

example, consider the following sentence: 

 /عمران خان کی نیت صاف ہے/
/ɪmrɑ:n xɑ:n ki: ni:jjət̪ sɑ:f hæ:/ 

 

 Imran Khan's intentions are pure 

Here, the quality of a PTI member has been mentioned 

in a positive way as the word 'pure' is very positive.  

 

Consider another example: 

 /عمران خان کی سونامی تباہی ہے/
/ɪmrɑ:n xɑ:n ki: so:nɑ:mi: t̪əbɑ:hi: hæ:/ 

Imran Khan's tsunami is disastrous 

Here, a negative sentiment has been expressed in the 

form of words 'tsunami' and 'disastrous'. 

3.2.2. Projects 

    This aspect refers to the projects of a party. The 

followings could be the examples of party's projects; / 

اورنج / ,/nəjɑ: pɑ:kɪst̪ɑ:n/ /New Pakistan/ / نیا پاکستان

 .ɔ:rɪnʤ tre:n/ /Orange train/ etc/ٹرین

Consider the following review as an example: 

 /اورنج ٹرین ایک ناکامیاب پروجیکٹ ہے/

/ɔ:rɪnʤ tre:n e:k nɑ:kɑ:mjɑ:b pro:ʤækt hæ:/ 

Orange train is an unsuccessful project 

In this sentence, a negative sentiment is attached with 

the project of PMLN in the form of word 'unsuccessful'. 

3.2.3. Actions 

    This aspect refers to policies of a party.  These 

policies and actions could be foreign policies, economy 

policies, price control policies and health policies etc. 

The following keywords could be examples of action 

aspect; / مہنگائی/  /mæhŋgɑ:i:/ /Inflation/ and 

/قرضہ //qərzɑ:/  /Debt/ etc. 

Consider the following example: 

پی ٹی آئی کی حکومت کی وجہ سے مہنگائی بڑھ رہی /

 /ہے
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/pi: ti: ɑ:i: ki: həku:mət̪ ki: vəʤɑ: se: mæhŋgɑ:i: bəɽʰ 

rəhi: hæ:/ 

Inflation is increasing due to PTI's government 

In the above mentioned sentence, a negative sentiment 

is expressed towards the action of PTI. 

3.2.4. Party 

    This aspect refers to feedback of people regarding 

party as a whole.  

 

Consider the following example: 

 /پی ٹی آئی کی کارکردگی اچھی نہیں/

/pi: ti: ɑ:i: ki: kɑ:rkərd̪əgi: əʧhʧhi: nəhi:/ 

The performance of PTI is not good 

 

This review contains a negative feedback regarding 

performance of PTI as a whole party rather than 

individual members. 

 

3.3. Sentiment Polarities 
 

    For the purpose of assigning sentiments to each 

aspect, we have used a five point scale from -2 to 2, 

where -2 means more negative, -1 means less negative, 

0 means neutral, 1 means positive and +2 means more 

positive. 

 

3.4. Corpus Tagging 
 

    A team of expert linguists with Mphil and PhD 

degrees in the area of Applied Linguistics and Urdu 

Literature respectively has tagged the corpus. The tested 

data achieved Inter Annotator Accuracy (IAA) of 75% 

at aspects and sentiment level tagging. 

 

3.5. Corpus Statistics 
 

    This section explains the statistics of corpus that has 

been tagged as aspect and sentiment level. Table 2 

below is presenting the statistics of each aspect in the 

developed corpus. 

 

Table 2. Statistics of aspects in developed corpus 

PART

Y 

MEMB

ER  

PROJE

CT  

PART

Y  

ACTIO

N  

PTI 1622 445 798 669 

PML

N 2215 758 621 308 

PPP 1497 306 919 535 

The statistics of aspect wise sentiments is given in Table 

3 below. 

 

Table 3. Statistics of aspect wise sentiments in the corpus 

    Sentiment 

Party Aspects POS NEG NEU 

PTI 

MEMBER 314 1090 218 

PROJECT 50 391 4 

PARTY 151 521 126 

ACTION 81 570 18 

PMLN 

MEMBER 758 1257 200 

PROJECT 406 205 147 

PARTY 135 375 111 

ACTION 157 140 11 

PPP 

MEMBER 295 914 288 

PROJECT 89 126 91 

PARTY 295 501 123 

ACTION 34 489 12 

  

 

4. Automatic Aspect-Based Sentiment 

Annotation 
 

    The developed corpus has been used for measuring 

the performance of machine learning based algorithms 

and baseline results have been reported. This evaluation 

is useful for indicating the reliability of the developed 

corpus. 

    Hence, for the purpose of analyzing that whether the 

corpus can be used for developing an ABSA classifier, 

we have trained classifiers for aspects recognition and 

sentiment tagging using an SVM library, namely 

LIBSVM in Weka [13].  

    We have used One-Vs-All approach and trained 

classifiers for each aspect and sentiment separately. So, 

we have trained 12 models for aspects and 12 models 

for sentiments classification. We have evaluated the 

results by performing 10-fold cross validation.  

We have also experimented with different n-gram 

features with n ∈ {1,2,3}. For the purpose of vectorizing 

the data, we have used a binary scheme in which the 

vector contains 1 if word is present and 0 otherwise. 

The results for sentiments classification system are 

presented in Table 3 below. 
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Table 4. F1-scores for sentiment models using CV 

  Parties 

Features Aspects PTI PMLN PPP 

Unigram 

MEMBER 70.7 70.6 65.2 

PROJECT 85.7 62.8 60.7 

PARTY 77 65.3 77.5 

ACTION 80 75.1 89.9 

Bigram 

MEMBER 64 70.1 65.7 

PROJECT 84.1 62.8 60.9 

PARTY 90.1 64.2 71.9 

ACTION 80.3 73.6 90.2 

Trigram 

MEMBER 63.1 63.9 61.1 

PROJECT 82.6 47.6 59.9 

PARTY 61.1 53.3 60.4 

ACTION 78.9 59.8 89.9 

 

The results of aspects classifiers are presented in Table 

4 below. 

 

Table 5. F1-scores for aspects models using CV 

   Parties 

Features Aspects PTI PMLN PPP 

Unigram 

MEMBER 88.5 86.3 90 

PROJECT 96.2 94.6 98.3 

PARTY 90.7 92.9 91.6 

ACTION 91.2 94.1 95.6 

Bigram 

MEMBER 89.9 87.7 88.4 

PROJECT 96.8 95.6 98.9 

PARTY 92.9 92.7 93.7 

ACTION 90.6 94.6 94.1 

Trigram 

MEMBER 79.1 76.1 77.1 

PROJECT 94.3 91.3 92.3 

PARTY 90.7 90.6 89.9 

ACTION 88.9 94.7 85 

 

5. Conclusion 
 

A corpus for ABSA for Urdu political data has been 

presented in this paper. The developed corpus has been 

tagged at aspect and sentiment level with IAA score of 

75%. A baseline system has also been developed using 

the corpus for analyzing its reliability in future use. It 

can be seen from the above mentioned results that the 

aspect classifiers have achieved a F1-score of more than 

90% in most of the cases. Moreover, the sentiment 

classifiers have also achieved a F1-score of more than 

70% in many cases 
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Abstract 
 

A phrase model for the annotation of Break Indices 

(BI) in Urdu speech corpus has been presented. A 

detailed acoustic analysis has been carried out to 

understand the patterns of phrase breaks in 1 hour of 

recorded Urdu speech. A four level phrase model has 

been proposed, including BI levels 0, 1, 2 and 4. From 

the outcomes of this analysis, rules have been 

formulated for automating the process of BI tagging in 

Urdu speech corpus. For this purpose, the annotated 

information of word boundaries, Part Of Speech 

(POS), intonation, stress and pauses from the Urdu 

speech corpus has been utilized. As the features 

indicating the prosodic behavior of the pitch contour, 

including stress and intonation, have already been 

accurately tagged in the speech corpus, the results 

obtained from the automatic BI tagging are quite 

promising. The automatic BI labeling system has 

provided coverage of 97.8%, and accuracy of 98.3% 

for the tagging of unseen data. 

 

Keywords: Break Index, BI, Phrase model, Urdu 

speech, Automatic annotation, prosodic modeling 

 

1. Introduction 
 

In a language, a word or a group of words co-

existing as a single conceptual unit is known as a 

phrase [1]. Human speech contains words clustered 

together to form phrases. These phrases are separated 

by pauses, or a change in the speaker’s tone. 

In written text, punctuation is commonly used to 

indicate phrase boundaries e.g. comma, full stop etc. 

However, while speaking, humans insert phrase 

breaks, even in the absence of punctuation. These 

breaks usually occur in speech while moving from one 

word to another, mostly for expressing emotions and 

intentions [2]. A phrase break is also referred to as 

Break Index (BI). 

    For building Text-to-Speech (TTS) systems, an 

adequately large, well annotated speech corpus is one 

of the basic requirements. The corpus should contain 

accurate annotations for prosodic features, such as BI, 

stress and intonation, to make the TTS sound as 

human-like as possible.  

    Several efforts have been made to develop an 

international standard for annotating prosody in 

speech. One of the earliest and most popular prosody 

tagging standards is ToBI (Tones and Break Indices) 

[3]. In ToBI, the different types of pauses in speech are 

represented by numbers from 0 to 4. A typical break 

between two adjacent words is represented by BI level 

1. A break in place of a comma is indicated by BI level 

3, whereas a distinctive pause in between speech 

segments is represented by BI level 4. This tagging 

convention is used by many languages. However, this 

could not be generalized for all the languages. 

Researchers developed variations of ToBI to suit the 

requirements of speech annotation for their particular 

languages e.g. J-ToBI for Japanese, G-ToBI for 

German, ToDI for Dutch, B-ToBI for Bengali etc. [4]. 

    The existing Urdu speech corpus [4] has been 

annotated for all the necessary prosodic features of 

speech. A 5 level scale (from 0 to 4) has been used for 

marking BI, based on, duration of breaks, and 

lengthening of phrases, pitch contour and 

glottalization. During an acoustic analysis for 

understanding the tonal patterns of Urdu speech, it has 

been observed that the structure of Urdu phrases is 

very different from English phrases in the spoken 

Urdu sentences. In Urdu, word and phrase boundaries 

are not marked in accordance with the rules followed 

by English; i.e. the behavior of Urdu BI is very 

different from the conventions followed by English. 

Due to the presence of accentual phrase, Urdu phrase 

structure resembles with the phrase structure of South 

Asian languages. Therefore, there is a need to re-

design the phrase model, and develop new standards 

for marking BI for Urdu speech. 

    The manual labeling of phrase boundaries in speech 

corpus is a time consuming and laborious activity. 

Machine learning based systems can be used for 

making the annotation process efficient, but such 
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systems require large amount of annotated data, which 

is not readily available for under-resourced languages, 

such as Urdu. 

    In this paper, we present a detailed acoustic analysis 

that has been carried out for developing a phrase 

model for Urdu speech. An automatic BI labeling 

system has been proposed to annotate the BI in the 

Urdu speech corpus.  Section 2 presents a survey of 

the existing work for the topics of phrase modeling and 

break index annotation. The results and discussions 

are covered in section 4, whereas the findings of this 

research are concluded in section 5. In section 6, we 

propose the future directions which can be pursued to 

further investigate the process of phrase modeling. 

 

2. Literature Review 
 

For long-form reading, phrase model serves as one 

of the most important components for improving the 

naturalness of a TTS system [2].  The phrase model 

has been constructed by analyzing textual features 

such as dependency tree features, Part Of Speech 

(POS) and word embeddings. For improving the 

prediction of phrase boundaries, these features have 

been given as input to train Bidirectional Long Short 

Term Memory (BiLSTM) and Classification And 

Regression Trees (CART) based systems. Both 

subjective and objective testing has been carried out to 

compare the performance of  BiLSTM and CART 

systems. The evaluation results have shown that better 

performance has been obtained by using word 

embeddings and BiLSTM.  

A language independent BiLSTM-CRF 

(Conditional Random Fields) model has been 

proposed for prosodic boundary prediction [5]. The 

architecture consists of three layers, i.e. word 

embeddings, BiLSTM and CRF. These three layers 

learn from task-specific embeddings, past and future 

features and sentence level information respectively. 

The system has been evaluated for Mandarin and 

English speech. The results show that using the 

proposed model, the intonational phrase prediction has 

been significantly improved as compared to the 

traditional BiLSTM method. 

BI labels have been automatically annotated for 

Japanese and English speech, using only the 

information extracted from the speech signal [6]. The 

automatic labeling is carried out without using any 

other prior information, such as transcriptions or word 

boundaries. For this purpose, spontaneous Japanese 

speech has been used to train BiLSTMs. The trained 

system is used to annotate Japanese and English 

speech, and a cross-lingual comparison is made with 

the monolingual English labeling system. The 

evaluation results have shown that the system trained 

with Japanese speech performed better for the BI 

labels 1 and 2, while the system trained with English 

speech performed better for the Break Index label 3. 

The less frequent labels in the data have not been 

accurately detected. The proposed cross-lingual model 

can be applied when sufficient amount of data is not 

available for training a monolingual break index 

labeling system.  

An analysis is carried out to observe the impact of 

the size of focus constituents on phrase boundaries in 

French [7]. The experimental results have shown that 

an accentual phrase boundary gets converted into an 

intermediate phrase boundary, if it forms the right 

edge of a narrow focus constituent. However, an 

intermediate phrase boundary remains unaffected in 

the presence of a narrow focus constituent in its 

surrounding context. 

Intonational phrase break prediction models have 

been developed to automatically predict phrase breaks 

in American English [8]. Binary classifiers, based on 

logistic regression from the LLAMA machine learning 

toolkit are used. 50 hours of recorded speech are used 

for building the system. The prediction models are 

data driven, based on features including lemmatized 

words, POS, punctuation, distance from punctuation, 

as well as dependency-relation features. An overall 

prediction accuracy of 84.7% has been obtained. 

A model for detecting prosodic boundaries in 

Russian speech, using syntactic as well as acoustic 

information, has been presented [9]. It is based on a 

two level architecture, where the possible phrase 

boundaries are marked by using syntactic information, 

with the help of a dependency tree parser in the first 

step. In the second step, a Random Forest (RF) 

classifier uses a small set of acoustic features, such as 

tempo, pitch range and amplitude etc., to mark the 

actual prosodic boundaries. The duration of pauses has 

been reported to be the best amongst all acoustic 

features used for predicting prosodic boundaries. 

For Indian languages, the analysis of phrases 

becomes very difficult if there is no punctuation in the 

text [10]. In read sentences, the units in between the 

pauses are considered as phrases for analysis. It has 

been observed that the length of inter-pausal units 

follows a Gamma distribution. An analysis of shape 

and scale parameters of speech has shown that these 

parameters have dependence on the location of inter-

pausal units. This information is utilized to improve 

the prosody modeling of TTS system for four Indian 

languages. The results have shown considerable 

improvement in the naturalness of synthesized speech. 

An automatic prosodic transcription system has 

been reported for Bengali and Odia languages [11]. 3 

levels of breaks are annotated, i.e. word breaks are 

represented as B1, phrase breaks as B2 and sentence 

breaks as B3. For labeling BI automatically, short term 

energy (STE) of speech signal is considered. The 
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energy associated with silence is negligible as 

compared to unvoiced and voiced regions. Also, 

unvoiced segments have very small duration as 

compared to silence and voiced segments. The 

duration thresholds for B1, B2 and B3 have been 

determined by histograms. From the results, it is 

observed that the automatic BI tagging system 

detected many spurious breaks, which were not 

perceived during manual tagging. 

For Urdu speech, a 5 level scale (from 0 to 4) has 

been presented for annotating break indices [4]. 

Acoustic features including pitch contour, duration of 

pauses and glottalization have been considered for 

analysis. 1036 files from CLE Urdu speech corpus are 

used; comprising of simple sentences. An automatic 

BI labeling system is developed to annotate 10 hours 

of speech. The reported analysis does not include 

complex predicates and compound sentences. 

 

3. Proposed Methodology 

This section includes the details of the data 

collection, analysis and rules developed to formulate 

phrase model for Urdu. 

 

3.1. Data Acquisition 

From CLE Urdu Speech Corpus, 1403 files have 

been acquired for carrying out break index analysis. 

Out of these files, 983 files are used as training data to 

develop the automatic BI labeling utility. The 

remaining 420 files have been kept as unseen data for 

testing the performance of the automatic BI labeling 

system. 

 

Table 1 shows the counts of the BI tags found in 

the training data. 

 

TABLE 1 Training data counts 

Tag Total Count 

0 194 

1 1320 

2 3948 

4 1410 

Total 6872 

 

Table 2 shows the counts of the BI tags found in 

the testing data. 

 

 

TABLE 2 Testing data counts 

Tag Total Count 

0 86 

1 1097 

2 2663 

4 1012 

Total 4877 

From tables 1 and 2, it can be observed that in Urdu 

speech corpus, BI level “2” tag has the highest 

frequency, whereas BI level “0” tag has the lowest 

frequency. This shows that accentual phrase boundary 

i.e. level '2' BI occurs most frequently as accentual 

phrase is the basic unit of Urdu prosody. BI level '0' 

i.e. the words using zair-e-izafat, vao izafat and the 

pronoun case marker combinations occur less 

frequently in the data selected for the phrase model 

analysis of Urdu. 

3.2. Rules for Automating BI Tagging 

As BI is marked between words and from words to 

silence, so the onset of each word of a sentence would 

not be assigned any BI level. The stress [12], 

intonation [13] and POS [14] tiers have already been 

accurately marked in the Urdu speech corpus. The 

information provided by these tiers is used to 

formulate rules for automatic BI marking. 

Figure 1 shows an example of a speech file 

containing the Urdu sentence, “US KA_Y 

SA_AT_D_H APNA_Y RAVAJJA_Y PAR 

MUD_Z_HA_Y AFSO_OS T_D_HA_A”. 

(Translation: I was sorry for my behavior with him), 
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in which all the 4 levels of break indices (0, 1, 2 and 

4) have been automatically labeled, according to the 

automatic BI labeling rules. 

The rules formulated for automating the process of 

BI tagging are given as follows. 

 

3.2.1. Break Index 4  
 

1. In the first run, mark “4” if the following tag is 

“SIL”. 

2. In the second run, mark “4” aligning with every 

“%” symbol on the intonation tier i.e. “LH%”, 

“H%” and “L%” as % symbol denotes a full 

intonation phrase boundary and is used at the end 

of clauses and sentences only. 

In Figure 1, it can be observed that BI level ‘4’ is 

marked at the end of the word “T_D_HA_A”, in 

accordance with the first rule, as it is the last word of 

the sentence, followed by “SIL”. At the end of the 

word “SA_AT_D_H”, BI level ‘4’ is marked in 

accordance with second rule, as it aligns with the 

intonation tag “L%”. 

3.2.2. Break Index 2  
 

Mark 2 aligning with every “Ha” or “La” tag on 

intonation tier. “Ha” and “La” tags show an accentual 

phrase boundary. An accentual phrase usually 

comprises of a pitch accent and a boundary tone and it 

is the smallest unit of Urdu prosody instead of a word 

as multiple words are joined to form one accentual 

phrase in Urdu. In other languages e.g. English, BI 

level '2' is used to mark strong juncture with no tonal 

markings.  But we have used BI level ‘2’ for accentual 

phrases as accentual phrase is found in South Asian 

languages only. 

In Figure 1, it can be observed that BI level ‘2’ is 

marked at the end of words, “KA_Y”, “APNA_Y”, 

“PAR”, “MUD_Z_HA_Y” and “AFSO_OS”, 

aligning with the “Ha” intonation tag. 

 

3.2.3.  Break Index 0  
 

Mark “0” in the following contexts: 

1. At the onset boundary ofzair-e-izafat, A_Y with the 

POS tag CN  

2. At the onset boundary of vao-izafat, O_O with the 

POS tag CN  

3. Between the following pronouns and case markers: 

a. Between US/اس with the pos tag PR and 

KA_Y/کے  with the pos tag AP 

b. Between UN/ان with the pos tag PR and 

KA_Y/کے  with the pos tag AP 

 

Personal pronouns in Urdu completely lose their 

word boundary when followed by certain case markers 

taking BI level '0' between them and behaving as one 

prosodic word. See Appendix A for the list of such 

pronouns and case markers. 

In Figure 1, it can be observed that BI level ‘0’ is 

marked at the end of the word “US”, as its POS tag is 

“PR” and it is followed by the word “KA_Y” with the 

POS tag “AP”, in accordance with the rule 3 (a). 

 

3.2.4. Break Index 1 
 

Mark 1 at all the remaining word boundaries as BI 

level '1' is used for default word boundary, when two 

words are not merged as in BI level '0', or there is no 

FIGURE 2 An example of a speech file that has been automatically annotated for all BI levels (0, 1, 2 and 4). 
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accentual phrase as in BI level '2', or there is no silence 

or full intonation phrase as in BI level '4'. 

In Figure 1, it can be observed that BI level ‘1’ is 

marked at the end of the word “RAVAJJA_Y”, as it 

does not follow the rules mentioned for BI levels ‘0’, 

‘2’ and ‘4’. 

 

4. Results and Discussion 
 

Table 3 shows the results obtained after 

automatically labeling the unseen testing data, and 

comparing it with the manually labeled gold standard 

corpus. 

 

TABLE 3 Automatic BI labeling results obtained 

with unseen testing data. 

Tag 
Total 

Count 

Marked 

Count 

Coverage 

(%) 

Accuracy 

(%) 

0 86 86 100 100 

1 1097 1084 96 97 

2 2663 2657 99 97 

4 1012 983 96 99 

Total 4887 4810 Avg=97.8 Avg=98.3 

 

From the above table, it can be observed that the 

level “0” tag has been automatically marked with 

100% accuracy, whereas its coverage is also 100%. A 

very high percentage of coverage has been obtained 

for all of the four BI tags, with an overall coverage of 

97.8%. The results obtained for accuracy are also quite 

promising, as an average accuracy of 98.3% is 

obtained.  

The reason for obtaining such high quality 

performance is the fact that the automatic BI labeling 

system only utilizes the information from already 

accurately annotated tiers i.e. stress, intonation and 

part of speech (POS) tags from the speech corpus, and 

does not rely on extracting information from the pitch 

contour at run time for BI tagging. 

The stress tier contains information about the 

stressed and unstressed syllables. The intonation tier 

indicates the high and low tones of the pitch at 

accentual phrase boundaries and pitch accents. This 

annotated information has been used to get an idea of 

the pitch contour, for marking BI in the speech corpus 

at any point of time. 

 

5. Conclusion 
 

A detailed acoustic analysis has been carried out for 

understanding the behavior of phrase breaks, to 

develop a phrase model for Urdu speech. The features 

considered for this purpose include POS, annotated 

intonation and stress information. 

It has been observed that Urdu speech contains four 

levels of break indices i.e. 0, 1, 2 and 4, for 

establishing prosodic relationships between words. 

The outcomes of this analysis have been used to 

develop an automatic BI labeling system. The 

developed system has provided coverage of 97.8%, 

and an accuracy of 98.3% with unseen testing data, 

which is quite promising.  

 

6. Future Work 
 

In future, the automatic BI labeling utility 

developed during this research will be used to annotate 

phrase breaks in the remaining 9 hours of CLE Urdu 

speech corpus. This annotated corpus will be used as 

input to train the speech synthesis module of Urdu 

TTS system, to improve the naturalness of synthesized 

Urdu voice. 

 Analysis for phrase modeling of long-form Urdu 

speech can be carried out in order to observe the 

patterns of phrase breaks during the reading of long 

Urdu paragraphs. The outcomes of such analysis can 

be utilized to improve the naturalness of Urdu TTS for 

audio books and screen readers. 
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Appendix A 

 

Lists of Urdu pronouns and case markers to be considered for Break Index 0 rule. 

 

 

 

  
Case Markers 

SA_Y 

NA_Y 

KO_O 

KA_A 

KI_I 

KA_Y 

MA_Y_N 

Pronouns 

MA_E_N 

MUD_Z 

T_DUD_Z 

A_AP 

T_DU_U 

T_DUM 

HAM 

IS 

US 

UN 

SAB 

VO_O 

IN 
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Abstract 
 

We present ongoing work on the development of an 

annotated corpus resources project for Sindhi.  A multi-

layer annotation model is presented and experimentally 

applied on a subset of an existing plaintext Sindhi 

corpus. The multilayer model may possibly include 

different annotation layers like part-of-speech, 

morphological features, phrase structure, and 

dependency structure, etc. A compact POS tagset based 

on universal pos tags is considered for the POS 

annotations layer. Initially, a gold standard of 0.1 

million words balanced corpus is created by using 

manual tagging tools with inter-annotator agreement 

considerations. A model is also trained with this gold 

standard corpus. Testing and evaluation show 

precision, recall, and F-measure accuracies with 97%, 

96.7%, and 96.9% respectively. 

 

1. Introduction 
 

Annotated corpus is an important language resource 

used in theoretical and computational linguistics to 

reveal the deep linguistic structures and capture the 

computational properties of a natural language. Modern 

language technologies use these insights to develop high 

performance software systems with natural language 

processing and understanding capabilities [1]. Being 

under resourced language, annotated corpus resources 

for Sindhi are rarely available. This work presents an 

initiative of annotated corpus resources development 

project for Sindhi. Main objective is to lay down the 

foundations of multipurpose annotated corpus 

development model. A corpus development model with 

possibility of multiple annotation layers is presented. 

The proposed model is based on James Pustejovsky & 

Amber Stubbs model [2] with some changes. Initially 

this model is used to develop part-of-speech (POS) 

tagged corpus of Sindhi. Subset of an existing Sindhi 

corpus [3] is used for experimental development of pos-

tagged corpus. At the outset first layer is annotated with 

part-of-speech tags. An obligatory POS tagset based on 

universal POS tags is used for annotations. Webanno [4] 

was initially used for manual annotations to create a 

gold standard for machine learning. Later on, Stanford 

tagger [5] was used for machine learning and automatic 

pos tagging. Gold standard is incrementally developed 

by automatic tagging and manual tweaking of wrongly 

tagged words in different sub-sets of corpus under 

consideration. 

subsequent sections discuss the existing work, 

proposed multilayer annotation model, development of 

pos-tagged corpus, results, future work, and conclusion.  

 

2. Existing Work 
 

Only few corpus development studies for Sindhi are 

there which include Rahman (2010) [3], Mazhar, et., al. 

[6], and Syed & Bhatti (2018) [7]. In first study Rahman 

(2010) presented Sindhi corpus construction project. 

The corpus collection cleaning and organization process 

is discussed with plain text corpus analysis results 

including unigram, bi-gram, and tri-gram frequencies. 

This work lacks the annotation model and its 

implementation. In second study Mazhar, et. al., (2019) 

presented the development and analysis of Sindhi 

corpus for feature attributes and sentiment analysis. This 

corpus is made available as a dataset with around seven 

thousand (7000) entries annotated with universal POS 

tagset. Entries mostly include discrete sentences without 

any continuity of topic. Dataset includes universal pos-

tags, with morphological (number, gender, and person) 

information, negative, positive sentiment and polarity 

values. The third study Syed & Bhatti (2018) presented 

an XML based document structure for development of 

Sindhi corpus. However, only document structure 

model is presented, and linguistic annotations are not 

discussed in this study. 

Other related studies are mostly about pos tagger 

development and training, and development of tagsets 

for Sindhi Language [8]. [9] and [10] present POS 

taggers with reasonable accuracy results, however, there 

is no publicly available annotated corpus except [6] 

discussed above.  

 

3. Annotated Corpus Development Model 
 

As discussed above, particularly for this corpus 

development project a subset of an existing plain text 

corpus [3] is selected for experiments and final 

annotations. However, the overall corpus development 

model is shown in Figure 1. Various phases of corpus 

mailto:muteeurahman@gmail.com
mailto:tafseer@gmail.com
mailto:shaheer.memon@isra.edu.pk
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development process are summarized in the figure. 

Guidelines include the necessary documentation 

regarding what annotators need to know about the 

corpus and its overall design including the corpus subset 

selection criteria, annotations, and annotation process 

guidelines. Selected corpus segments, and tagset 

alongwith guidelines are given to annotators for manual 

annotations. Different phases of the presented model are 

discussed in subsequent sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Annotation Structure & Representation 
 

The annotation model is designed as a multilayer 

model where each annotation layer is independent of 

other layers. This model is inspired by Stand-off 

annotation by Character Location [11]. This not only 

solves the white-space tokenization problems but allows 

simultaneously different layers on same text 

token/entity with possibility of links between them. 

Table 1 shows a three-layer sample of layered 

annotation model with part-of-speech tag, 

morphological feature tag, and syntactic function tag 

layers.  

 

 

 

Table 6. Layered Annotations 

Text ڇوڪريء   مون تي ڀروسو ڪیو 

POS Tags : VERB NN ADPP PRON NN 

Morph Tags: SMPAST SMNOM OBL SGOBL SFNOM 

FUNC-Tags: VC NP-POF PP-OBL NP-SUB 

 

XML representation of above model are as given 

below: 

 
<TEXT>  <TEXT/> ڪیو ڀروسو تي مون ڇوڪريء  

<POSTAGS> 

 <NN id="N0" start="1" end="7" text="  ڇوڪريء" /> 

 <PRON id="P0" start="9" end="11" text="مون" /> 

 <ADPP id="A0" start="13" end="14" text="تي" /> 

 <NN id="N1" start="16" end="21" text="ڀروسو"/> 

 <VERB id="V0" start="23" end="25" text="ڪیو"/> 

</POSTAGS> 

<MORPHTAGS> 

 <SFNOM id="SFO0" start="1" end="7" text="  ڇوڪريء"/> 

 <SOBL id="SO0" start="9" end="11" text="مون" /> 

 <OBL id="O0" start="13" end="14" text="تي" /> 

 <SMNOM id="SMN0" start="16" end="21" text="ڀروسو" /> 

 <SMPAST id="SMP0" start="23" end="25" text="ڪیو" /> 

</MORPHTAGS> 

<FUNCTIONALTAGS> 

 <NPSUB id="NS0" start="1" end="7" text="  ڇوڪريء"/> 

 <PPOBL id="PO0" start="9" end="14" text="مون تي"/> 

 <NPPOF id="NPF0" start="16" end="21" text="ڀروسو"/> 

 <VC id="VC0" start="23" end="25" text="ڪیو" /> 

</FUNCTIONALTAGS> 

 

Layers (<POSTAGS>, <MORPHTAGS>, 

<FUNCTIONALTAGS>) contain tags of different 

categories. For example, <POSTAGS> layer contains 

NN (Common Noun), PRON (Pronoun), ADPP 

(Postposition), and VERB tags. Multiple tags within 

same category have unique id attributes followed by 

starting and ending position of a token being annotated 

in the text. It can be seen that multiple layers can mark 

same location (token) with different tags without 

disturbing each other. For example, in case of token 

 ,girl” a common noun with singular“) ”ڇوڪريء  “

feminine, nominative features) pos tag layer marks it as 

a common noun tag “NN”, morphtags layer marks it 

with singular feminine and nominative features 

(SFNOM), and functional tags layer marks the same 

token as noun phrase subject (NPSUB) function. 

Overlapping can also be observed where multiple tags 

of one layer are part of single tag of another layer. This 

can be seen in functional tags layer where PPOBL 

(Postpositional Oblique Phrase) spans over the start 

position 9 to ending position 14 marking single token at 

 

 

Figure 3. Annotated Corpus Development Model 
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functional layer, whereas other layers have two different 

tags within the same span.  

 

3.2 Tag-Set Considerations 
 

Sindhi has rich morphological constructions as 

compared to its neighboring languages. Along-with 

various sub-classes of different parts of speech 

morphological feature include number, gender, and case 

in nouns. Morphology also includes rich pronominal 

suffixation system with nouns, verbs, postpositions, and 

adverbs. Verbs also have complex morphological 

causative system. To avoid extra granularity levels 

initial experimental design of tag-set includes only 

major parts of speech categories. Morphological 

features are considered as a separate layer and are not 

discussed in this paper. POS tagset considered for 

tagging is based on Universal POS tags [12] and is 

shown in Table 2.  

 

Table 7. Obligatory Tagset Based on Universal POS 

Tags 

S.No. POS POS-Tag 

1. Common Noun NN 

2. Proper Noun NNP 

3. Pronoun PRON 

4. Adjective ADJ 

5. Adverb ADV 

6. Preposition ADP  

7. Postposition ADPP 

8. Conjunction CONJ 

9. Interjection INTJ 

10. Particle PRT 

11. Negation NEG 

12. Punctuation . 

13. Number NUM 

14. Other Symbols / Unknown X 

 

3.3 Corpus Selection for Annotations 
 

Two sections (representing two different genres of 

text) of existing corpus [3] are selected for annotations. 

Selected corpus sections include news and folk stories 

Reason behind the selection of these two genres is that 

news section contains written language with well-

formed sentences and folk stories contain vocabulary 

used by common people in everyday life. Together these 

two genres represent the Sindhi language of everyday 

use. 0.1 million words corpus from these two genres 

(approximately half from each genre) is annotated and 

used as gold standard for machine learning to automate 

the pos-tagging process. 

 

3.4 POS Tagging Process 
 

As discussed earlier that selected corpus is annotated 

with parts of speech tags. Three different annotators 

were given segments of text for manual POS tagging. 

WebAnno [4] tool was used for manual POS tagging. 

Figure 2 shows the snapshot of pos tagging screen in 

WebAnno.  

 

 
Figure 2. Screenshot of Webanno Tagging Window 

Manually annotated segments were then discussed 

among three annotators to sort out the differences in 

annotations. These three agreed upon tagged segments 

were finally combined to have an initial gold standard 

for machine learning.  Stanford pos-tagger was trained 

on this data and training model was used to tag text 

segments automatically. These automatically tagged 

segments were again given to annotators for review and 

corrections. Correct segments were incrementally added 

to gold standard.  This process is shown in Figure 3. 

During this process the usability of compact POS-

 

 

Figure 3. Gold Standard:  Incremental Development 

Process 
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Tagset being considered was also discussed and 

evaluated by annotators. 

  

4. Discussion, Results, and Evaluation 
 

Selected subsets of Sindhi corpus include newspaper 

and folk stories genres. The major reason behind 

selecting these two genres was their representativeness 

of language. During corpus analysis it was found that 

newspaper corpus represents well formed written 

language which does not necessarily include the spoken 

language flavor. Folk stories on the other hand are 

transcriptions of stories narrated by folk storytellers and 

include rich linguistic features of language used in 

everyday life. It was found that most interesting 

linguistic features including the pronominal suffixes, 

causatives, and inflectional variations were more 

frequent in folk stories. In contrast newspaper corpus 

rarely included those features and is mostly comprised 

of formal written language.  

As discussed earlier, internal structure of developed 

corpus is represented as XML based standoff annotation 

by character location. This notation is LAF (Linguistic 

Annotation Framework an ISO standard) [13] 

compliant. Despite of internal XML based 

representation, the annotated corpus is easily 

representable by using common inline tagged notation 

format. Screenshot of an automatic annotation result 

generated by Stanford Tagger is shown in Figure 4. It 

may be noted that this output shows the POS layer in 

inline format where “_” underscore is used as a tag 

separator. 

 

   

  By using incremental approach shown in Figure 3 

and discussed in section 3.4, 0.1-million-word corpus is 

tagged and verified as a gold standard. Model trained by 

using this gold standard is used for automatic POS 

tagging. Sample output of such tagging is shown in 

Figure 4. Tagger produces results with 97.0% and 

96.7% precision and recall respectively. The given F-

measure results are 96.9%. Reasonable accuracy is 

achieved by trained POS tagger. Most of the error 

patterns are with the tokens where same token form has 

more than one POS tags. For example, token “بند” can 

either be a common NN (stanza) or a VERB (close).  

Few errors are due to probabilities of noun clusters 

where inner proper noun NNP or adjective ADJ is 

tagged as common noun NN. For example, in cluster 

 is tagged ”مڪمل“ the inner token ”صورتحال مڪمل طور“

as common noun NN instead of adjective ADJ due to 

higher probability of three common noun clusters in 

training data.  

 

5. Conclusion and Future Work 
 

Linguistic resources for Sindhi are rarely available, 

this work provide the basis for annotated Sindhi corpus 

resources development with different kinds of 

annotations. As an experiment compact version of POS 

tags based on Universal POS tags is used to annotate the 

selected segments of existing pre-processed and cleaned 

corpus. First the usability of the compact POS tagset 

was analyzed and annotators did not find any major 

problem while annotating the corpus using compact 

POS tagset. Second, the tagged corpus was used to 

develop gold standard for machine learning this helped 

the annotators to speed up the annotation process. Gold 

standard is evaluated by using machine learning model 

of Stanford POS tagger and results show reasonable 

precision and recall accuracy between 96 – 97%. These 

experimental results are encouraging, and the corpus 

development is being extended to other layers 

incrementally. Corpus distribution model is also being 

worked out to share the corpus resources. This will help 

to build more robust computational resources and 

models for Sindhi language processing. We also plan to 

use this model to develop annotated corpus resources for 

other Pakistani languages. 
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Abstract 
 

    Different applications including search engines, 

plagiarism detection systems and recommender systems 

need to crunch the data frequently after a specific period 

of time. The data indexing and retrieval for such 

applications is becoming popular research area due to 

availability of huge electronic content through Internet, 

which is growing rapidly on daily basis. TF-IDF based 

term weighting scheme is commonly used to extract 

features of a document which are used for relevant 

document searching. In this paper, TF-IDF algorithm is 

analyzed and an efficient implementation of TF-IDF 

algorithm is proposed to handle such dynamic text data. 

Two major improvements of the traditional TF-IDF 

algorithm are proposed; (1) Algorithm-1: Expansion of 

IDF using logarithm properties and (2) Algorithm-2: 

Store lookup of term frequency, document frequency and 

IDF for reuse in next batch and efficiently update IDF of 

terms. The systems are evaluated on dataset of 100,000 

Urdu documents. Traditional TF-IDF algorithm takes 

2676520 ms (10256 ms for IDF calculation) to process 

complete dataset. Algorithm-1 takes 2676272 ms (10008 

ms for IDF calculation), showing time efficiency in IDF 

calculation. Algorithm-2 is specifically designed to 

handle the dynamic growth of the data, which calculates 

the new IDF of a term using the previously computed 

IDF. This algorithm takes 707823 ms to process 100,000 

documents. Another contribution of this study involves 

reduced memory consumption for TF-IDF vectors using 

the sparse representation of vectors. This reduces 

8,945,445 MB to 353 MB to store TF-IDF of 11,724,976 

terms computed from 100,000 Urdu documents. 

  

1. Introduction 
 

Due to rapid advancement in the development of 

Information and Communication Technologies (ICTs), 

electronic content is easily accessible in the form of 

blogs, online articles, books, magazines, newspapers, 

research papers and theses etc. To provide real time 

accessibility of the relevant content, an efficient 

information retrieval system is important. The research 

in the fields of data mining, search engines and similarity 

computation among documents for plagiarism detection 

is becoming popular to handle huge dynamic text data 

which is increasing on a daily basis. Processing of such 

large dataset is a challenging task. To develop such 

applications, text data is processed in such a way so that 

meaningful information can be extracted efficiently.  

Various term weighting schemes such as Mutual 

Information, Okapi, LTU [1-3]and TF-IDF are used to 

process massive datasets. Among all these schemes, TF-

IDF based term weighting scheme is commonly used 

technique [4] to extract features of the document which 

are used for searching the relevant document, text 

mining and text classification etc. 

To process the text for similarity computation, data is 

processed and converted into the structured form which 

can easily be used for similarity computation. For this, 

three structures are used for document representation, 

which include inference network [5], probabilistic [6] 

and Vector Space Model (VSM).  Among all these 

models, VSM is most widely used model [7]. The VSM 

contains a vector representation of weighted terms of a 

document. 

There are two ways to find the similarity between the 

documents; (1) Local similarity and (2) Global 

similarity.  Local similarity refers to the technique which 

tries to find the sequence of words which are same in two 

documents. Usually cosine similarity based on vector 

space model of terms (n-grams, n>1) is used to find the 

similarity between two documents. However, Global 

similarity based techniques rely on the unigram do not 

cover the context. The similarity results of such 

technique are meaningless in cases when two documents 

have exactly similar terms but their sequence is never the 

same.  Therefore, researchers prefer to use local 

similarity for applications which requires sequence of 

the words to be matched [8]. 

For huge datasets, term weighting schemes are 

applied for query retrieval or similarity calculation 

purposes. A lot of research in this area has emphasized 

on importance of using phrases as terms. Due to 

improved accuracy of results, bigram and trigram based 

phrases are preferred over unigrams [9]. In case of 

Global similarity [8], similarity score between two 

documents is highly unreliable. Therefore, we cannot 

predict the documents to be exactly similar irrespective 
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of high similarity score. Due to this reason, trigrams are 

used as terms for enhanced accuracy of the system. 

To develop real time system for search engine, 

plagiarism detection system etc. huge amount of dataset 

is required. In addition, it is also essential to find the 

document similarity with minimum time. Hence, term 

weighting scheme needs to be implemented efficiently. 

The re-computation of term weights in case of 

dynamically growing data on daily basis is also 

challenging, even if there is small change in the actual 

content. The major contributions of this study are given 

below 

 Algorithm-1 incorporates an efficient implementation 

of TF-IDF calculation for huge data. 

 Algorithm-2 is an efficient implementation of TF-IDF 

calculation for dynamically growing data on daily 

basis.  

 The memory consumption of TF-IDF vectors is also 

reduced by using sparse representation of vectors 

instead of dense vector representation. 

 The rest of the paper is organized as follows: Section 

2 describes related work. Section 3 provides explanation 

of proposed algorithm by using logarithm properties and 

lookup storage to improve computational time of TF-

IDF. Section 4 involves a brief discussion of dataset used 

for experimentation. The experimental evaluation and 

their results are discussed in Section 5 and finally 

Section 6 concludes research study. 

 

2. Related work 
 

The idea of inverse document frequency was first 

proposed by Jones [10]. Jones emphasized the idea of 

specificity by introducing the concept of collection 

frequency i.e.  the words which are less frequent in a 

collection should have more weight [10]. Salton and Yu 

[11] used same technique in information retrieval and 

observed retrieval effectiveness by using  precision and 

recall as evaluation metrics [11]. In addition, Salton and 

Yu [11] also figured out that the TF-IDF algorithm 

performed well in document retrieval. TF-IDF is a term 

weighting scheme which assigns weights to terms 

depending on their significance in the corpus. Its major 

principle is based on the fact that a more frequent term 

in a document with less frequency in overall documents 

(i.e. document frequency) will have high TF-IDF weight 

and vice-versa.  

The calculation of TF-IDF is carried out using (1) 

which is based on the term frequency (TF) and inverse 

document frequency (IDF), and are calculated by using 

following equations 

      𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) ∗ 𝐼𝐷𝐹(𝑡)             (1) 

Term frequency is calculated as follows 

                𝑇𝐹(𝑡, 𝑑) = 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡 𝑖𝑛 𝑑                  (2)                                 

 

Where t, d stands for term (i.e. trigrams in this study) and 

document respectively. The IDF is calculated using (3) 

 

                         IDF(t) = log (
TotalDocSize

DF(t)
)                (3) 

 

Where, TotalDocSize is the total number of 

documents in the corpus, which is processed to compute 

the TF-IDF of all terms in corpus. In addition the DF is 

the Document Frequency which is computed using (4). 

 

DF(t) = ∑ tdTotalDocSize
i=1      {

td = 1       if t in di

td = 0    otherwise
       

                                                                                         (4)    
 
     Where td denotes the presence of a term in a 

document.  

The calculation of the IDF is further improved by 

using the concept of smoothing introduced in [12] as can 

be seen in (5).   

          IDF(t) = 1 + log(
TotalDocSize+1

DF(t)+1
)               (5) 

TF-IDF is extensively explored to utilize TF-IDF for 

text classification, document retrieval and plagiarism 

detection systems [13-15]. A lot of research is done to 

improve TF-IDF algorithm in terms of accuracy [14, 16, 

17]. In addition, a few efficiency improvements of the 

TF-IDF are also suggested. Bin and Yuan [18] presented 

a technique for the efficient computation of TF-IDF from 

large data using Hadoop as main framework. Hadoop 

supports data distribution on multiple machines. In 

addition Map/Reduce scheme was also used for fast 

calculation of TF-IDF. The main shortcoming of the 

work [18] is that the data is assumed to be static which 

means data will not be updated once it would be indexed.  

Gu  et al. [19] used parallel cloud computing framework 

which is based on GPU and MapReduce to improve the 

efficiency of TF-IDF algorithm. 

 

3. Methodology 
 

In context of document relevance, n-grams based 

similarity calculation is used to provide very accurate 

results with emphasis on use of trigrams as a term  [9]. 

TF-IDF algorithm uses VSM to represent TF-IDF 

computed over each document in complete corpus.  In 

this study, an efficient implementation of TF-IDF is 

proposed. As a first step, Traditional Algorithm of TF-

IDF calculation is implemented with efficient lookup of 

term frequency and document frequency. Algorithm-1 is 

proposed which involves improvement in time by use of 

logarithmic expansion for IDF formula. Most of the real 

world applications like search engines, plagiarism 

detection systems and other information retrieval 
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applications have dynamically growing data. Addition of 

a few more documents compels recalculation of weights 

of all terms in all the documents. Therefore,  Algorithm-

2 is designed in such a way that when a huge corpus is 

indexed using TF-IDF term weighting scheme. The term 

frequency, document frequency and inverse document 

frequency lookups are stored. These lookups are then 

used to update TF-IDF on increment of new documents. 

In this way, term frequency of only newly updated 

documents is calculated. The IDF of new terms is 

calculated using document frequency lookup. The terms 

which do not occur in newly updated documents undergo 

a slight update in their already computed IDF values. It 

reduces the overhead of re-computation and improves 

efficiency. The overhead of memory is also reduced by 

conversion of dense representation of TF-IDF vector to 

sparse representation. 

 

3.1. Traditional TF-IDF Algorithm 
 

A very simple implementation for TF-IDF calculation 

is carried out in [20]. The implementation of this 

algorithm is computationally analyzed and an efficient 

implementation is proposed to reduce the redundant 

calculations. In order to reduce computational time, TF 

and DF for all documents is calculated within the same 

iteration over all documents. This reduces a lot of 

computational time. Separate lookup is maintained for 

each document to store the TFs. For document frequency 

a global DF lookup is created to maintain the document 

frequency of each term. 

Once, the complete global DF lookup is maintained 

over all the documents, another lookup is also 

maintained for IDF (using (5)) by iterating over global 

DF lookup. For TF-IDF calculation, it will iterate over 

each term of every document just once and use the values 

of TF and IDF stored in respective lookups. 

 

3.2. Algorithm-1 
 

The original equation for IDF i.e. (5) is analyzed 

further. By applying the logarithm this computation is 

further reduced as can be seen in (6). 

IDF(t) = 1 + log(TotalDocSize + 1) −
                                 log (DF(t) + 1)                            (6) 

As can be seen in (6), (1 + log(TotalDocSize +
1)) will be calculated only once for all the terms of all 

the documents. In addition log (DF(t) + 1) requires to be 

computed for each term and another subtraction 

operation is required. In addition, running time of 

division operation for n-digit number is 𝑂(𝑛2) and 

running time of subtraction operation is 𝑂(𝑛), thus 

saving more computational effort [21]. 

 In traditional TF-IDF algorithm, the expression 

𝑙𝑜𝑔((𝑇𝑜𝑡𝑎𝑙𝐷𝑜𝑐𝑆𝑖𝑧𝑒 + 1)/(𝐷𝐹(𝑡) + 1)) is calculated P 

times i.e. time complexity is O(P), where P denotes total 

number of terms in global term lookup but due to this 

algorithmic modification redundant calculation of 

log(TotalDocSize + 1))  will be reduced to single time 

calculation i.e. time complexity is reduced to O(1).   

 

3.3. Algorithm-2 
 

Various real time information retrieval and online 

text similarity based applications such as plagiarism 

detection system and search engines are based on 

indexing of huge data. Majority of these systems are 

developed to handle dynamic data, resulting in 

incorporation of the results computed on the newly 

indexed and already indexed data. This is usually carried 

out by indexing the complete data (new and old 

documents). Once, a significant amount of data is 

processed (e.g. 5.5 million documents) then number of 

new documents is minimum may be 1-3% of the already 

indexed content. The document metadata information 

(document name, URL, last modified date, etc.) is also 

maintained while developing such huge systems. 

Therefore, before starting indexing of complete dataset 

(existing and new), document filtering can be applied on 

recently crawled data to filter all those documents which 

are not indexed previously based on metadata 

information. These documents are referred to as 

NewBatch and remaining documents which are already 

indexed documents are referred to as PreviousBatch. The 

NewBatch and PreviousBatch terminology is used 

throughout this paper. 

In order to re-index complete data including data of 

PreviousBatch and NewBatch, a lot of computational 

effort and time will be utilized. Although, the number of 

documents in NewBatch is minimal. Based on analysis, 

a term can be categorized into one of the following 

categories 

 New Terms: Terms which are only present in 

NewBatch. 

 Common Terms: Terms which are present in both 

PreviousBatch and NewBatch. 

 Old terms: Terms which are only present in 

PreviousBatch. 

For new terms, term frequency, document frequency 

and inverse document frequency are computed using (2), 

(4) & (6) respectively, from documents in NewBatch. 

The DFs of terms which are common between 

PreviousBatch and NewBatch are computed from 

NewBatch and will be added in DFs of respective terms 

already stored in the respective DF lookup of 

PreviousBatch. Then, the IDF and TF-IDF are computed 

using the same traditional way. 
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Inverse document frequency of old terms which are 

only present in PreviousBatch is not required to be 

recomputed for obvious reasons. As document 

frequency lookup, inverse document frequency lookup 

and term frequency lookup of each term of the 

PreviousBatch are also maintained and stored separately 

to minimize the re-computation time. Thus IDFs of old 

terms can be calculated from already computed IDFs in 

PreviousBatch by addition of an expression dependent 

only on document size of PreviousBatch and NewBatch. 

In order to calculate the IDF for old terms during re-

indexing of the dynamically growing data, the respective 

IDFs of the PreviousBatch are processed in such a way 

that DocSize of the NewBatch denoted with 

NewDocSize, is incorporated. More precisely the IDFs 

are calculated using (6). Equation 6 for PreviousBatch 

can be written as follows  

IDFPrevious = 1 + log((PreviousDocSize + 1)) −

log (DF(t) + 1)                                              (7) 

We can modify (7) for incorporating TotalDocSize 

when NewBatch is indexed with PreviousBatch. 

IDFNew = 1 + log((PreviousDocSize + 1) + x) −

 log (DF(t) + 1)                                              (8) 

Where PreviousDocSize denotes the number of 

documents in PreviousBatch and x denotes the number 

of documents in NewBatch.  

The term log((PreviousDocSize + 1) + x) can be 

further solved by simplifying the expression in 

logarithm. Let k denotes the term (PreviousDocSize +
1), then the term 𝑙𝑜𝑔(𝑘 + 𝑥) can be written as [22]   

𝑙𝑜𝑔 (k + x) = 𝑙𝑜𝑔 (k (1 +
x

k
)) 

Substituting value of k in (8), following expression 

is obtained 

IDFNew = 1 + 𝑙𝑜𝑔 ( (PreviousDocSize + 1) ×
  

(1 +
x

(PreviousDocSize+1)
)) − log (DF(t) + 1)          (9) 

 

Using Multiplicative property of Logarithm in (9) 

 

IDFNew = 1 + log (1 +
x

(PreviousDocSize + 1)
)

+ log(PreviousDocSize + 1)
− log (DF(t) + 1) 

 

= 1 + log(PreviousDocSize + 1) − lo g(DF(t) + 1) 

  +log (1 +
x

(PreviousDocSize + 1)
) 

Clearly, the bold part is the same as (7). It can be 

replaced with Previous IDF value. 

IDFNew = IDFPrevious

+ log (1 +
x

(PreviousDocSize + 1)
) 

                                                                            (10) 

Equation 10 shows that we can update IDF of old 

terms by addition of an expression dependent on 

NewDocSize and PreviousDocSize. This expression 

needs to be calculated only once before update of IDF of 

all the old terms. 

The main advantage of using this approach is that 

instead of calculating IDF of old terms incorporating the 

total document size, we just need to calculate the 

expression log (1 +
x

(PreviousDocSize+1)
)  only once 

which is based on PreviousDocSize and x i.e. 

NewDocSize.  This approach works well for vast 

dynamic data streams when data is being updated 

frequently. In such cases IDFs can be efficiently updated 

without any redundant re-computations.  

 

3.4. Avoiding Extra Memory Consumption  
 

Next step involves intelligent representation of TF-

IDF vector so that it occupies less space in memory. The 

TF-IDF vector size for each document is the total terms 

computed from the complete dataset.  Since each 

document does not contain all the terms therefore 

majority of the terms contain zero in a document. To 

solve this issue, dense representation of TF-IDF vector 

of a document  is converted to sparse by excluding terms 

having TF-IDF value of zero. An example of dense to 

sparse vector representation is given in Fig.1. 

𝑑𝑒𝑛𝑠𝑒: [5.0  0.0  0.0  4.0  0.0 2.0] 

𝑆𝑝𝑎𝑟𝑠𝑒 = {
𝑖𝑛𝑑𝑖𝑐𝑒𝑠: 0,3,5

𝑣𝑎𝑙𝑢𝑒𝑠: 5.0 4.0 2.0
 

 

Fig.1 Dense and sparse representation 

 

4. Dataset 
 

Traditional Algorithm, Algorithm-1 and Algorithm-2 

are tested on dataset of Urdu web pages and results are 

evaluated.  

5.7 Million Urdu web pages are crawled [23]. Their 

dataset is not publically available as it is crawled from 

various authenticated Urdu websites. A subset of this 

dataset is selected for the performance evaluation of the 

proposed algorithms. Therefore, 0.1 Million Urdu 

documents are used for testing. The detailed statistics of 

selected data is given in Table 1. 
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Table 1.Data statistics 

Total Documents 100000 

Average Words per Document 438 

Average Lines per Document 10 

Average words per line 34 

 

5. Experiments and Results 
 

Urdu has space insertion and deletion issues. Hence, 

unlike English, the words cannot be extracted by 

processing the space. To handle this issue, a pre-

processing is applied on the complete dataset to resolve 

such issues. Urdu word segmentation is applied to the 

dataset used for evaluation purpose, which converts the 

sequence of Urdu ligature to the best sequence of Urdu 

words of a sentence. 

In addition, pre-processing is applied which involves 

normalization, diacritics and punctuation marks 

removal. Then content of a document is processed and 

trigrams as terms are extracted and stored so that TF-IDF 

weighting can be applied. 

As a first experiment, 100,000 documents are 

processed to compare the performance of Traditional 

Algorithm and Algorithm-1. The results are given in 

Fig.2.  As can be seen in Fig.2, the Algorithm-1 

outperforms Traditional Algorithm with efficient 

computation results using the properties of logarithm. 

Traditional Algorithm takes 2676520 ms to process 

complete dataset for the computation of IDF, whereas 

Algorithm-1 takes 2676272 ms to process same dataset 

for IDF calculations. 

 
 

As Algorithm-1 reduces redundant computations of 

expression 𝑙𝑜𝑔((𝑇𝑜𝑡𝑎𝑙𝐷𝑜𝑐𝑆𝑖𝑧𝑒 + 1)/(𝐷𝐹(𝑡) + 1) by 

employing logarithm properties, Moreover, it converts 

division operation for IDF computation of each term to 

subtraction operation. So, the difference between the 

time taken for  IDF calculation between Traditional 

Algorithm and Algorithm-1 is somehow evident.

 
Fig.3. Time comparison for IDF calculation 

 

The second experiment is carried out to find the 

difference between execution time of Algorithm-1 and 

Algorithm-2. While comparing IDF calculation time of 

Algorithm-1 with Algorithm-2, we will also include the 

execution time for document frequency calculation 

along with IDF calculation time because we store the 

lookups of document frequency along with IDF after the 

execution of each batch. Due to this reason, redundant 

document frequency and IDF calculation for common 

and old terms in PreviousBatch and NewBatch are 

minimized. This technique also reduces a lot of 

computational effort and time. 

By visualizing the trend in the graph as can be seen in 

Fig. 3, it can be observed that increment of 20,000 

documents within each new batch results in increased 

execution time for both algorithms. However, this 

increment in execution time is very mild in case of 

Algorithm-2 and very rapid in case of Algorithm -1. 

 Another point worth noticing is the trend of trigrams 

within each batch. The total number of unique trigrams 

in 100,000 documents is given by about 11 Million. If 

each batch introduces 20,000 new documents.

Fig. 2. Time comparison for IDF calculation 
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Table 2. Number of trigrams in each batch 

 

There must be some terms which are not present in 

PreviousBatch and hence their IDF is calculated using 

(6). In our experiment 26% new terms are introduced in 

each batch on average. Some terms are present in 

previous and new batch as well hence their document 

frequency is updated and then their IDF is calculated. In 

our experiment, on average 7% common terms are 

generated with each NewBatch. However, the old terms 

are actually not being used in NewBatch and hence their 

document frequency does not change compelling us to 

update their IDF using the expression log (1 +
x

(PreviousDocSize+1)
). For each new batch, the IDF of 66% 

of total trigrams need to be updated using (10) on 

average. Their detailed statistics are shown in Table 2. 

When evaluating Algorithm-2 in terms of accuracy, 

we find out that Algorithm-2 exhibits 100% accuracy. 

Although, it shows drastic reduction in computational 

time but its accuracy is evaluated to be same as that of 

Algorithm-1. 

Third experiment as shown in Fig.4 is the pictorial 

view of time efficiency of two proposed algorithms 

executed over 5 batches for end to end TF-IDF 

calculation. 

While dividing batches, it is ensured that Algorithm-

1 is executed by increment of 20,000 documents in each 

batch because Algorithm-1 does not store any lookup 

for each batch. However, execution of Algorithm-2 is 

carried out by dividing 100,000 documents into 5 

batches. Each NewBatch contains 20,000 new 

documents only and does not contain any document 

from previous batch. 

By viewing the bar values for Algorithm-1 in Fig.4, 

it is evident that the time for TF-IDF calculation 

increases with the increase in number of documents in 

each batch. Algorithm-1 involves variation in (5) and 

the effect of this variation is evident while IDF 

calculation. Algorithm-2 involves storage of term 

frequency, document frequency and IDF lookups after 

execution of each batch. These lookups are then used in 

NewBatch for IDF calculation, update and TF-IDF 

calculation. Similarly, we can observe in Fig.4 that 

Algorithm-1 takes 44 minutes for executing 100,000 

documents whereas Algorithm-2 takes 11.7 minutes for 

execution of 100,000 documents.  

Forth experiment involves observing the extent of 

memory reduction by incorporating sparse 

representation of TF-IDF vectors created after TF-IDF 

calculation. As total number of unique trigrams in 0.1 

million documents is 11,724,976. So, creating TF-IDF 

matrix will occupy 1 × 105 rows and about 11.7 ×
106columns. This will make the total entries of matrix 

as 

No. of rows × No. of columns = 11.7 × 1011entries     

As each TF-IDF entry is stored as a double in 

memory, so total memory consumed for TF-IDF matrix 

of 0.1 million documents is given by 8735.787 GB. This 

is practically almost impossible to store in main memory 

By observing the vector of TF-IDF for each 

document, it was found that they contain a lot of null 

values and they are redundantly occupying memory. By 

converting the dense representation to sparse 

representation for each document. It was concluded that 

the total number of non-zero terms in TF-IDF vectors of 

100,000 documents are 30,841,481. So, for sparse 

representation of 100,000 documents we need 

30,841,481 double entries and same amount of integer 

entries as shown in Fig. 1. So, total memory occupied 

by TF-IDF vectors of 0.1 million documents will be 353 

MB which is far less than space occupied by dense 

representation. Thus, we save 8735.558 GB. This is 

almost 99.996% reduction in memory being used in case 

of dense representation. 

Document 

Batches 

Total 

Trigrams 

New Trigrams in 

current batch 

Trigrams common 

with previous batch 

Trigrams only in 

previous batch            

(%of total trigrams) 
Batch1(20,000) 3,239,453 None None None 

Batch2(40,000) 6,238,318 2,998,865 732,171 2,507,282 (41%) 

Batch3(60,000) 7,558,982 1,320,664 319,048 5,919,270 (78%) 

Batch4(80,000) 9,743,136 2,184,154 833,066 6,725,916 (69%) 

Batch5(100,000) 11,724,976 1,981,840 715,117 9,028,019 (77%) 
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Fig. 4 TF-IDF calculation using Algorithm-1 and Algorithm-2 over 5 batches 

 

6. Conclusions and Future Work 
 

In this research study, the efficiency of TF-IDF 

algorithm is improved. The existing approaches for 

efficiency improvements of TF-IDF algorithm for huge 

amount of data involve hardware level enhancements 

for parallel computing. Most of the work is based on 

static data. In this paper, two algorithms are presented. 

Algorithm-1 is slight modification of efficient 

implementation of Traditional Algorithm. For 100,000 

documents Traditional Algorithm takes 2676520 ms, 

whereas Algorithm-1 shows an improvement of 248 ms 

compared to Traditional Algorithm. On the other hand, 

Algorithm-2 contains stored lookups of term frequency, 

document frequency and IDF after execution of each 

batch and these lookups are used for TF-IDF calculation 

when each NewBatch is uploaded. It performs very well 

when data for TF-IDF calculation is being updated 

dynamically. In our experiment, for Algorithm-2, 

100,000 documents are processed divided into 5 

batches. Each batch exhibits an increment of 20,000 

documents. Final batch has 100% accuracy and shows 

drastic time efficiency compared to Algorithm-1 for 

processing 100,000 documents. Algorithm-1 takes 

2676272 ms whereas algorithm-2 takes 707823 ms for 

execution of 100,000 documents.  

Another major contribution involves employing 

sparse representation of TF-IDF vectors. It saves a lot of 

memory and reduces 8,945,445 MB to 353 MB to store 

TF-IDF of 11,724,976 terms computed from 100,000 

Urdu documents. 

Future enhancements in this work include modifying 

TF-IDF algorithm in such a way that we can execute it 

on a number of machines concurrently and thus it will 

divides the execution time of TF-IDF calculation 

equivalent to the number of machines used for this 

process. 
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Abstract 
  

    Existing translators like Google Translate, Bing 

Microsoft Translator and Collins Translator does not 

identify gender and tense cases in translation from 

English to Urdu. This paper, primarily based on, ruled 

based methodology to machine translation for English 

(source language) to Urdu (target language), 

handling tense identification and semantic translation 

of gender cases. Data was collected gathered from 

published resources like BBC Urdu, newspapers, 

magazines, novels and literature. POS (Part of 

Speech) tag model and POS-based reordering 

techniques are presented. Analysis and findings 

segment of the research article elucidated our testified 

outcomes in detail. The proposed approach achieved 

79% accuracy. The developed application allows 

contributing towards information to comprehend 

writing, logical inquires and literature in Urdu 

language and translate it in equivalent English 

language. 

 
Keywords: Online Translators, Rule based 

Approach, Gender and Tense Case 

 

1. Introduction 

 
    Natural Language Processing (NLP) has been now 

introduced as an interdisciplinary course in the fields 

of artificial intelligence, linguistics and computer 

science that is very helpful in exploring the usage of 

computers in understanding and manipulating the text 

or speech of natural language [1]. Computer software 

automatically translates the text using Machine 

Translation (MT) methods [3]. In MT, the source 

natural language is converted automatically into a 

new-targeted language, however, keeping the meaning 

of the input text original and fluent in the output 

language, as shown in Fig 1. 

 
 
There are three architectural classifications of MT 

systems i.e. Direct, Transfer and Interlingua 

architectural [8]. In addition, RBMT, EBMT, SMT 

and hybrid are the approaches of MT system [5].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1: Machine Translation Architecture [8] 

 
    Direct Architecture is the basic type of translation 

substituting source language (SL) lexeme with the 

target language (TL) lexeme; Interlingua approach 

necessities a top to bottom semantic investigation and 

the TL is produced through this methodology. 

Transfer approach lies in the middle of the two 

boundaries; it deals with the syntactic dimension and 

includes semantics in a few spots. The syntactic 

arrangement of SL is explored to develop a processed 

structure, plot the rules to change it into TL 

arrangement, and interpretation is then produced with 

the use of TL definite rules. 

    MT provides many benefits like without the human 

translators a large amount of text is converted from 

one natural language to other language which reduce 

spending of money and time with less human efforts 

[7] Google Translate is an online translator that is a 

free of cost text translation system, which implies the 

mailto:naeemtarik@aumc.edu.pk
mailto:shanza.atta@outlook.com
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statistical machine translation patterns and provides 

translations for 55 different languages or more. 

Besides this Microsoft Translator is also available 

which implies EBMT and different SMT translation 

systems. RBMT system is implied by Systran. 

English, Chinese, Arabic, Dutch, French and other 

languages are converted by Systran. Most of the other 

languages worked in pairs with English or French [18]. 

Another one Babel Fish is a web based translator that 

sutepport multilingual translation. Babel Fish 

translator provide services to translate webpages 

among 36 pairs and 13 languages including, Russian, 

Spanish, Korean, English, Dutch, French, Japanese, 

Traditional Chinese, Italian, Simplified Chinese, 

German, Greek and Portuguese [2]. The ImTranslator 

is a free web-based translator that performs translation 

of words, text or phrases between more than 90 

languages. ImTranslator use statistical machine 

translation (SMT), this online translator use statistical 

methods that is based on multilingual texts. Statistical 

machine translation use the existing translation (done 

by human translators) of source and target language 

for making new rules to translate between language. 

The accuracy of the translator is increase by using 

statistical machine translation approach. 

    Issues and problems does exist in machine 

translations that make it difficult such as order of 

words, idioms, ambiguity in word sense, preposition, 

post-position, awareness of gender and context 

because natural languages are very complex. There are 

multiple meanings of most words, various readings are 

available for sentences and grammatical rules of one 

language may differ from other languages. Besides 

this, there are other non-linguistic aspects such as the 

word knowledge and language morphology is needed 

for carrying out translation [6] and [7]. 

    The rest of paper is composed as follow. Section 2 

explains the literature review and related work. 

Section 3 illustrates the strategies and methodology. 

Results and discussion about current work is 

illustrated in section 4. Section 5 closes the article with 

future work indicators. 

 

2. Literature Review 

 

   Development of framework for translation from 

English to Urdu is considerably insufficient in 

comparison with the number of Urdu speakers [13]. 
 

 
More work is highly needed in this field. Urdu has 

been ranked at 19
th

 number out of 7,105 languages 

spoken all over the world. It is one of the most 

common languages in South Asian region [11]. About 

5% to 10% people only can speak or understand 

English in Pakistan [9], [21] and [10]. 

    According to [12], for developing and 

implementing a translator all grammar of SL must be 

developed with bottom-up parsing algorithms. After 

acquiring the parse tree of SL sentences, it is then 

translated according to those grammatical rules in to 

TL sentences. In [14], corpus-based MT system was 

proposed to tackle problems like syntactic and 

structural ambiguity, anaphoric resolution and 

discourse analysis using data mining and text mining 

tools. 

    MT system for English to Bodo [5] uses general 

domain English-Bodo parallel text corpora. But the 

computational system containing information of Bodo 

language was not enough and it required more 

expansion. 

    The authors of [15], proposed a method for 

translating Malayalam text into English. For this 

purpose, rule-based machine translation system was 

used. The system comprises of bilingual dictionaries 

and conversion rules. These rules were implied for text 

conversion from SL to TL. In case of multiple 

meanings in English of a Malayalam word the 

proposed system generated multiple sentences. 

    Whereas, for translating English text into Urdu an 

expert system using Unicode Standards for translation 

was proposed in [16]. The Unicode worked with a 

knowledge base which contained grammatical patterns 

of English and Urdu, as well as a tense and gender-

aware dictionary of Urdu words (with their English 

equivalent forms). In order to avoid the problems 

occurred in case of multiple meaning of a single word 

AGHAZ solution was implemented. A parsing-based 

reordering technique was presented in [17] which were 

used for English-to-Japanese phrase translation. The 

phrase-based translator is used to increase the 

performance of translation through reordering 

technique. The reordering technique was also used in 

the preprocessing stage for syntax base translation. 

    In [18], the author focused on the rule-based case 

transfer, as shown in Fig 2, which was a part of the 

transfer grammar module developed for bidirectional 

Tamil to Malayalam MT system. The presented study
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involved two typologically close and genetically 

related languages, Tamil and Malayalam. They 

considered the basic construction of sentences which 

was highly dependent on the case systems. The rules 

were written by taking into consideration the 

postpositions and cases in the languages. A parallel 

corpus was chosen and deep analyses of the case 

transfer patterns were drawn and rules were written to 

sort out the case changes that happen when translating 

from SL to TL. Web data was used for evaluation and 

the results were encouraging. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 2: Architecture of RBMT [18] 

 

    As [19] presented, a system outline of English to 

Hindi Machine-Aided translation system named 

AnglaHindi. This translation system utilizing rule-

based and example-based approaches, with some 

statistics to achieve more satisfactory and precise 

translation for regular verbs and nouns phrases. This 

approach to some degree combined hybridization of 

rule-based and example-based. 

    A translator that translate English text into Arabic 

by using rule based machine translation approaches 

was also used feed-forward back propagation of 

Artificial Neural Network (ANN) was proposed by 

[4], [20] and [25]. The proposed system translates 

sentences that have prepositional objects, gerunds, 

 
direct and indirect objects, infinitives, etc. Neural 

networks worked with bilingual dictionaries that do 

not have the meanings of English words into Arabic 

but it also store all the linguistic details of words of 

one language to other languages. 

    A translator proposed by [9] to translate English text 

into Urdu text through the use of example based MT. 

The English and Urdu translator supported 

homographs, idioms, and helped out other features that 

had the aptitude of the bilingual corpus to grow. 

    Some examples from traditional MT systems are 

discussed below. Several sentences were taken from 

books, magazines, and online forum to test the gender 

and tense cases. 

 

 

She is playing. (1) 

 وہ کھیل رہا ہے۔[22] 

 وہ چلا رہی ہے۔[23] 

 وہ چلا رہی ہے۔[24] 

 

Amna is my friend. (2) 

[22] - امینہ میرے دوست ہے   

[23]   - آمنہ میرا دوست ہے   

[24]   - آمنہ میرا دوست ہے   

 

The boys wanted to help him. (3) 

 [22]  ۔لڑکوں کو اس کی مدد کرنا چاہتا تھا

 [23] لڑکوں نے اس کی مدد کرنا چاہتا تھا۔

 [24] نے اس کی مدد کرنا چاہتا تھا۔لڑکوں 

 

    In these above statements, Google Translator [22], 

Microsoft Bing Translator [23] and Collins Translator 

[24] showed semantically incorrect translation output. 

A huge demand comes from users who are not familiar 

with English to build an automated system, which can 

cope with such issues. For this, the English to Urdu 

machine translator is designed and developed, which 

is a web-based system for providing correct language 

translation semantically. 
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3. Methodology 
 

    Natural Language Processing Toolkit (NLTK) is a 

main platform for structuring Python programs to 

work with language data. It gives simple interfaces to 

more than fifty corpora and lexical resources such as 

Word Net. It also provides a suite of content handling 

libraries for stemming, tagging, tokenization, 

classification and semantic reasoning. 

    Apart from having a discussion forum, NLTK also 

cover the highly develop industrial libraries using 

recent NLP methodologies. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3: Code for English POS tags 

 

    TextBlob is a python library utilizing NLTK. 

Practically, all required tasks needed in essential NLP 

works well as a framework with TextBlob. 

    Apart from it, TextBlob has some advance features. 

For instance, Part-of-speech tagging (see Fig 3), 

sentiment analysis, noun phrase extraction, 

classification (Naive Bayes, Decision Tree), 

lemmatization, language transis a leading platlation by 

Google, word and phrase frequencies, tokenization 

(splitting text into words and sentences), word 

inflection (singularization and pluralization) and 

spelling correction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 4: Code for Urdu POS tags  
 
    TextBlob translate any English sentences in Urdu 

that is entered by user see Fig 4. TextBlob have the 

feature of POS (part of speech) tagging on English 

sentence. For instance: 

 

She goes for a walk daily. (4)  
[('She', 'PRP'), ('goes', 'VBZ'), ('for', 'IN'), ('a', 'DT'), 

('walk', 'JJ'), ('daily', 'NN')] 
 
{'response': {'status': 'ok', 'tagged_text': 'PRP|  وہ RB| 

انہزرو  VBF| لتاچ  NN| ہے   '}} 

 

The boys wanted to help him. (5)  
[('The', 'DT'), ('boys', 'NNS'), ('wanted', 'VBD'), ('to', 

'TO'), ('help', 'VB'), ('him', 'PRP')] {'response': {'status': 

'ok', 'tagged_text': 'NN| لڑکوں PSP| کو PRP| اس PSP| کی 

NN| مدد VBI| کرنا AUXM| چاہتا NN| تھا  . '}} 
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Fig 5: Implementation of English to Urdu Translator 

 

    In these sentences, TextBlob Part of Speech tagging 

technique separates the POS tags. After POS tagging 

for Urdu sentences were applied. The proposed 

system, shown in Fig 5, use Urdu POS tag set of CLE 

(Center for Language Engineering) for Urdu part of 

speech tagging [26]. Urdu tag set of CLE 

 

contributions as “Urdu word sense annotation tool” is 

developed to run a simple interface for word sense 

labeling and confirming labeling stability. After 

identifying of tenses, the data set for English Urdu 

meanings was developed then the incorrect translation 

with correct translation was replaced. 
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Fig 6a: System Framework for Gender Analysis 

 

    We have presented our framework in which we 

have explained a process of part of speech tagging of 

English text. Identification of gender and tense case of 

a given English text is shown. A clear view of the tense 

identification in framework that is illustrated above in 

Figure 6. 

 

4. Result and Discussion 
 

    We checked our English to Urdu translator with 

various sentences of English and Urdu language. 

From our proposed framework, we have corrected 

both tense and gender cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6b: System Framework for Tense Analysis  
 

4.1 Tense Case 

  
    In tense case we have tested our system with 

present, past and future tense sentences. They were 

accurately identified by our proposed method. 

 

I am playing. (6)  
   میں کھیل رہا ہوں۔

 
 
 
 
 
 
 
 
 
 
 

Fig 7: Present tense case by proposed system 
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She worked in office for three years. (7) 

۔ایک ماک کت لاس نیت ںیم رتفد ےن ںانہو  
 
We shall play together. (8)  

۔ےگساتھ مل کر کھیلے ہم   
 
 

4.2 Gender Case 

  
Some examples of English sentences, whose incorrect 

translation by [22], [23] and [24] were corrected by our 

proposed system i.e. 
 
Sana is reading a book. (10) 

   ثنا ایک کتاب پڑھ رہی ہے
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8: Gender case by proposed system 

 

5. Error Analysis 
  

    A sample of 190 English sentences was taken from 

books, magazines and online platforms given as input to 

the proposed system. Out of 190 sentences, the system 

achieved semantically accurate translation of 150 

sentences. 
 
The accuracy of the system was calculated simply using 

the percentage formula, i.e. 

 
(150/190) * 100 = 78.9% 

 

    Due to long and complex English sentence structure, 

the system could not generate semantically correct 

translation. 

 

6. Conclusion 
  
    This system remove the gender discrepancies in 

online English to Urdu translators because the existing 

translators like Google Translate, Bing Microsoft 

Translator and Collins Translator does not identify the 

gender (male or female) of the person names in 

translation from English to Urdu. If we write the name 

of female in English text, Google translator gives the 

translation according to male gender but this research, 

primarily based on, ruled based approach of source 

language to target language, handling semantic 

translation of gender cases and tense identification. Our 

MT system supports POS (Part of Speech) tags models 

use for tagging of English and Urdu text and our English 

to 
 
    Urdu MT system gives accurate translation according 

to gender (Male or Female). The proposed system 

achieved 79% accuracy. 

    Although this not the first study in English to Urdu 

MT, however, less efforts are done to consider 

semantically gender cases during translation. The 

proposed system provide translation of simple English 

sentences into Urdu, we use rule based machine 

translation approach. The main objective was to identify 

these cases in English to Urdu MT system that never 

discussed before. 

 

7. Future Work 
  

    The future work and extension of this work can be the 

extraction of accurate translation for complex long 

sentences. Because in long complex sentence structure 

a simple POS matching of one word may not work; 

especially if there are multiple verbs (different forms) in 

a sentence and one of them is incorrect. How would the 

authors know which one is wrong? 
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Abstract 
 

Sentiment Analysis determines the emotions, 

attitude, feelings or behavior of people towards an 

event, topic, or a product. The advent and growth of 

social media platforms have given people opportunity to 

voice their opinions, reviews and share experiences. 

User Generated Content when analyzed for its 

sentiments can be helpful for various reasons such as 

predictive analysis, summarization of reviews, 

measuring popularity, acceptance of products, and 

much more. In this regard, various researches and 

studies exist, but all these studies focus on resource-rich 

languages like English, Chinese and Arabic. In this 

paper, we focus on Roman Urdu language. Around 30 

million people across the world speak Urdu and mostly 

use Roman Urdu written in Roman script to express 

their views, feelings or experiences over the Internet. 

Keeping this in view, an approach has been proposed 

that performs sentiment analysis of bilingual data 

(English and Roman Urdu), using Lexicon based 

approach. In order to create domain specific lexicon, 

political tweets related to 2018 Elections held in 

Pakistan have been collected and analyzed for the 

sentiments expressed in them.  

 

Keywords – Sentiment Analysis, Text, Opinion 

Mining, User Generated Content, Pakistan Election 

2018 

 

1. Introduction 
 

With advancements in technology and internet, the 

use of mobiles and laptops to access social media 

accounts has increased [1]. People now openly give their 

reviews and opinions about anything, thus making it 

necessary to analyze the content generated by them. 

Substantial amount of work related to sentiment 

analysis on structured languages like English, Chinese 

and Arabic exist, but limited work has been done on 

Roman Urdu or Urdu languages [2]. Majority of the 

people in subcontinent are not much well versed in 

English language and use Urdu to express their 

sentiments on social platforms. People tend to express 

their opinions in Urdu mostly using Roman script 

known as Roman Urdu also due to the limited 

availability of keyboards in Urdu; thereby emphasizing 

upon the need of sentiment analysis in Roman Urdu. 

The importance of research in Roman Urdu has also 

been highlighted in other researches [2], [3] and [4].  

Many techniques and methods for sentiment analysis 

exist but we have focused on the development of a 

domain specific lexicon of 3900 words that consists of 

Roman Urdu and English Language. Generally, 

sentiment analysis has been carried out using adjectives, 

but sentiment analysis approach presented in this paper 

makes use of lexicon built using adjectives, verbs, 

adverbs and nouns for improved sentiment analysis. The 

analysis has been performed on the data collected from 

Twitter using several hash tags based on election, from 

different pages of political parties, anchors etc. For 

detailed experimentation and to improve results two 

different datasets with 5031 tweets and 4177 tweets are 

considered. This paper is divided into five sections. 

Section 1 gives an introduction, Section 2 focuses on 

literature survey, Section 3 discusses the methodology, 

Section 4 compiles the results and Section 5 concludes 

the paper. 

 

2. Related Work 
 

    Various existing systems that have performed 

sentiment analysis using lexicon approach have been 

studied. Some of those papers depicting similar work are 

discussed below. 

    The concept of bilingual sentiment analysis using 

lexicon approach on Roman Urdu has been presented by 

[4]. The purpose of this approach is to analyze the 

bilingual data from twitter. Tweets are collected based 

on the keywords related to four main political parties. 

SentiStrength is used for extracting the sentiments for 

the English language but for Roman Urdu a new lexicon 

is created to provide sentiment strength to the Roman 

Urdu words. SentiStrength along with English to Roman 

Urdu dictionary are utilized to create bilingual 

sentiment repository which provides 3900 Roman Urdu 

words and 1673 English words. The results depict that 

PTI dominates other parties in general whereas in 

Lahore, public opinion is mostly in favor of PML-N. 

mailto:farwaiqbal786@gmail.com
mailto:ember.ayub%7d@gmail.com
mailto:jaweria.manzoor@kinnaird.edu.pk
mailto:rida.basit%7d@kinnaird.edu.pk
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In [5], analysis of the sentiments expressed in news 

comments has been performed using lexicon based 

approach to get users’ opinions about a certain topic. 

The problem of comments oriented sentiment analysis 

is that the user may express his/her own opinion, which 

is different from the original focus of discussion. This 

system has used a lexicon based approach to analyze the 

opinions by extracting comments. The lexicon used in 

this system is a manually created lexicon that contains 

250 news items. Objective expressions have been stored 

in the lexicon for identifying the focus. Objects and its 

features are arranged in a taxonomy-based structure. 

Lexicon’s knowledge and the user generated content are 

then preprocessed by using NLP techniques. The overall 

sentiment of the entire document is also computed by 

using certain weights assigned to positive, negative and 

neutral comments. The experiments provide an 

accuracy of 0.89. 

In a similar study [6], the salience for an entity in the 

news corpus or lexicon and the polarity of each salience 

as positive or negative has been calculated. The system 

builds the news corpus from different websites 

including DAWN news, ARY news, Nawai Wakt and 

BBC Urdu news. Corpus is further divided into chunks 

and POS tagging is performed to create tag list. Tag list 

is fed into entity finding module, which selects entities 

meeting a certain criterion and weight for each entity is 

calculated. Every salience is provided with polarity 

using the manual polarity tagger. After assigning the 

polarity the corpus is searched for intensifiers like 

(1) Shadid (ʃad̪id̪, Extremely) 

(2) Bohut (bɔhət̪, Lots, Intense) 

Polarity of the salience with intensifier gets double for 

example from -5 to -10. The accuracy achieved is 

84.5%. 

A different approach has been discussed by [7] to find 

the subjectivity and polarity of the tweets using lexicon 

based approach. Tweets have been analyzed to predict 

the results of elections about a certain candidate 

providing a comparison on the various candidates based 

on sentiments expressed in them. 10,000 labeled tweets 

have been collected, preprocessed, imported for 

sentiment analysis for determining the subject to overall 

polarity. The sentences are classified by first assigning 

polarities to individual words: +1 for positive words, -1 

for negative words and 0 for neutral words. Then 

polarity of a sentence is calculated by adding polarities 

of occurring words and classified as positive, neutral or 

negative. The subjectivity (users personal view about a 

candidate) of the tweets has been represented by 1 

whereas the objectivity by 0. After the calculation of 

average polarity and subjectivity, percentage of 

positive, negative and neutral tweets is calculated. The 

experiments show that candidate Hillary has received a 

greater number of positive tweets whereas Trump 

received highest number of negative tweets. 

Based on the limited research in Roman Urdu sentiment 

analysis, we propose a Lexicon based approach to detect 

sentiments depicted in tweets using Roman Urdu 

language as it is used by many people around the world 

to express their opinions on social media. In this 

approach, we have created a domain specific lexicon 

containing different parts of speech like nouns, verbs, 

adjective and adverbs to depict sentiments. 
 

3. Methodology 
 

    The approach presented in this paper aims on 

performing bilingual sentiment analysis using lexicon. 

The novelty of our work lies in creation of a domain 

specific lexicon that contains both English and Roman 

Urdu words containing adjectives, nouns, verbs and 

adverbs. For the purpose of creating domain specific 

lexicon, tweets related to Pakistan Elections 2018 have 

been collected from Twitter using Twitter APIs. The 

collected data is then preprocessed, cleaned (noisy data 

and hashtags are removed) and tokenized (stop words 

removal). After formation of the tokens each word is 

assigned a polarity by using the lexicon ranging from - 

1 to + 1. Polarity of the sentence is then calculated by 

summing up polarities of all occurring words in the 

sentence. Based on the polarity, each sentence is 

classified as positive, negative or neutral. Furthermore, 

results in the form of accuracy, precision, recall and F-

measure are calculated with the help of confusion 

matrix. 

 

3.1. Data Preparation 
 

3.1.1. Data Collection. The data has been collected 

using Twitter APIs with the help of Python. Making use 

of the twitter developer account, tweets from 2018 

elections of Pakistan have been gathered. A total of 

5031 tweets are extracted using multiple political hash 

tags and official pages of different anchors and 

politicians. A total of 2673 positive tweets, 1923 

negative and 426 neutral tweets have been collected.  

These tweets have been stored in .json file after 

extraction. 
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Table 1: Hashtags and keywords used to extract data 

#PTI #PMLN #MQ
M 

#corru
ptlead

er 

#nayap
akistan 

#imr
ankh

an 

#voteko
izzatdo 

#naw
azsha

rif 

#mary
amna
waz 

#absirfi
mrankh

an 
#jiye
bhutt

o 

#marya
mmeria

waz 

#mia
nsaab 

#tabde
eli 

#shehb
azsharif 

 

3.1.2. Data Preprocessing. Extracted data has been 

cleaned by removing all the unnecessary characters and 

symbols [8]. 

 

3.1.3. Translation of Urdu Tweets. At this stage, the 

extracted data consists of tweets in three different 

languages namely English, Urdu and Roman Urdu. For 

our proposed approach, Roman Urdu and English tweets 

are to be considered so Urdu tweets have been translated 

into Roman Urdu using online translator iJunoon.com. 

 

3.1.4. Labeling of Tweets. After the translation, data set 

now contains only English and Roman Urdu tweets. As 

the next step, data labeling of tweets as positive, 

negative or neutral has been performed for each tweet 

by a single resource person. However, to remove 

partiality while labeling data for the dataset with 4177 

tweets, data labeling has been performed using 

crowdsourcing technique. The tweets are labelled 

according to the sentiments in them like  

(1) IK buhat acha politician hai 

IK bɔhət̪ aʧʰa politician hæ 

“IK is a great politician” is labeled as positive 

 

(2) Zardari ek corrupt insaan hai 

zərd̪ari æk corrupt ɪnsan hæ 

“Zardari is a corrupt person” is labeled as negative 

 

(3) PTI or PMLN jo bhi jeete, hume vote aur 

elections ko izzat deni chahiye 

PTI ɔr PMLN ʤo bhi ʤit̪e həme vote ɔr elections ko 

ɪzət̪ d̪eni ʧahie 

“PTI or PMLN whoever wins, we should respect vote 

and elections” is labeled as neutral 

 

3.1.5. Normalization and Tokenization of Tweets. 

The tweets are then normalized, where the stop words 

are removed from each tweet so that the meaningless 

words (words that play no part in sentiment analysis) 

like ‘wo (vo, “they”), hum (həm, “we”), are, is, it’ etc. 

are eliminated. Unlike English, Roman Urdu is not a 

structured language and does not have list for stop 

words. Therefore, we created a list translating Urdu stop 

words to Roman Urdu using iJunoon.com and used this 

with built-in Python Normalization function to remove 

stop words from Roman Urdu tweets. 

 

 
 

Figure 2: List of some stop words 

3.2. Lexicon based Approach 
 

 Sentiment analysis approach presented in this paper 

make use of lexicon of 3900 words built using 

adjectives, verbs, adverbs and nouns for improved 

sentiment analysis [4]. The reason of creating a lexicon 

with different parts of speech is the morphological 

richness of Urdu Language and Roman Urdu. Basically, 

Roman Urdu is Urdu language written using Roman 

Script where an adjective can inflect from noun or other 

parts of speech like  

(1) daftari, 

d̪əft̪əri 

“official” 
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(2)  kagazi  

kɑɣəzi 

“Thin, scariose” 

etc. [9]. Moreover, the sentiment of a complete 

sentence may not be depicted by adjective only like 

(1) Mujhe ye phone buhat acha aur sasta lagta hai. 

mʊʤʰe je phone bɔhət̪ aʧʰa ɔr səst̪a ləgt̪a hæ  

“I think this phone is very good and inexpensive” 

For the analysis of this sentence we also must take 

intensifier ‘buhat (bɔhət̪, “very”)’ into consideration 

along with adjectives ‘acha (aʧʰa, “good”)’ and ‘sasta 

(səst̪a, “inexpensive”)’.  

The lexicon is created using SentiWordNet (lexical 

resource for Sentiment analysis and opinion mining). 

The sentiment scores for English words are directly 

taken from SentiWordNet whereas the Roman Urdu 

words are first translated into Urdu and then into English 

and then those English translations are searched in 

SentiWordNet for the sentiment scores. The scores 

assigned range from -1 to +1.  
 

 

 
Figure 2: Lexicon based Approach 

3.2.1. Sentence Level Classification. Each tweet is 

normalized and converted into tokens. The java code 

specifically built for this purpose then assigns sentiment 

score (polarity) to individual tokens in each tweet using 

the lexicon. Then the sentiment score of the whole 

sentence is calculated by summing up the scores of all 

occurring tokens or words in the sentence similar to the 

approach used by [7] for sentence level sentiment 

classification. The classification of a sentence is based 

on the following conditions: 

 If the resultant value is greater than 0, the 

sentence is classified as positive 

 If the resultant value is less than 0, the sentence 

is classified as negative 

 If the resultant value is equals to 0, the sentence 

is classified as neutral 

 

4. Results and Discussion 
 

This section discusses the results of the experiment 

carried out in the light of objective of this study.  

Experiments are performed initially by considering 

dataset with 5031 tweets consisting of tweets including 

negation words like ‘nae, ni, nahi (no)’ etc. and mixed 

sentiments expressed in them like: 

 

(1) Imran Khan buhat acha insaan hai, a great 

cricketer lakin buhat hi bura leader aur politician 

hai is ko kuch nahi ata pata ni umeed krni chaiye ya 

ni  

Imran Khan bɔhət̪ aʧʰa ɪnsan hæ, a great cricket 

lekɪn bɔhət̪ hi bura leader ɔr politician hæ ɪs ko kuʧʰ 

nəhi at̪a pət̪a ni umid̪ kərni ʧahie ja ni 

“Imran Khan is a good person, he is a great leader 

but not a good politician, he knows nothing, I 

don’t know we should hope or not.” 

 

Better results are achieved by eliminating tweets 

with different sentiments and negation words. Removal 

of such tweets reduced the dataset to 4177 tweets only. 

Although there is a difference between negation words 

and words that depict negative sentiment like corrupt, 

evil, bad. We have kept the tweets like 

(1) IK ek corrupt insaan hai  

IK æk corrupt ɪnsan hæ 

“IK is a corrupt person” 

 

But have removed sentences like 

(2) IK ek acha leader ni hai  

IK æk aʧʰa leader ni hæ 

“IK is not a good leader” 

 

Furthermore, different measures have been 

calculated using confusion matrix for all three classes 

(positive, negative and neutral) separately. Confusion 

matrix is a form of a table that is used to represent a 

classification model. In the confusion matrix below, n 

depicts total number of tweets.  Actual values of three 

classes depict the tweets labeled as positive, negative 
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and neutral through human labeling. Predicted values of 

three classes depict the tweets labeled as positive, 

negative and neutral using domain specific lexicon that 

is created in this paper. Furthermore, accuracy, 

precision, recall and F-measure with respect to each 

class are calculated separately. 

 

4.1. Dataset with 5031 Tweets containing 

Positive, Negative and Neutral Classes 

 
4.1.1. Positive Class. Here the confusion matrix is 

created by taking positive class in consideration and the 

accuracy, recall, precision, F-measure are calculated. 

Our lexicon based approach of sentiment analysis 

predicts positive class with 81% accuracy. For positive 

class, TP (true positive) is the intersection of actual 

positive and predicted positive. FP (false positive) is the 

sum of values in the corresponding column, whereas FN 

(false negative) is the sum of values in the 

corresponding row excluding value of TP in both cases. 

TN (true negative) is the sum of all the values excluding 

the row and column containing positive class. The 

column matrix with respect to positive class is given 

below. 

Table 2: Confusion matrix for positive class 

 

n = 
5031 

Predicte
d 
Negative  

Predicte
d 
Positive  

Predicte
d 
Neutral 

 

Actual 
Negativ
e 

TN = 739 FP = 0 TN = 
1193 

193
2 

Actual 
Positive 

FN = 0 TP =1734 FN = 939 267
3 

Actual 
Neutral 

TN = 0 FP = 0 TN = 426 426 

 739 1734 2558  

 

Measures calculated for positive class are as follow: 

Accuracy = 0.81 = 81% 

Precision = 1 

Recall = 0.649  

F Measure = 0.787 

 

4.1.2. Negative class. Here the confusion matrix is 

created by taking negative class in consideration and the 

accuracy, recall, precision, F-measure are calculated. 

Our lexicon based approach predicts negative class with 

76.7% accuracy. For negative class, TP (true positive) is 

the intersection of actual negative and predicted 

negative. FP (false positive) is the sum of the values in 

the corresponding column, whereas FN (false negative) 

is the sum of values in the corresponding row excluding 

value of TP in both cases. TN (true negative) is the sum 

of all the values excluding the row and column 

containing negative class. The column matrix with 

respect to negative class is depicted below. 

 

Table 3: Confusion matrix for negative class 

 

n = 
5031 

Predicte
d 
Negative  

Predicte
d 
Positive  

Predicte
d 
Neutral 

 

Actual 
Negativ
e 

TP = 739 FN = 0 FN = 
1193 

193
2 

Actual 
Positive 

FP = 0 TN =1734 TN = 939 267
3 

Actual 
Neutral 

FP = 0 TN = 0 TN = 426 426 

 739 1734 2558  

 

Measures calculated for negative class are as follow: 

Accuracy = 0.763 = 76.3% 

Precision = 1 

Recall = 0.383 

F Measure = 0.55 

 
4.1.3. Neutral class. Here the confusion matrix is created 

by taking neutral class in consideration and the accuracy, 

recall, precision, F-measure are computed. Our lexicon 

based approach of sentiment analysis predicts neutral class 

with 57.6% accuracy. For neutral class, TP (true positive) 

is the intersection of actual neutral and predicted neutral. 

FP (false positive) is the sum of the values in the 

corresponding column, whereas FN (false negative) is the 

sum of values in the corresponding row excluding value of 

TP in both cases. TN (true negative) is the sum of all the 

values excluding the row and column containing neutral 

class. The column matrix with respect to neutral class is 

depicted below.  

 

Table 4: Confusion matrix for neutral class 

 

n = 
5031 

Predicte
d 
Negative  

Predicte
d 
Positive  

Predicte
d 
Neutral 

 

Actual 
Negativ
e 

TN = 739 TN = 0 FP = 
1193 

193
2 

Actual 
Positive 

TN = 0 TN =1734 FP = 939 267
3 

Actual 
Neutral 

FN = 0 FN = 0 TP = 426 426 

 739 1734 2558  

 

Measures calculated for neutral class are as follow: 

Accuracy = 0.576 = 57.6% 

Precision = 0.167 

Recall = 1 
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F Measure = 0.286 

 

4.1.4. Results with 5031 tweets. The results with this 

dataset show that positive class is predicted by lexicon 

more accurately as compared to negative and neutral 

classes.  The accuracies of positive, negative and neutral 

classes are not encouraging because there is a huge 

difference in their actual and predicted values. The 

reason of bad performance is that the lexicon created in 

our approach does not handle negation which are words 

like ‘not’ in English and ‘nahi, nai, nae, nayi, ni (nəhi, 

nəi, nəi, nəi, ni” not/no”)’ in Roman Urdu. Therefore, 

lexicon based approach is unable to predict tweets 

containing mixed sentiments correctly and labels them 

as neutral. Moreover, for this dataset, labeling has been 

performed by only one person contributing to the poor 

performance to some extent. 

 

 
 

Figure 2: Results with 5031 tweets 
 

 

4.2. Dataset with 4177 tweets containing 

positive, negative and neutral classes 
 

To improve the performance of our proposed approach 

the tweets containing mixed sentiments and negation 

words discussed earlier are removed. Moreover, for this 

experiment crowdsourcing technique has been used to 

perform data labeling of tweets. In this technique 

labeling from more than one person is taken into 

consideration and one final labeling is deduced from 

those labeled tweets. The confusion matrix is then built 

using these manually labeled tweets along with tweets 

where sentiment score has been computed using domain 

specific lexicon. 

 

4.2.1. Positive class. Here, the confusion matrix is 

created by taking positive class in consideration and the 

accuracy, recall, precision, F-measure are calculated. 

The lexicon based approach predicts positive class with 

98% accuracy. Confusion matrix for this class is 

depicted below which is constructed like positive class 

with 5031 tweets given in the previous section. 

 

Table 5: Confusion matrix for positive class 

 

n = 
4177 

Predicte
d 
Negative 

Predicte
d 
Positive 

Predicte
d 
Neutral 

 

Actual 
Negativ
e 

TN = 417 FP = 0 TN = 0 417 

Actual 
Positive 

FN = 81 TP = 
1411 

FN = 0 149
2 

Actual 
Neutral 

TN = 150 FP = 0 TN = 
2118 

226
8 

 648 1411 2118  

 

Measures calculated for positive class are as follow: 

Accuracy = 0.98 = 98% 

Precision = 1 

Recall = 0.946 

F Measure = 0.972 

 

4.2.2. Negative class. Here, the confusion matrix is 

created by taking negative class in consideration and the 

accuracy, recall, precision, F-measure are calculated. 

Our lexicon based approach predicts negative class with 

94% accuracy. Confusion matrix for this class is 

depicted below which is constructed like negative class 

with 5031 tweets given in the previous section. 

 

Table 6: Confusion matrix for negative class 

 

n = 
4177 

Predicte
d 
Negative 

Predicte
d 
Positive 

Predicte
d 
Neutral 

 

Actual 
Negativ
e 

TP = 417 FN = 0 FN = 0 417 

Actual 
Positive 

FP = 81 TN = 
1411 

TN = 0 149
2 

Actual 
Neutral 

FP = 150 TN = 0 TN = 
2118 

226
8 

 648 1411 2118  

 

Measures calculated for negative class are as follow: 

Accuracy = 0.94 = 94% 

Precision = 0.64 

Recall = 1 

F Measure = 0.783 

0 0.5 1 1.5

Accuracy

Precision

Recall

F-Measure

Results with 5031 
Tweets
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4.2.3. Neutral class. Here, the confusion matrix is 

created by taking neutral class in consideration and the 

accuracy, recall, precision, F-measure are calculated. 

Our lexicon based system predicts neutral class with 

96% accuracy. Confusion matrix for this class is 

depicted below which is constructed like neutral class 

with 5031 tweets given in the previous section. 

 

Table 7: Confusion matrix for neutral class 

 

n = 
4177 

Predicte
d 
Negative 

Predicte
d 
Positive 

Predicte
d 
Neutral 

 

Actual 
Negativ
e 

TN = 417 TN = 0 FP = 0 417 

Actual 
Positive 

TN = 81 TN = 
1411 

FP = 0 149
2 

Actual 
Neutral 

FN = 150 FN = 0 TP = 
2118 

226
8 

 648 1411 2118  

 

Measures calculated for neutral class are as follow: 

Accuracy = 0.96 = 96% 

Precision = 1 

Recall = 0.934 

F Measure = 0.966 

 

4.2.4. Results with 4177 tweets. Results show 

improved accuracies in all three classes on this reduced 

dataset as compared to the previous dataset, with highest 

accuracy achieved for positive class. Accuracy for 

positive, negative and neutral classes is better with this 

dataset because there is less difference in their actual 

and predicted values due to elimination of tweets with 

negation words and mixed sentiments. Moreover, crowd 

sourcing has been performed for manual labeling 

instead of using a single resource person for labeling to 

remove any bias and impact the result positively. 

.  

4.3. Comparison of proposed approach with 

related work 
 

In related work highest accuracy of 89% has been 

achieved by [5] that propose an approach to analyze 

sentiments depicted in news comments using domain 

specific lexicon consisting of 250 words. In the 

approach presented here, accuracy of 98% for positive 

class, 94% for negative class and 96% for neutral class 

is achieved with dataset containing 4177 tweets. This 

dataset includes positive, negative and neutral tweets 

and excludes tweets expressing mixed sentiments or 

tweets including negation.  However, for the larger 

dataset of 5031 tweets with all kinds of sentiments 

expressed, the results show accuracy of 81%, 76.3% and 

57.6% for positive, negative and neutral class 

respectively. 

 

 
 

Figure 3: Results with 4177 Tweets 

 

5. Conclusion and Future Work 
 

People in the subcontinent mostly use Urdu 

language but due to the unavailability of Urdu 

keyboards, Roman script is used to write Urdu language 

which is known as Roman Urdu. In this study, bilingual 

sentiments expressed in tweets including English and 

Roman Urdu are analyzed. The analysis has been 

performed by building domain specific bilingual lexicon 

to assign sentiment scores. Extensive experimentation 

has been carried out by considering different kinds of 

tweets. Better results are achieved with tweets dataset 

containing specific sentiments i.e. positive, negative or 

neutral as compared to mixed sentiments or sentiments 

making use of negation. We now aim to further build 

our lexicon making it more generic and applying the 

proposed approach to a larger dataset for further 

validation. We are already in the process of using hybrid 

technique combining Machine Learning and lexicon for 

identifying sentiments expressed in bilingual user 

generated content. Work can also be done to handle 

negation and to analyze those sentences which include 

multiple kinds of sentiments. 
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Abstract 

 
There exist many cases that require language-

specific web crawling, e.g., text corpus building in 

Natural Language Processing (NLP) domain and 

regional language search engine content crawling. In 

NLP, linguistics use text corpus for statistical analysis, 

checking occurrences or validation of linguistic rules 

within a specific language territory. Similarly, regional 

search engines use focused crawling to serve better 

quality results to the users. In this study, we build a 

system “NCL-Crawl” for large scale language specific 

web crawling using Apache Nutch crawler. For this 

purpose, we have customized Apache Nutch and added 

Compact Language Detector 2 (CLD2) module for 

language identification at runtime. The system also 

provides an option to specify minimum language bytes 

to avoid garbage collection in configured language. For 

evaluation, we have chosen the Urdu language and 

crawled 25,723 documents from the given seed and got 

very good quality pages with better accuracy. Our work 

is an effort towards building large scale text corpus for 

the NLP community especially for the low resource 

languages. In addition, regional search engines can 

effectively use NCL-Crawl for language specific web 

crawling. 

 

1. Introduction 
 

With the passage of time as Internet users are 

increasing, many regional search engines have appeared 

in the search engine market, e.g., Baidu, Yandex etc. In 

China, Baidu has 76.69% market share [1] and in 

Russia, Yandex has 45.16% market share [2]. These 

types of regional search engines require to crawl the 

WWW for a specific language at large scale. This 

approach not only provides better quality web 

documents of given language, but also helps to use 

minimal resources in terms of storage, bandwidth, and 

time [3]. Further, language-specific crawl is also 

required to build text corpus for linguistic researches 

and NLP applications. The advancement in NLP and 

Information Retrieval (IR) domain, e.g., summarization, 

cross-language information retrieval, etc., requires to 

build corpus in single or multiple languages at large 

scale [4][5]. 

There exists many open-source solutions to crawl 

World Wide Web (WWW) from small to large scale, 

e.g., curl, Apache Nutch, Scrapy, Heritrix etc. [6]. But 

for language specific crawl, none of these provides a 

concrete solution. In most cases, a new job is executed 

to find language information of crawled documents, 

which is both time as well as storage consuming. 

Moreover, language threshold based crawling, e.g., 

crawling documents with more than 50% Urdu content, 

is even more complex than former case. Some crawlers 

provide language filters but in most cases, it is based on 

web server response header and hence, it requires 

customization to find language information from 

crawled content. For instance, Apache Nutch provides 

“language-identifier” plugin to find language 

information but it is also based on web server response 

header. 

This work is an effort to build Apache Nutch with 

CLD2 Language Crawl (NCL-Crawl) - A system using 

Apache Nutch Crawler and Compact Language 

Detector (CLD2) for language specific web crawling. 

NCL-Crawl aims to filter web-documents based on the 

content size in bytes of a particular language. Apache 

Nutch is an open-source large scale web-crawler and is 

developed in Java language that can be extended very 

easily. It has two major development branches, i.e., 1.x 

and 2.x [7]. We have used latter one for our 

experimentation. For language detection, we have 

integrated CLD2 with Nutch that can detect a maximum 

of three languages in a single document with percentage 

information [8]. Further, we do our customization in the 

fetcher module of Nutch to remove irrelevant 

documents at run time which also minimizes time and 

storage resources. For this purpose, we also added many 

new configuration parameters to set the language label 

and minimum bytes threshold. 

To test our work, we collect Urdu language seed of 

50 URLs from different domains and run the crawler for 

40 iterations. We configure Urdu minimum threshold to 

256 bytes and disable out-links. For politeness, a 

maximum of 50 URLs are selected in each iteration 

from a single domain. Our main findings in this study, 

are given below: 

 Yield Rate Statistics: NCL-Crawl runs for 40 

iterations and crawls 25,723 documents. From total 

fetched documents, 24,172 documents have Urdu 

content more than configured threshold. Crawling 
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rate varies from 50 documents to 1300 during the 

experimentation. 

 Accuracy Measurements: Overall 93.99% of the 

fetched documents have Urdu content greater than 

the configured threshold. For each iteration, 

accuracy varies from 86% to 99%. 

 

    The rest of our paper is organized as follows: In 

Section 2, we discuss existing work for language 

specific web crawling. Section 3 presents our 

methodology for Nutch customization and 

experimentation. In Section 4, experimental results are 

presented. Finally, we conclude our work in Section 5. 

 

2. Related Work 
 

For language-specific crawl for text corpus building 

and regional search engines, researchers have suggested 

various solutions. For instance, [9] has proposed a 

heuristics-based approach for focused web crawler. This 

approach uses pattern-based recognition algorithm to 

match the topic of crawled text. It requires a lot of space 

to save fetched data in each iteration and later analysis 

for pattern recognition. In [10], the authors have used 

Dictionary and Breadth-First algorithm for focused 

crawling to build Javanese and Sundanese Corpus. Their 

study shows that these two algorithms deliver the 

highest performance as compared to others in a focused 

crawl. 

 Further, [11] has used Semantic Similarity Vector 

Space Model for focused crawler improvement. Their 

results show better performance of focused crawler as 

compared to the Breadth-First model and VSM model. 

Similarly, [12] and [13] have used topic-based approach 

for focused crawling. In former, the authors have built a 

classifier that evaluates the relevance of a given 

document with respect to the topics and in latter work, a 

weight table is constructed with topic frequency to 

check the similarly of a web page. 

For language-specific crawl, [14] has used linguistic 

graph analysis approach for crawling. The authors have 

analyzed web data from large crawl with specific 

language attributes for selection strategies. Moreover, 

[15] has used language locality in selecting the crawl 

paths from a large space of Thai weblogs for specific 

web crawl. Their work achieve higher performance than 

a naive Breadth-First crawling strategy. 

Apache Nutch is one of the most matured web 

crawlers and has been used extensively in the research 

area for web crawling [16]. In [17], the authors have 

optimized Apache Nutch for domain-specific crawling 

at large scale. During experimentation, they got a 

success rate of only 0.0015% due to sparse data 

distribution and duplicate content on the Web. In our 

approach, we have also used Apache Nutch to build 

language-specific web crawler. 

 

3. Formatting instructions 
 

In this section, we discuss our proposed approach for 

language-specific crawling. First, we briefly describe 

Apache Nutch crawler with different phases. Next, we 

discuss the existing challenges in Apache Nutch for 

language-specific crawling. After this, we describe our 

proposed approach for Nutch customization in this 

regard. Finally, we discuss our testing environment for 

customized Nutch. 

 

3.1 Apache Nutch Crawler Overview 
 

Apache Nutch is an open-source distributed crawler 

to crawl the web at large scale. There exist two major 

versions of Nutch namely 1.x and 2.x. The latter one 

differs from the former with the addition of Apache 

Gora as a storage abstraction layer that allows to use 

different NoSQL databases, e.g., Hbase, Cassandra, etc., 

[18]. We have used Apache Nutch 2.x branch in this 

study. Further, each cycle of Nutch consists of many 

phases to complete a job as shown in Figure 1. Each of 

these phases have been described below: 

Inject & Generate: The inject phase is the first 

phase where selected seed URLs are provided and 

crawler starts crawling by introducing some default 

score to URLs. This step is very important because the 

crawler will grow and fetch new web-pages based on the 

initial seed. The next phase in Nutch is generate phase 

where top URLs are marked for fetching based on the 

assigned score to URLs. Note that this score is the 

default for the first iteration but later on, it is calculated 

in updatedb phase of Nutch for each next iteration. 

Fetching: In this phase, the crawler requests the 

marked URLs (in the generator phase) and fetches 

HTML of these pages from the World Wide Web 

(WWW). This job is multi-threaded and one can control 

the number of threads via Nutch configuration. There 

exist many controls in Nutch for various purposes in this 

phase, e.g., age filter (filter.age.timestamp), size filter 

(http:content:limit), fetcher threads per host 

(fetcher.threads.per.queue) etc. At the end of this phase, 

complete downloaded HTML with headers is stored in 

configured storage back-end, e.g., Hbase etc. 
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Figure 2: A sample webpage with very small Urdu 

Parsing: As discussed earlier, each crawled 

document consists of various levels of information, e.g., 

raw content, i.e., HTML source code, request/response 

headers, etc. The parse phase of Nutch parses each of 

this information of crawled data and saves them 

separately in the configured database. There are 

different parser plugins available in Nutch, e.g., 

html−parser, tika−parser, xml−parser that can be 

configured via Nutch configuration file. 

UpdateDB & Indexing: After parsing, the next 

phase of crawling is to update the database using parsed 

documents. Many types of activities are performed in 

this phase, e.g., addition of in-links/outlinks, page score 

calculation, extra markers removal etc. There exist 

many configuration options for each of these actions to 

enable/disable these controls or to add some scoring 

plugin etc. For instance, db.ignore.external.links 

configuration parameter is used to allow the addition of 

external links, i.e., outlinks, in the database. Later on, 

these URLs get a mark possibility for fetch in generate 

phase based on their score. This is the last major phase 

of Nutch in the crawling cycle and the crawler can jump 

back to generate phase from here for the next cycle. 

Nutch also provides an indexing phase to index and 

search crawled content via some text search platform, 

e.g., Apache Solr or Elastic Search, etc. This phase 

should be executed after updatedb to include current 

crawled documents in index. 

 

 
Figure 1: NCL-Crawl Execution Pipeline 
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3.2. Language Specific Crawl and Challenges in 

Nutch 
 

Although, Nutch provides language identification 

plugin ”language-identifier” to find language details of 

crawled documents, however, this plugin is based on a 

web-server response header and is not reliable. In most 

websites, this header is not properly set and in some 

cases, it is not even available. Further, Nutch also does 

not provide language information for multilingual pages 

with their percentage distribution.  

To crawl specific websites only for text corpus 

building and regional search engine content, Nutch 

provides an option to disable out-links and crawl inlinks 

completely. For this purpose, one has to configure 

db.ignore.external.links property to true in Nutch 

configurations. Despite the fact that this approach will 

crawl all documents of given seed, but it cannot filter 

low quality documents w.r.t. given language, and hence, 

will cause garbage collection. For instance, Figure 2 

shows such a sample page that has English as a 

primarily language and Urdu as a secondary language. 

Although, this document has Urdu content but it is of 

very small size, i.e., bytes. Such documents should be 

filtered for applications that requires very rich content 

in Urdu language. Unfortunately, Nutch does not 

provide any such option to avoid garbage collection for 

language specific crawling. 

 

3.3. Nutch Customization for Language specific 

Crawl 
 

In this section, we have discussed the customization 

of Apache Nutch for language specific crawling. First, 

we discuss the addition of language detection tool in 

Nutch and later, we discuss about the implementation of 

minimum language size filter to avoid garbage 

collection. 

 

3.3.1. Language Detection Tool. For language specific 

crawling, the first and most important step is tool 

selection for language identification of a given 

language. For this purpose, there exist many open-

source tools e.g., langid, langdetect, ldig and CLD2 

[19][20][8]. Each of these tools has its own limitations 

and requirements. In our case, we have selected CLD2 

for language identification of crawled content. CLD2 

accepts only UTF-8 encoded strings and can identify 

161 different languages. For a given text, it can detect 

upto maximum of three languages along with their 

percentage and total bytes. The percentage information 

can help to apply a minimum size filter for configured 

language as discussed later. 

To add CLD2 module in Nutch, we decided to detect 

document language at runtime, and if a document is 

irrelevant, we truncate it at the spot. This strategy not 

only helps to remove documents that are not in the 

required language but also helps to save storage. For this 

purpose, we have customized Apache Nutch fetcher 

module that actually crawls the documents from WWW. 

In this module, fetched content is parsed via Boilerpipe 

library to get the main article of document. Boilerpipe is 

an open-source library developed for boilerplate 

removal from HTML documents [21]. Later, this 

extracted text is sent to CLD2 module that returns 

language information of the document. 

 

3.3.2. Minimum Size Filter. In order to implement 

minimum size filter to avoid garbage collection, as 

already discussed, we cannot directly use CLD2 

percentage value as a minimum threshold without 

language bytes information. For example, if there are 

two documents with a content of 1 MB and 1KB 

respectively and CLD2 returns 10% Urdu in both cases, 

then in first case, Urdu bytes are 100 KB while in 

second, these are just 100 bytes. Thus, first document is 

more rich with Urdu as compared to the second one. To 

cater this problem, we find language bytes from the 

CLD2 output using following equation: 

𝐿𝑎𝑛𝑔𝐵𝑦𝑡𝑒𝑠 =
(𝑡𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠) ∗ (𝑙𝑎𝑛𝑔. 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)

100
 

Bytes information for above discussed documents will 

be as follows w.r.t. this equation: 

𝐷𝑜𝑐1 𝐿𝑎𝑛𝑔𝐵𝑦𝑡𝑒𝑠 =
(1,024,000)  ∗  (10)

100
= 100𝐾𝐵 

 

𝐷𝑜𝑐2 𝐿𝑎𝑛𝑔𝐵𝑦𝑡𝑒𝑠 =
(1,024)  ∗  (10)

100
= 100𝐵 

In order to configure language and minimum 

language threshold, we introduce few new configuration 

parameters, e.g., filter.lang.label and 

filter.lang.minSize.bytes etc. Complete details of all new 

configuration parameters are given in second part of 

Table 1 with default values and description. Lastly, 

Figure 1 shows complete workflow of Apache Nutch 

with language filter and minimum size filter. Our main 

contributions are highlighted with light blue color in the 

diagram. 

 

3.4. Testing Environment 
 

To test our customized Nutch crawler, we set up a 

small size Hadoop/Hbase cluster with 3 worker nodes 

and run it for 5, 10, 20, 30 and 40 iterations. We select 

Urdu as a test case language, and for seed, we collect 50 

number of URLs from different Urdu domains. To avoid 

garbage collection, minimum threshold for language  
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size filter is set to 256 bytes. In each iteration, the 

crawler selects a maximum 2,500 URLs (topN) from all 

domains, and from single domain, a maximum of 50 

URLs are marked for politeness via 

generate.max.count. In addition, instead of manually 

checking crawl documents for accuracy measurement, 

we index all crawled documents in Apache Solr that is 

an open source full text search engine [22]. Relevant 

documents are retrieved using query filter present in 

Apache Solr. Important configuration parameters with 

their test-case values are given in Table 1. 

 

4. Results 
 

In this section, we present experimental results from 

language-specific crawler. First, we discuss yield rate 

statistics and later, we discuss the accuracy measures of 

our proposed crawler. 

 

4.1. Crawler Yield Rate 
 

Yield rate statistics help to know the crawling rate at 

different intervals. After the crawling job completion, a 

total of 25,723 documents are successfully fetched, out 

of which, 24,174 documents have content in Urdu 

language with a percentage more than threshold. Figure 

3 presents yield plot in our experimentation of 

customized crawler for overall successfully crawled 

documents and Urdu language documents vs the 

number of iterations. In each iteration, the number of 

crawled documents is very close to the total number of 

documents fetched in that iteration. It shows better 

accuracy of crawler in context of Urdu documents. The 

crawling rate varies from 50 to 1300 in this analysis. The  

 

 
Figure 3: Crawler Yield Rate 

decaying behavior in the figure shows that over time, 

available URL space, i.e., the list, is reducing as more 

and more URLs are crawled with time. It is due to the 

Table 1: Configuration changes for testing environment with new language specific 
parameters 

 

Type  Property  Value Options  Test value  Description 
Default  db.ignore.internal.links  true, false  false  Enable/ disable internal links 

Default  db.ignore.external.links  true, false  true  
Enable/ disable external 

links 

Default  generate.max.count  numeric  50  
Maximum links from single 
domain in each iteration 

New  filter.lang.enable  true, false  true  
Enable/disable language 

filter 

New  filter.lang.label  language label  Urdu  
Language name to be 

filtered 

New  filter.lang.minSize.enable  true, false  true  
Enable/ disable minimum 

size filter 

New  filter.lang.minSize.bytes  numeric (bytes)  1  
Minimum language bytes, 

i.e., threshold 

New  filter.lang.maxSize.enable  true, false  false  
Enable/ disable maximum 

size filter 
New  filter.lang.maxSize.bytes  numeric (bytes)  -  Maximum language bytes 

New  filter.lang.minPercentage.enable  true, false  false  
Enable/ disable language 

percentage filter 

New  filter.lang.minPercentage.limit  Numeric (%)  -  
Minimum language 

percentage 
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reason that we have disabled out-links as already 

discussed in Section 3. 

4.2. Accuracy Measurements 
 

In order to measure effectiveness of NCL-Crawl 

system, we use the percentage of relevant pages from 

total downloaded pages in each iteration as the accuracy 

 
Figure 4: Accuracy Measure of Proposed Language 

measurement. The relevant pages are those pages where 

Urdu language is found and where the percentage of 

Urdu content is greater than the configured threshold. 

Figure 4 shows the customized crawler accuracy 

measurement for each iteration, and it varies from 86% 

to 99% during the experimentation. Overall, the crawler 

accuracy is 93.99% which is a very good score. 

In general, the system accuracy depends upon the 

seed collection and language threshold parameter. If the 

seed is refined to the given language and threshold is not 

very large, then the accuracy will be very high as 

observed in our current experimentation, and if seed is 

not very well refined in context of the given language 

and the threshold is set very high, then the accuracy will 

increase or decrease immoderately. As already 

discussed, this is a new feature added in the default 

Nutch crawler, hence we cannot compare our results 

with some existing feature in Nutch default version. 

 

5. Conclusion 
 

In this work, we endeavor to build a language 

specific web crawling system, i.e., NCL-Crawl, to assist 

the NLP community for textual corpus building and 

regional language web crawling at a large scale. For this 

purpose, we have customized the Apache Nutch fetcher 

class and added CLD2 language detection module to 

identify the language of crawled content at run time. For 

experimentation and evaluation of our work, we collect 

50 seed URLs in Urdu language from different domains 

and run the crawler for 40 iterations. To avoid garbage 

collection, we set minimum size threshold to 256 bytes 

of Urdu. Total crawled documents are 25,174 that 

include 24,174 documents with Urdu language content 

more than threshold. The crawling rate varies from 50 

to 1300 during the job execution. Overall accuracy is 

93.99% and varies from 86% to 99%. In general, this 

accuracy is dependent on the given seed URLs and 

language threshold parameter and will vary with these 

two parameters. Lastly, this solution can be used for any 

language and threshold value; one has to just change 

configuration parameters only. In future, we plan to 

open source this system for research community. 

 

6. Acknowledgement 
 

This research work was funded by Higher Education 

Commission (HEC) Pakistan and Ministry of Planning 

Development and Reforms under National Center in Big 

Data and Cloud Computing. 

 

7. References 

 
[1] Search engine market share china — statcounter global 

stats. https://gs.statcounter.com/search-engine-

marketshare/all/china/monthly-201808-201908, 2019. 

[2] Search engine market share russian-federation — 

statcounter global stats. 

https://gs.statcounter.com/searchengine-market-

share/all/russian-federation/monthly-201808-201908, 2019. 

[3] Focused web crawler - wikipedia. 

https://en.wikipedia.org/wiki/Focused crawler, 2019. 

[4] Natural Language Processing - Wikipedia. 

https://en.wikipedia.org/wiki/Natural language processing, 

2019. 

[5] Text Corpus - Wikipedia. 

https://en.wikipedia.org/wiki/Text corpus, 2019. 

[6] Top 50 open source web crawlers for web mining. 

https://bigdata-madesimple.com/top-50-open-sourceweb-

crawlers-for-data-mining/, 2019. 

[7] WIKI Apache Nutch Web Crawler. 

https://wiki.apache.org/nutch/NutchTutorial, 2019. 

[8] Compact Language Detector 2. CLD2owners/cld2. 

https://github.com/CLD2Owners/cld2, 2019. 

[9] Joy Dewanjee. Heuristic approach for designing a focused 

web crawler using cuckoo search. International Journal of 

Computer Science and Engineering, 4(09):59–63, 2016. 

[10] William Eka Putra and Saiful Akbar. Focused crawling 

using dictionary algorithm with breadth first and by page 

length methods for javanese and sundanese corpus 

construction. International Journal of Procedia Technology, 

11:870–876, 2013.  

[11] Yajun Du, Wenjun Liu, Xianjing Lv, and Guoli Peng. An 

improved focused crawler based on semantic similarity vector 

space model. Applied Soft Computing, 36:392–407, 2015. 

[12] Ayar Pranav and Sandip Chauhan. Efficient focused web 

crawling approach for search engine. International Journal of 

Computer Science and Mobile Computing, 4(5), 2015. 



 

85 

 

 

[13] Soumen Chakrabarti, Martin Van den Berg, and Byron 

Dom. Focused crawling: a new approach to topic specific web 

resource discovery. International Journal of Computer 

networks, 31(11-16):1623–1640, 1999.  

[14] Takayuki Tamura, Kulwadee Somboonviwat, and 

Masaru Kitsuregawa. A method for language-specific web 

crawling and its evaluation. International Journal of Systems 

and Computers in Japan, 38(2):10–20, 2007. 

[15] Kulwadee Somboonviwat, Masaru Kitsuregawa, and 

Takayuki Tamura. Simulation study of language specific web 

crawling. In Proceedings of International Conference on Data 

Engineering Workshops (ICDEW’05), pages 1254–1254. 

IEEE, 2005. 

[16] Apache nutch web crawler. 

http://https://nutch.apache.org/, 2019.  

 

[17] Luis A Lopez, Ruth Duerr, and Siri Jodha Singh Khalsa. 

Optimizing apache nutch for domain specific crawling at large 

scale. In Proceedings of International Conference on Big Data 

(Big Data), pages 1967–1971. IEEE, 2015. 

[18] Digitalpebble’s blog: Nutch fight! 1.7 vs 2.2.1. 

https://gs.statcounter.com/search-engine-market-share, 2019. 

[19] saffsd. Python’s standalone language identification tool. 

https://github.com/saffsd/langid.py, 2017. 

[20] Michal Danilak. langdetect: language-detection library to 

python. https://github.com/Mimino666/langdetect, 2017. 

[21] Boilerpipe. https://code.google.com/archive/p/boilerpipe, 

2019. 

[22] Apache solr. https://lucene.apache.org/solr/, 2019. 

 

 

  



 

86 

 

  



 

87 

 

Sentiment and Emotion Analysis of Text: A Survey on Approaches and 

Resources 
 

Nazish Azam, Bilal Tahir, Muhammad Amir Mehmood 

Al-Khawarizmi Institute of Computer Science, UET, Lahore, Pakistan 

{nazish.azam, bilal.tahir, amir.mehmood}@kics.edu.pk 

 

Abstract 

 
    The evolution of internet has given the ability to the 

users to give their reviews, ratings, and opinions on 

social media or commercial websites. Sentiment and 

emotion analysis is an ongoing field of research in text 

processing, which aims to classify these reviews 

automatically. This paper presents the survey regarding 

approaches and resources used for sentiment and 

emotion analysis of text. We summarize the techniques, 

datasets, and resources available for text analysis. 

Additionally, we focus on summarizing literature and 

resources available for Urdu, a low resource language, 

along with some open problems for Urdu text analysis. 

The presented survey can be used effectively to 

understand challenges and to take future direction for 

research in sentiment and emotion analysis field, 

especially for Urdu. 

 

Keywords– Sentiment analysis, Emotion analysis, 

Lexicon, Urdu natural language processing 
 

1. Introduction 
 

In recent years, technology has been so much 

enhanced that internet is now an irreplaceable part of our 

lives. According to Human Computer Interaction (HCI) 

studies, people are now so addicted and connected to 

computers and busy in using internet. The accelerated 

evolution of internet has attracted people from all over 

the world to social media platforms, micro-blogging 

websites, and online discussion forums. The sentimental 

content in form of reviews, opinions, recommendations, 

ratings, and feedback is generated by users on these 

platforms. Analysis of these sentiments has spread 

across many fields such as consumer information, 

marketing, and social analysis. Sentiment analysis is 

performed to enhance the quality of products or to 

understand the public opinion towards different topics 

[1], [2], [3]. 

In the field of sentiment analysis, subjectivity 

analysis of text is done to determine the attitude or 

polarity of the writer. Such analysis helps in decision 

making and it is an important human aspect because it 

tells us “What other people think”. In general, the 

polarity or sentiment of text is classified into three main 

classes, i.e., positive, negative, and neutral. Similar to 

sentiment, emotions can be analyzed computationally. 

Despite the fact that sentiments and emotions are 

synonyms and equivalent words, but they don’t express 

something very similar. Looking into the dictionary 

shows that sentiment is just an opinion or view while 

emotion alludes to feeling according to the mood [4]. 

However, the goal of emotion analysis is a difficult task 

as differences between emotions are subtler than those 

between positive and negative class. Additionally, the 

emotion itself is a universal feeling however different 

people concerning social context, values, interests, and 

experience have a different interpretation of text [5]. 

The approaches for sentiment and emotion analysis 

for text are categorized into three classes: 1) Lexicon 

Based, 2) Machine Learning, 3) Hybrid approach. 

Lexicon based approach classifies textual content 

utilizing a list of manually labelled words. Machine 

learning methods use machine learning algorithms 

along with textual features of content for classification 

of text. Hybrid method combines lexicon and machine 

learning approaches to enhance the performance of 

classifiers. However, the performance of the approach is 

highly dependent on data quality, size, and content 

language. 

The sentiment and emotion analysis are extensively 

applied to understand social, political and business 

behaviours. The sentiment analysis of reviews is done 

in [1], [2], [6], and [7] to automatically rate the product 

using user opinion. Similarly, tweets are analyzed to 

understand the political biases of news channels [8] and 

to calculate sentiment towards Syrian refugees [9]. The 

emotion analysis of tweets is done in [10] to predict the 

outcome of US election 2016 by analyzing public 

perception towards candidates. Previous studies show 

that much work has been done on sentiment and emotion 

analysis for English text. A large research gap is still 

present in case of Urdu - a resource poor language. 

In this paper, we aim to do a survey on sentiment and 

emotion analysis research efforts, datasets, lexical 

resources and classification techniques. Besides 

discussing approaches used for English language, we 

focus on approaches and challenges for sentiment and 

emotion analysis of Urdu and Roman Urdu text as well. 

Additionally, a discussion of available resources and 
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datasets for the Urdu language is provided to facilitate 

future work. 

The rest of the paper is organized as follows: We 

discuss available lexicons, datasets, and existing 

approaches for sentiment analysis in Section 2. Next, we 

present our survey on emotion analysis in Section 3. 

Before the conclusion, we discuss some open problems 

related to Urdu text analysis in Section 4. Finally, we 

conclude our paper in Section 5. 
 

2. Sentiment Analysis 
 

In this section, first, we provide details of publicly 

available lexicons and datasets to perform sentiment 

analysis. Next, we discuss different approaches used to 

perform sentiment analysis. 

 

2.1. Datasets and Lexicons 
 

Table 1 provides a summary of a few online available 

sentiment analysis lexicons and datasets. AFFIN [11] 

lexicon consists of 3300+ English words labelled from -

5 to +5 scale with an integer variance. Similarly, 

SentiWordNet [12], and Sentiment lexicon [13] provide 

English words with sentiment score. However, the Urdu 

language lacks in lexical resources. An Urdu sentiment 

lexicon13 provides sentiment labels of Urdu words by 

translating English language lexicon [13] into Urdu 

using a dictionary lookup. Additionally, all synonyms of 

translated words are also included in the lexicon. The 

lexicon consists of 2,607 positive and 4,728 negative 

sentiment words. 

The number of datasets from microblogs, blogs, user 

comments and review sites are constructed because 

these platforms provide a good understanding of public 

opinions. The IMDB review dataset [14] provides 50k 

movie reviews with even split of 25,000 reviews from 

positive and negative class. Similarly, Twitter US 

airline sentiment4 labelled 14.5k tweets related to six US 

airlines into three classes of positive, negative, and 

neutral. Multi-language sentiment analysis5 provides 

labelled public opinion from chat logs of WhatsApp, 

Messenger, and SMS data in English, Mandarin, and 

Malay language. Additionally, the efforts are made to 

understand public opinion in Urdu by building Roman 

Urdu6 and Urdu language sentiment [15] analysis 

dataset. Roman Urdu dataset consists of 20,000 roman 

Urdu sentences labelled into three classes. Urdu 

language sentiment dataset consists of 999 Urdu 

language political tweets manually labelled by three 

judges. 
 

 

                                                           
3http://chaoticity.com/urdusentimentlexicon/ 
4https://www.kaggle.com/crowdflower/twitter-airline sentiment 
5https://www.kaggle.com/weywenn/sentiment-analysis- 

multilanguage 
6https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set 

2.2. Approaches 
 

For sentiment detection in textual data, various 

methods are introduced in the literature. Table 2 

provides the summary of research done for sentiment 

analysis. The work is distributed into three sections of 

English, Roman Urdu, and Urdu according to language 

focused in work. The methods used for sentiment 

analysis of these languages can be categorized into three 

classes 1) Lexicon-based Method, 2) Machine learning 

Method, and 3) Hybrid Method. 
 

2.2.1. Lexicon Based Method: Lexicon based 

recognition approach classifies textual content utilizing 

a list of labelled positive, negative, and neutral words. 

In study [9], lexicon is developed for Turkish language. 

Additionally, sentiment analysis of English and Turkish 

tweets related to Syrian refugees is performed. The 

classification of tweets into 5 categories of very 

negative, negative, neutral, positive, and very positive 

shows the positive sentiment of Turkish tweets 

compared to English. 

In [18], the Roman Urdu Opinion Mining System 

(RUOMIS) is built for analysis of comments on mobile 

review website. The lexicon is built by labelling 

adjectives in content. The results show 100% recall but 

the precision value is 27.1% only. The reason for poor 

precision is noise and failure of POS tagger in 

identifying adjectives correctly due to the unstructured 

nature of Roman text. 

Study in [20] use English translated Urdu lexicon 

[15] for analysis of 124 Urdu comments. The 

experiment shows the accuracy of 66% in sentiment 

classification. Similarly, study in [21] use Urdu content 

from blogs to for sentiment analysis. Lexicon is built by 

identifying and labelling nouns and adjectives using 

POS tagger. The accuracy of 66% in classification of 

text shows good results. However, remaining parts of 

POS-tagged text need to be analyzed and included in 

lexicon to improve the accuracy. The research is done 

for identification and labelling of words with sentiment 

(SentiUnits) in [22]. The authors use POS tagger with 

grammatical and semantic rules to identify and label 

SentiUnits in Urdu text. The labelled lexicon is used for 

sentiment analysis of Urdu corpus containing reviews 

about movies and products. The results show 72% and 

78% accuracy for movies and reviews, respectively. The 

similar study is done in [1] by using SentiUnits for 

sentiment classification of Urdu text. The study also 

shows the improvement in results by applying negation 

handling during sentiment classification of Urdu text. 

The authors use Urdu tweets to determine the 

political biases of Pakistani news channels in [8]. They 

 
 

 

 

http://chaoticity.com/urdusentimentlexicon/
https://www.kaggle.com/crowdflower/twitter-airline%20sentiment
https://www.kaggle.com/weywenn/sentiment-analysis-%20multilanguage
https://www.kaggle.com/weywenn/sentiment-analysis-%20multilanguage
https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set
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build an Urdu language sentiment lexicon by labelling 

nouns and adjectives in Urdu tweets. In addition to 

sentiment analysis, the aspect analysis of sentiment is 

done to determine the biases of three news channels 

towards the Pakistani Government. The paper [23] 

compares the performance of three machine learning 

algorithms i.e., Support Vector Machine (SVM),  

 
 

 

 

 

Decision Tree, K-Nearest Neighbor (KNN), and lexicon 

approaches for sentiment classification of Urdu text. 

The results show that the lexicon approach improves 

accuracy from 73.88% to 89.03% compared to machine 

learning algorithms. In addition, the lexicon approach 

performs better in terms of precision, recall, time-cost. 

The reason for better performance of lexical approach is 

that wide coverage of lexicon and an efficient Urdu 

Sentiment Analyzer is developed that can efficiently 

handle data from multiple domains. 
 

2.2.2. Machine Learning Method: The study in [16] 

uses Multinomial Naive Bayes (MNB) model with n- 

gram and POS tags as features for classification of 

English tweets into positive, negative, and neutral class.  

The results describe the best performance of model with 

bi-gram features. Additionally, the evaluation of model 

on different size datasets shows the improvement in 

accuracy of classification on large dataset. However, 

Table 1: Summary of publicly available lexicons & datasets for sentiment analysis 
 

 Name Data Size Language Classes 
     

 

Lexicon 

AFINN lexicon [11] 3,300+ words English Integer between -5 (negative) and +5 

(positive) 

SentiWordNet [12] - English Positive, Negative, and Objectivity 

Sentiment Lexicon [13] 6,800 words English Positive and Negative. 

Urdu Sentiment Lexicon1 7,335 words Urdu Positive and Negative. 
     

 

 

 

Datasets 

IMDB reviews [14] 50,000 reviews English Positive and Negative 

Twitter US Airline 

Sentiment 2 

14,500 Tweets English Positive, Negative, and Neutral 

Sentiment Analysis 

Multi-Language3  

1,531 samples Multi 

Language 

Very Satisfied, Satisfied, Neutral, 

Unsatisfied, Very Unsatisfied. 

Roman Urdu Dataset4 20,000 records Roman Urdu Positive, Negative, and Neutral 

Urdu-Sentiment- Dataset 

[15] 

999 Tweets Urdu Positive, Negative, and Objective 

 

Table 2: Summary of sentiment analysis research 

Language Author Methodology Data 
    

 

 

English 

Öztürk and Ayvaz [9] Lexicon based 1,353,367 English & 1,027,930 Turkish Tweets 

Pak and Paroubek [16] Machine learning 300,000 Tweets 

Shoeb and Ahmed [17] Machine learning 489 Tweets 

Mukwazvure and 

Supreethi [3] 

Hybrid Method 333,686 News Comments 

Govindarajan [6] Hybrid Method 2,000 movie reviews 
    

 

 

Roman 

Urdu 

Daud et al. [18] Lexicon based 1,620 Roman Urdu comments 

Arif et al. [7] Machine learning Roman 1,600 Urdu/Hindi hotel reviews 

Noor et al. [2] Machine learning 20,286 Roman Urdu reviews from Ecommerce 

site 

Ghulam et al. [19] Machine learning Roman Urdu text 
    

 

 

 

Urdu 

Rehman and Bajwa [20] Lexicon Based Urdu news 

Hashim and Khan [21] Lexicon Based Public opinion on news headlines 

Syed et al. [22] Lexicon Based 1,000 Reviews on Urdu Websites 

Syed et al. [1] Lexicon Based Urdu corpus of movie reviews 

Amjad et al. [8] Lexicon Based 26,614 Urdu news Tweets 

Mukhtar et al. [23] Lexicon Based Urdu text from blogs 
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when the dataset is large enough, the improvement 

cannot be achieved by only increasing the size of the 

training data. Similarly, in [17], a study is done to 

classify English tweets using K Nearest Neighbor 

(KNN), Naive Bayes (NB), and Decision Tree (DT) 

classifier. The results describe the Decision Tree as 

outperforming classifier with 84.66% accuracy and 

95.96% precision. 

 

 
 
 

 

 

The sentiment analysis of hotel reviews in Roman 

Urdu text is done in [7]. The corpus is built by 

translating English text into Roman Urdu. The 

translation of English text is done with one translation 

tool to avoid irregularities in spelling. The SVM 

classifier shows significant performance with 95% 

accuracy with Term Frequency (TF)-Inverse Document 

Frequency (IDF) features. However, the performance is 

with no spelling inconsistencies which is one of the 

challenging issues in the analysis of Roman Urdu text. 

Similarly, [2] uses SVM model with Bag of Word  

(BoW) features to classify Roman Urdu reviews from 

an e-commerce site into positive, negative, and neutral 

classes. In [19] the comparison of baseline machine 

learning models (NB, Random Forest (RF), and SVM) 

and deep learning model Long Short Term Memory 

(LSTM) is done for sentiment classification of Roman 

Urdu text. The comparison shows the better 

performance of LSTM model with word embedding. 
 

2.2.3. Hybrid Method: The study in [3] combines 

lexicon and machine learning approach to classify 

English news comments from technology, business, and 

political domain. The lexicon is used for polarity 

detection of text. The output of lexicon is used to train 

SVM and KNN models. The results describe the 

negative impact of small training data size and neutral 

class on the performance of classifiers. In [6] NB and 

Genetic Algorithms are combined as an ensemble 

technique for analysis of English documents. Their 

comparative experiments show the effectiveness of 

hybrid technique for sentiment classification. The  

 
 

 

comparison of both models with hybrid approach shows 

the hybrid approach as the best performing model with 

93% accuracy. 
 

3. Emotion Analysis 
 

In this section, first, we discuss existing emotion models 

for categorization of emotions. Next, we present 

available datasets and lexicons for analysis. Finally, we 

discuss the approaches which exist in the literature for 

emotion classification. 

 

2.1. Emotion Models 
 

To detect and analyze the emotions, they are 

categorized with standard emotion models. Table 3 

summarizes the existing emotion models. According to 

Table 3: Summary of emotion models 

Model Proposed Emotions Approach Structure 
    

Ekman [24] Anger, disgust, fear, joy, sadness, surprise Categorical - 

Shaver et 

al. [25] 

Anger, fear, joy, love, sadness, surprise Categorical Tree 

Oatley and 

Johnson-

Laird [26] 

Anger, anxiety, disgust, happiness, sadness Categorical - 

     

Plutchik 

[27] 

 

 

Acceptance, admiration, aggressiveness, amazement, anger, 

annoyance, anticipation, apprehension, awe, boredom, contempt, 

disapproval, disgust, distraction, ecstasy, fear, grief, interest, joy, 

loathing, love, optimism, pensiveness, rage, remorse, sadness, serenity, 

submission, surprise, terror, trust, vigilance 

Dimensional Wheel 

Circumplex 

Russell [28] 

Afraid, alarmed, angry, annoyed, aroused, astonished, at ease, bored, 

calm, content, delighted, depressed, distressed, droopy, excited, 

frustrated, glad, gloomy, happy, miserable, pleased, relaxed, sad, 

satisfied, serene, sleepy, tense, tired 

Dimensional Valence, 

Arousal 

OCC 

Ortony 

et al. [29] 

Admiration, anger, appreciation, disappointment, disliking, fear, fears 

confirmed, gloating, gratification, gratitude, happy-for, hope, liking, 

pity, pride, sorry-for, relief, remorse, reproach, resentment, self-

reproach, shame 

Dimensional Tree 

Lovheim 

[30] 

Anger/rage, contempt/disgust, distress/anguish, enjoyment/ joy, 

fear/terror, interest/excitement, shame/humiliation, surprise/startle 

Dimensional Cube 
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psychology, there are 6 types of basic emotions 

expressed by human beings [37]. These emotions are 1) 

Happiness, 2) Sadness, 3) Fear, 4) Disgust, 5) Anger, 

and 6) Surprise. Variety of emotion models are 

presented to further classify these basic emotions. 

Ekman [24] presents six discrete emotions as mentioned 

in Table 3. Shaver et al. [25] and Oatley and Johnson- 

Laird [26] define 6 categories of emotions including 

love, anxiety and happiness. Plutchik [27] and 

Circumplex Russell [28] provides two dimensional 

emotion categorization model. Additionally, OCC 

Ortony et al. [29] and Lovheim [30] distribute emotions 

in three dimensions to create categories. 
 

2.2. Datasets and Lexicons 
 

Table 4 provides summary of available labelled 

emotion datasets and lexicons. EmoSenticNet [31] is 

online available emotion lexicon containing 13,171  
 

 

words categorized into joy, sadness, disgust, anger, 

surprise, and fear. Similarly, National Research Council 

(NRC) Word-Emotion Association Lexicon (EmoLex) 

[32] categorizes 14,000+ words into eight classes of 

emotion. Additionally, NRC dataset is translated into 

40+ languages including Urdu. Our manual inspection 

of Urdu translated lexicon reveals that few English 

terms are not translated to Urdu. Additionally, we note 

that ATM translates multiple English terms to one Urdu 

word, i.e., accused, accuser, and accusing are translated 

to one word “Alzaam laga’. In English, these terms are 

provided different labels, however, translated to one 

Urdu term creates ambiguity of assigned label. 

                                                           
7 https://www.kaggle.com/c/sa-emotions 

Therefore, manual cleaning of the lexicon is required to 

use it for Urdu text. 

EmoBank [33] dataset consists of 10k English 

sentences labelled with six Ekman emotions using 

Valence-Arousal-Dominance scheme. Similarly, 

International Survey on Emotion Antecedents and 

Reactions (ISEAR) [34] dataset provides 7,666 labelled 

English sentences with seven emotions of anger, 

disgust, fear, sadness, shame, joy, and guilt. 

Furthermore, the emotion in text dataset57 consists of 

manually label 40k tweets into 13 classes of emotion. 

Additionally, 2,892 Facebook posts are categorized into 

six classes using Valence-Arousal-Dominance scheme 

[35]. Similarly, Affective text [36] classifies 1,200 news 

headlines into Ekman model categories. Up to our 

knowledge, there is no publicly available Urdu language 

emotion labelled dataset. This shows the scarcity of 

resource and huge research gap in emotion analysis of 

Urdu content. 

 

 

The brief overview of papers on emotion analysis of 

text is given in Table 5. Keyword based method is used 

in [39] for classification of English email content into 

three categories of happy, sad, and angry. Besides 

keyword spotting, semantic emotions are calculated 

using a semantic network method for classification of 

text. The proposed methodology is limited to certain 

emotion-related texts, e.g., couple’s breakup. Therefore, 

emotion detection from technical writings or scientific 

Table 4: Summary of publicly available lexicons & datasets for emotion analysis 
 

 Name Data Size Language Classes 
     

 

Lexicon 

EmoSenticNet [31] 13,171 

words 

English Joy, Sadness, Disgust, Anger, 

Surprise, Fear 

NRC-EmoLex [32] 14,000+ 

words 

40+ languages 

including Urdu 

Anger, Fear, Anticipation, Trust, 

Surprise, Sadness, Joy, and Disgust. 
     

 

 

 

Datasets 

EmoBank [33] 10,000 

sentences 

English Double annotation with valence, 

arousal and dominance 

ISEAR [34] 7,666 

sentences 

English Joy, Fear, Anger, Sadness, Disgust, 

Shame, and Guilt 

Emotion in Text5 40,000 

Tweets 

English Anger, Boredom, Empty, 

Enthusiasm, Fun, Happiness, Hate, 

Love, Relief, Sadness, Surprise, 

Worry, Neutral 

The valence and arousal 

Facebook posts [35] 

2,895 

Facebook 

posts 

English Double annotation with valence and 

arousal values 

Affective Text [36]  1,200 News 

Headlines 

English Annotated with 6 basic emotions 

from Ekman’s model 

 

2.3. Approaches 
 

https://www.kaggle.com/c/sa-emotions
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papers is not possible because these texts simply do not 

contain emotions. 

Authors in [10] use lexicon based approach for 

emotion analysis of 25 million English tweets related to 

Donald Trump and Hillary Clinton. Based on emotion 

analysis using NRC lexicon, they predicted the outcome 

of US state election 2016. The proposed approach has 

extensive applications as it is not only limited to the 

political domain.  

The study in [40] uses machine learning models of 

SVM and KNN for emotion classification of tweets 

according to Circumplex Model of Affect. In addition, 

the authors manually label hashtags to use it as an 

emotion label of tweet. The comparison of manually 

labelling of complete tweet and automatic labelling of a 

tweet using hashtags shows that hashtags can be used as 

an emotion label of a tweet with 87% accuracy. 

Additionally, in [41] online health communities (OHCs) 

comments regarding cancer are classified using a 

combination of lexicon approach and deep learning 

models of CNN and LSTM. The analysis shows that 

hybrid model performance improves because it captures 

the hidden semantics in OHCs messages. Similarly, 

Lexicon-based, Keyword based, and machine learning- 

 

 

based emotion classification methods are combined for 

classification of 15 emotions in suicide notes [42]. The 

combination of Affective text lexicon with machine 

learning models of SVM, KNN, and maximum entropy 

shows that hybrid techniques exhibit a high robust 

discriminative capability in emotion classification 

especially when a large number of emotion instances are 

available. 

The little amount of literature is available in emotion 

analysis of Roman Urdu content. The study in [43] 

presents knowledge based approach to label Roman 

Urdu text by developing an emotion ontology of 

happiness, anger, disgust, surprise, and fear emotions. 

The approach analyses syntax and the semantic 

relationship of text to detect the emotion. The testing of 

the proposed approach on manually labelled data shows 

the average recall and precision of 85.40% and 92.87%, 

respectively. The study presented in [44] made an effort 

to detect joy, fear, anger, sadness, disgust, and shame 

from Urdu language tweets about smartphones and 

sports products. The SVM, RF, NB and KNN models 

are tested on 1,000 sports and 1,200 smartphone tweets. 
 

4. Open Problems in Urdu Text Analysis 
 

The core approaches (lexicon based, machine 

learning, and hybrid method), as mentioned in Section 

2.2, used to perform text analysis of English can also be 

used for Urdu but research and development effort is 

required because of vast differences between English & 

Urdu grammar, orthography, and morphology. For Urdu 

language text analysis, first of all, we need a dataset and 

there are rare datasets & corpora available for sentiment 

as well as emotion analysis of Urdu text. To use the 

lexicon based approach either for sentiment or emotion 

analysis, we need annotated lexicon of Urdu. Few Urdu 

lexicons have been created so far and most of them are  

 

not publicly available while in the case of English, we 

have a variety of lexicons available. Due to different 

sentence structure, i.e., Subject-Object-Verb (SOV) and 

position of preposition, as compared to English, we face 

difficulty in Urdu text classification [45]. Due to 

complex morphology and unstructured format of Urdu, 

English morphological analyzers and POS taggers 

cannot be exactly used [46]. 

 

 

Table 5: Summary of emotion analysis research 

Language Author Methodology Data  
     

 

 

English 

Sailunaz 

[38] 

Survey - - 

Ling et al. 

[39] 

Keyword 

based 

Emails Happy, Sad, Angry 

Srinivasan 

et al. [10] 

Lexicon 

based 

English Tweets Plutchik’s Wheel of Emotions [27] 

Hasan et 

al. [40] 

Machine 

learning 

English Tweets Circumplex Model of Affect 

Khanpour 

[41] 

Hybrid 

method 

Online health 

Communities’ Posts 

Anger, Disgust, Fear, Joy, Sadness, Surprise 

Yang et al. 

[42] 

Hybrid 

method 

English Suicide 

Notes 

15 emotion categories 

     

Roman 

Urdu 

Nargis and 

Jamil [43] 

Knowledge 

based 

Roman Urdu Text or 

Blogs 

Happiness, Anger, Hurt, Caring, Fear 

     

 

Urdu 

Rehman 

and Bajwa 

[20] 

Machine 

learning 

Smartphone and 

Sports Tweets 
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5. Conclusion 
 

In this paper, we perform a survey on techniques 

used for sentiment and emotion analysis of text. We 

explore the literature related to analysis of Urdu text 

deeply to understand the challenges in analyzing low 

resource language. We observe that field of sentiment 

analysis for Urdu is growing despite lack of resources. 

Additionally, emotion analysis task has more scarcity of 

literature and resources for Urdu text. Building 

resources, used in sentiment and emotion analysis tasks, 

is still needed for the Urdu language. Furthermore, due 

to the complex nature and challenges of Urdu text, a lot 

of work is required to understand Urdu text context. 

In the future, we will deploy and compare the 

performance of existing models and resources for 

sentiment and emotion analysis for Urdu text to provide 

the benchmark for future research. 
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Abstract 

 
Search engines have become inevitable in the current 

digital information age. Different search engines such 

as Google, Bing, Yahoo, etc., provide access to the most 

relevant information present on the World Wide Web to 

users. These search engines not only require the 

infrastructure to crawl the World-Wide-Web regularly 

but also need a framework to gather user metadata to 

understand user search behavior for improving user 

experience. In addition, user metadata is required to 

perform business analytics and digital forensics. User 

information like IP address, location, type of device, 

response time, user website activity, etc., help us to 

know about user navigational pattern. In this paper, we 

present a user search behavior study of regional search 

engine called Humkinar Urdu Search Engine (USE) by 

integrating an open source web analytics application 

“Matomo”. We collect metadata of Humkinar users for 

about 35 months. Summary reports generated by the 

tool show different analyses which can help to 

effectively monitor the search engine. Furthermore, we 

present subjective test results and feedback to highlight 

the preferences of USE users. The analysis and survey 

can be used to improve the overall performance of 

Humkinar Urdu search engine in terms of ranking and 

personalization. 

 

1. Introduction 
 

In recent years, search engines have turned into a 

significant source of multi-domain data. Our knowledge 

source has moved from books and papers to web, 

predominantly because of the way that search engines 

give a wide variety of relevant data in a couple of 

seconds [1]. About 98.8% Internet users utilize search 

engines to get required information [2]. There are many 

search engines available in different languages for 

public, e.g., Google [3], Yahoo [4], Bing [5], Baidu [6], 

DuckDuckGo [7], and many others [8]. “Baidu” is 

specifically designed for Chinese region, “Yandex” is a 

well-known search engine in Russia and similarly, there 

are many other search engines available in different 

languages. 

38% of all Americans use a search engine, 31% read 

news online, and 30% peruse the Internet just for 

entertainment. During this online activity, users leave 

“digital footprints” with their internet service provider 

(ISP) or search engine, disclosing their interests [9]. 

Collection of user information is necessary as 

government agencies and parties in civil litigation 

regularly ask technology and communication 

companies to turn over user data. In Pakistan, out of 

around 205 million population, about 76% have mobile 

phone subscriptions, 37 million people are active social 

media users, and an estimated 22% of the population 

uses Internet [10]. Other than this, user information 

helps to improve user experience of website visitors. 

Urdu Search Engine (USE) [11], named as 

“Humkinar”, is a practical step to encourage research in 

Urdu and facilitates such community who prefers to 

search and get information in Urdu. On the basis of 

above discussion, we have used a monitoring tool to 

make USE better with respect to design, development, 

content, and ranking. USE team needs to know what 

their visitors are doing on site, where do they click, what 

content they read and which links they follow. To attract 

more people on USE, it is required to make it perform 

efficiently by giving as much minimum delay as 

possible. 

For website performance improvement, user 

behavior analysis is an important factor. It shows the 

interests of the user, and its engagement can be 

increased by upgrading most visited sections. For this 

purpose, a large variety of solutions are available as 

products or services, e.g., Matomo, AWStats, Elogic, 

Google Analytics, and many more [12]. In most cases, 

one has to append a small snippet of JavaScript in web 

pages where user monitoring is required [13]. Also, user 

activity analysis on a website helps to check the security 

of a website indirectly. Another important fact to keep 

in mind is that no one can find out about what your 

clients need except the clients themselves. So why not 

ask them? Our aim is to improve the user experience of 

incoming visitors, that is why we are analyzing user 

activities and their interests regarding USE. 

In this paper, we describe the design, integration, and 

usage of our user tracking framework. Our main 

objective includes collecting user tracking details for 

performance betterment, ranking, and personalization of 

USE. We use an open source web analytics tool known 

as “Matomo” (formerly Piwik) [14]. For user survey, we 

made a questionnaire and got the feedback from 87 

users. Our key findings in this study, for last 35 months 

are mentioned below: 
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 23,022 people visit USE and total viewed pages are 

117,439. 

 Total searched queries are 54,710 out of which 

15,694 are single word queries and the most 

searched query is “Pakistan”. 

 About 84.06% of visitors belong to Pakistan and 

24.4% used GNU/Linux OS. 

 Average page load time of USE is 1.6403s, average 

network latency is 0.5116s, and average server 

serve time is only 0.0064 seconds. 

 From user survey, we found that 70.1% of users 

know how to type in Urdu. 

 From design point of view, 23% of users gave us 8 

points showing a positive impression. 

 59.8% of users said that the design and features of 

USE are easy to use for searching and reading Urdu 

content. 

 

The remainder of the paper is organized as follows: 

Section 2 describes the related work. In Section 3, some 

tools are discussed which are applied to USE. Section 4 

presents design and implementation. In Section 5, we 

discuss the results obtained from the tool. Next, we 

present a user survey of USE showing the feedback of 

users in Section 6. Finally, Section 7 summarizes the 

whole discussion. 

 

2. Related Work 
 

Famous search engine Google has developed a web 

analytics application named as Google Analytics. In 

article [15], a case study has been done using Google 

Analytics showing prominent features, literature 

review, real life application of the software and 

guidelines for the first time users of Google Analytics. 

Another article states that all search engines track user 

behavior and recent development shows that search 

engines try to integrate results from different collections 

into their results to guide their users for relevant results 

[16]. This is how users can be guided to quality content 

based on personalization functionality. In another paper 

[17], the authors have proposed a new ranking algorithm 

for user-oriented web page ranking. They did it by 

tracking the user’s time spent on web page and compare 

it with Google’s PageRank algorithm. The study made 

in [18], shows that the authors used AWStats and 

Google Trends to visualize the statistics comprising of 

number of unique visitors, page views, keywords, origin 

of search, and geographic trends. 

Eye-tracking analysis of user behavior in WWW 

search engine has been done which investigates how 

user interacts with result pages, browsing pattern and 

views [19]. A quantitative study has been made to 

explore that how the behavior of the Google users can 

help web masters to improve their techniques to be in 

top results on Google [20]. Search engines capture 

users’ activities in the search log, which is stored at the 

search engine server. An interface is proposed and 

developed by [21] which acts as a layer between Google 

and the searcher. This framework captures users’ 

queries before redirecting them to Google. 

For large volume of user data, an intelligent system 

is required to analyze the user behavior and show trend 

prediction. Discovery of user information allows web 

based organizations to predict user access pattern and 

helps in future developments [22]. A methodological 

framework was proposed in the study [23], which 

predicts purchase behavior of websites audiences. 

Instead of targeting individual user interests and 

activities, they profile websites audiences. 

Web server logs provide information like traversal 

from one page to another, storing user IP address and all 

the related information. In [24], a study has been done 

in which authors have found different statistics such as 

most visited web-pages, user IPs with most visits, and 

type of errors users have to face, etc., using 

WebLogExpert tool. Similarly in [25], authors have used 

both web client data as well as web server logs to build 

an automated data mining and recommendation system 

for web usage via KNN classification method. User 

click stream data was obtained via web client and other 

information such as IP address, user name, server name, 

etc., were obtained from web server logs. 

The analysis of user behavior also helps in building 

a better recommendation system for users while 

searching on website. For this purpose, [26] has 

proposed a new method through semantic enhancement 

by analyzing web access logs. The  

Table 1: Comparison of Google Analytics and 

Matomo 

Feature  Google Analytics  Matomo 

Vendor  Google  Matomo 

Edition  Single  
Self/Cloud 

hosted 

Installation  No  Easy to install 

User interface  Easy  Easy 

Link to website  
Addition of 

tracking ID  

Addition of 

JavaScript 

Addition of plugin Not allowed  Allowed 

Number of users  Limited  Unlimited 

Re-marketing 

integration  
Google Ads  None 

Data freshness  Not guaranteed  All time 

Data  Limited  Unlimited 

 

authors have built three models for this purpose, two of 

them are for domain knowledge of website and third one 

is an ontology based model. They have shown that their 

proposed method enhances the web-page 

recommendation system and performs better than the 

most advanced web mining methods, i.e., PLWAP-

Mine. Furthermore, [27] has examined web-server logs 

to find the number of visitors and their behavior to 

enhance the usability of an educational website. For this 
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analysis, the authors have used logExpertLite tool and 

found different statistics such as total hits, users, 

bandwidth usage, unique IPs, etc., for 5 days of the 

week. In this study, they have discussed how to increase 

the accessibility and usability of a website from these 

metrics. 

 

3. Tools 
 

There is a large variety of web monitoring tools 

available on the Internet like AWStats, eLogic, Google 

Analytics, ShinyStats, Webalizer, and many others. 

Here, first, we provide a brief description of Google 

Analytics and Matomo. Next, we discuss the rationale 

behind our choice of analytical platform for studying 

user behavior of USE. 

 

3.1. Google Analytics 
 

It is a service based solution which is provided by 

Google to track traffic of a website. Free version is 

perfect for small companies and provides multiple data 

collection options across websites. Enterprise version is 

required for integration with Google BigQuery, 

Salesforce, advanced analysis, and access to raw data. A 

maximum of 200 number of views per property can be 

utilized while enterprise solution gives limit to 400 

numbers. In order to use it, one just needs a Google 

account and has to append a small JavaScript code 

provided by Google Analytics in the footer of web 

pages. Google Analytics Spreadsheet add-on is 

available to access and manipulate data using Google 

spreadsheet. Native re-marketing is done with Google 

Ads. Google Ads, AdSense, and Search Console are 

used for native data on-boarding [28]. 

 

3.2. Matomo 

 
Matomo (formerly Piwik) is an open source web 

analytics platform which provides detailed insights 

about user activities and their engagement on a website. 

Real-time data updates can be received containing 

detailed view of visitors and their activities. It also 

provides row evolution feature which allows to compare 

current and past metric data for various reports. Page 

transitions can be seen through it which help to view 

what visitors did before, and after viewing a specific 

page. The dashboard of this platform is customizable 

and can be extended by adding a wide variety of widgets 

and plugins. Major advantage of this tool is that one has 

complete control over it as this can be installed on web 

server side. Using Matomo APIs, data accessibility is 

easy. Advance reports can be collected by adding 

manual queries in the database. Adding custom 

dimensions and settings is another feature provided by 

Matomo. It gives privacy protection by not sharing user 

data with advertising companies. It uses database for 

archival and storage. Data formatter is used to format 

the data in presentable format [14]. Many other features 

of this tool are discussed later in this paper. 

 

3.3. Comparison 

 
Table 1 provides a brief comparison between 

Matomo and Google Analytics. Although Google 

Analytics is easy to use and there is no need for any type 

of installation, but being a search engine website, USE 

should own the complete user data, privacy and web 

hosting. Also, there are bandwidth and user limitations 

while using Google Analytics services. Moreover, it is 

not allowed to customize available plugins. Due to such 

restrictions, we have to use Matomo that is an open-

source solution and easily customizable 

 

4. Design and Implementation 
 

In this section, first, we briefly discuss USE, its 

major components, and features. After that, we provide 

brief description about hosting and dashboard 

customization of Matomo. Finally, in the end, we 

discuss integration of tool with USE along with data 

acquisition and rendering. 

 

4.1. Urdu Search Engine 

 
    USE is an Urdu language search engine which can be 

accessed at www.humkinar.com.pk. USE is comprised 

of three major components: Cloud Infrastructure (CI), 

Information Retrieval (IR), and Search Management 

(SM). CI is responsible for incremental web crawling 

services, development, testing and deployment of the 

work. On the other hand, IR performs linguistic and 

textual analysis on raw content while SM deals with 

building of indexes for available documents and apply 

ranking algorithms to present meaningful results to the 

user. Figure 1 presents a workflow diagram for USE. It 

has a distributed crawler that crawls and indexes web 

documents continuously. Customized ranking 

algorithms are being used to display most relevant and 

trending results to the user. An adaptable web interface 

is developed to serve results according to the query of 

user. For indexing and search solutions, “Apache Solr” 

is used by USE. Primary source of information storage 

and retrieval is Apache Hadoop framework. USE has 

developed their own filters for checking language, age, 

size and profanity of the documents. It has its own 

developed summary module to present summarized 

result according to the query of the user. Another major 

achievement of USE is that it has given SMS facility to 

users so that they can get latest and updated news by 

using SMS facility through their smartphones. 

To keep all the above mentioned functionalities safe and 

updated, there is a dire need to monitor all the activities 

on USE. Unique requirements of USE include self-
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hosted tool so that it can have total control. Based on 

these requirements, a monitoring tool is designed for 

debugging, user behavior analysis, trends, ranking, 

personalization, and security checking. The next section 

briefly describes the design and implementation of the 

tool developed for USE. 

 

4.2. Self-Hosting of Matomo 

 
In our case, we use “self-hosted” approach to install 

Matomo on our web-server. Before its installation, it is 

required to make sure that you have a web server, shared 

hosting or dedicated server. If web server is not 

available then “Cloud Hosted” Matomo can be used for 

user analytics. By fulfilling all requirements, we 

successfully integrated version 3.7.0 of Matomo with  

 
Figure 2: Matomo structure 

USE. It has a user-friendly graphical interface which is 

also customizable. We customized different plugins 

according to the requirements. 

 

 

 

 

4.3. Dashboard Customization of Matomo 

 
After providing login credentials, dashboard of 

Matomo can be accessed and there we have quick links 

to various sections of the analytics tools. The real-time 

section shows two subsections namely “real-time IP” 

and “searches”. This is a custom plugin that shows only 

the summary of currently active IP addresses and 

searches made. Dashboard is the main analytics section 

of Matomo which can be customized according to the 

requirements. Different metrics can be used to track user 

behavior like evolution over the period, reports, device 

type, operating system, top searches, best performing 

pages, visitor logs, out-links etc. Default analytics 

features of Matomo are somehow limited in their usage. 

For example, default location provider of Matomo 

identifies the location of a user based on the language 

they use which is not very accurate. To tackle this 

problem, we added GeoIP2 

 

 
Table 2: Yearly based analytics of Humkinar 

(October 24, 2016 - October 01, 2019 

Attributes  2016  2017  2018  2019 
Total visits  859  4,560  9,661  7,942 

Unique visits  244  2,104  3,640  5,390 

Total page 
views  

6,948  22,267  71,896  16,328 

Total search 

keywords  
3,916  11,101  33,926  5,767 

Bounce rate  23%  46%  42%  63% 

Total outlinks  227  1,379  7,642  5,747 

 

Table 3: General statistics 

Attributes  Values 
Total visits  23,022 

Unique visits  11,378 

Average page load Time  1.6403s 

Average time spent by visitor  14 min 21s 

Total page views  117,439 

Total searches  54,710 

Total outlinks  14,995 

(PHP version) which uses GeoIP2 database and 

MaxMind’s PHP API to find accurate location of the 

user. Another custom analytics feature was added in 

Matomo which helps us to record the document 

position. This position is then used for ranking of search 

results in Humkinar. Similarly, instead of using default 

Figure 1: Architectural diagram of Humkinar USE 
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reports, we have used custom reporting APIs, not 

limited in usage, to get our desired information in JSON 

or other formats. 

 

4.4. Integration and Data Acquisition 

 
After installation of Matomo on USE platform, a 

script is provided by Matomo that we append at the 

footer of those web pages that should be monitored. It 

logs all activities being carried out on the frontend and 

sends to back-end monitoring server. For USE, it 

includes information such as entered queries, click 

events, number of new and recurring users, IP, browsers 

information etc. Figure 2 shows a high level view of 

work-flow diagram for user monitoring at USE. Client 

enters a query on search engine and information about 

user and his query is stored in Matomo stats collector. 

This data is then sent to database for archival and 

storage. Data formatter converts the received data into 

presentable format and passes it to web dashboard. User 

is not disturbed at all in the whole process and he sees 

only search results on frontend of USE as a reply. 

Furthermore, in this study, we have analyzed data of 

October 24, 2016 to October 01, 2019. 

 

5. Results 
 

In this section, we present our findings for user 

behavior monitoring on USE with Matomo. First section 

describes yearly based statistics of Humkinar. Then we 

discuss other metrics like visitor browser, device type, 

event logs etc. After that, we discuss about the metrics 

that are very important for search engine websites such 

as searched keywords, clicks, user Geo-location, and 

website performance for different sections etc. Table 3 

shows general statistics of USE. 

 

5.1. Yearly Based Analytics 

 
Table 2 shows statistics for year 2016 (start from 24 

October), 2017, 2018, and 2019 (up till 01 October). For 

each year, we are presenting attributes and their 

respective values. Attributes include total visits, unique 

visits, total page views, total search keywords, and total 

out-links. The statistics show that total number of visits 

is increasing every year, i.e., in 2016 total visits were 

counted 859 and in 2019 total visits count is 7,942. It 

can be seen that bounce rate is increasing every year as 

the users are increasing. The reason is that as USE is not 

only a search engine but a portal as well and provides 

latest content on its home page. Hence, it is quite 

obvious that some users just visit USE to read the latest 

content and leave the page after reading. Overall, these 

statistics show that USE is getting more attention year 

by year. 

 

 

5.2. Visitor Browser 

 
Information about the visitor browser is really 

supportive for solving the browser inconsistencies. 

Designers need to keep in mind that cross browser 

testing is necessary to avoid the most common problems 

[29]. Hence on the basis of this point, we obtained the 

information about it to avoid any cross-browser 

inconsistency. We found that 55.89% of visits are from 

Chrome browser, so USE developers should pay more 

attention to this for display of USE. Other browsers 

include Firefox, Opera, Safari, and others. More than 15 

different types of browsers and their types are found in 

our record while tracking the users of USE, e.g., Mobile 

Safari, Chrome Mobile etc. 

 

5.3. Device Type  

 
We observe that more than 80% of the users use 

desktop/laptop to visit USE. Other devices include 

smartphone, tablet and phablet. This information is 

really helpful as it suggests to improve the site visibility 

with respect to desktop devices. Device type 

information helps to make the website responsive with 

respect to different screen sizes. It is also possible to 

show more on large screens and less on small screens. 

 

 

5.4. Event Logs 

 
    These type of logs provide two levels of information, 

user queries and corresponding clicks on search results. 

It can be used to know user interest on the 
Table 4: Number of unique searches for different 

tabs 

Tab Name  Number of unique searches 

Web  3,892 

Books  872 

Islam  1,148 

News  1,035 

Poetry  966 

Sports  270 

Videos  559 

Wikipedia  266 

Famous websites  187 

 

website e.g., most clicked results and corresponding 

queries, images, tabs visit etc. Keeping this information 

in mind, further changes can be made in these sections 

of website to attract more users. In event logs section, a 

sample shows that 0.1% of visits contain search term 

“Pakistan” and clicks on Urdu Wikipedia outlink. 

 

5.5. Site Search Keywords 

 
Matomo also provides searched keywords 

information for each user. We observe that a total of 
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54,710 queries are searched and "Pakistan" keyword is 

at top. We also analyzed the length of searched 

keywords i.e., how many are single word, two words 

and so on. Most users search single word query on USE 

and their total count is 15,694. Similarly, for two-word, 

three-word, and four-word queries, we have frequency 

values of 2,036, 1,069 and 548 respectively. 

 

5.6. Website Tabs Usage & Search Statistics 

 
As USE has many sections (tabs) e.g., web, news, 

poetry, books, etc., here we present the usage 

distribution of each section. Obtained statistics show 

that most people visit the home page of USE with about 

24% share. Other top visited sections are web, poetry, 

Islam, news and videos tabs with a share of 13.5%, 11%, 

3.2%, 1.9% and 1.1% respectively. These statistics also 

indicate the interest of users on USE at section level. It 

also suggests which section should be further improved 

to increase user engagement. Similarly, we also collect 

information about number of search queries for different 

tabs. Table 4 shows unique search statistics in different 

tabs of USE. We have mentioned the number of unique 

search keywords for each tab. Out of total searches, 

9,195 searches are unique keywords. 

 

5.7. Visitor Log 

 
    To analyze the user behavior, we made a visitor log 

displaying its profile and details as each and every minor 

information is important to be logged. Table 5 shows the 

user-level details of a sample visitor. It has  

 

Table 5: Visitor profile attributes 

Attributes  Values 

IP address  66.249.93.88 

Visitor profile ID  1362e2e13b0b8819 

Browser type  Chrome mobile 

OS type  Android 6.0 

Device type  Smartphone, Motorola 

Location  United States 

Total time spent  3min 34s 

Number of actions  5 

page views  1 

 
different attributes about the visitor like IP address, user 

ID, browser type, Geo-location etc. A sample taken 

from record shows that a user from the United States 

with IP address 66.249.93.88 visits USE through 

Android 6.0 using chrome mobile browser in Motorola 

Smart-phone. He spends 3min 34s on USE and performs 

5 different actions. He finds 1 item of his choice and 

redirects to the respective link. His actions include 

www.humkinar.com.pk/Poetry, www.punjnud.com and 

some other outlinks. 

 

 

5.8. Website Performance Statistics 
 

The performance monitoring of our website with 

respect to page load time, network latency, and server 

serve time is also calculated. As it is not affordable to 

overlook the significance of website load speed because 

clients who are baffled by a slow page speed are 

probably going to leave the site. This is why it is 

important to improve the website load time to enable 

clients to get where they’re speeding up. We found that 

average page load time of USE is 1.6403s, average 

network latency is 0.5116s, and average server serve 

time is only 0.0064s.  

 

5.9. Others 

 
    We find that 40 different versions of operating 

systems like Windows, Linux, Ubuntu, Android, iOS, 

etc., are used to visit the USE. By analyzing these 

statistics, we observe that Linux is the most used 

Operating System (OS) with 24.4% of the total users. 

We also observe that USE visitors belong to more than 

50 different countries with Pakistan at the top position 

with 84.06% share. Other countries include United 

States, Australia, India, Saudi Arabia etc. These 

properties may seem less important but they actually 

guide the developers to avoid any limitations in their 

website. Another important information about the user 

is to find the channel type from where he/she is 

accessing the site. In our case, we found three channels, 

i.e., search engine, websites, and social network. It 

means that users are visiting USE through other search  

 
Figure 3: Search platform preference for Urdu content 

 
Figure 5: Urdu typing methods 
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engines, from some website redirection, or from any 

social network like Twitter, Facebook etc. 

 

6. User Survey for Humkinar Urdu Search 

Engine 

 
In this section, we discuss the user survey results and 

feedbacks regarding USE. To observe the user behavior 

and interest on Humkinar, we conducted a survey in 

which different questions regarding the features and 

search results of Humkinar were asked. We got a total 

of 87 responses from both males and females subjects. 

Out of the 87 users, 69% were males and 31% were 

females. Most of them belong to the age of 20-30 as 

majority of the subjects were students. We asked them 

to fill the questionnaire by visiting Humkinar and 

checking the features and functionalities step by step 

and answer the questions accordingly. It was necessary 

to ask them about Urdu typing experience as Urdu 

typing is the key functionality for our search feature. 

Most of them answered Yes, i.e., 70.1%, while 29.9% 

answered in No, which shows that majority of users 

already know how to type Urdu. Figure 3 shows that 

65.5% of the users said that they use Google to find 

Urdu documents while remaining 34.5% use other 

platforms to search Urdu content. 

 
 

Figure 4: Subjective test results – Humkinar design 

 
From the design and features point of view, we 

prepared a separate section containing questions related 

to design view only. To get the overall feedback about 

design from a user, we used 1-10 linear scale range, i.e., 

1 shows very bad and the number goes on to 10 showing 

very good. Figure 4 shows the chosen values by users 

regarding design of Humkinar. Majority users, i.e., 23% 

chose scale value 8. 71.3% users voted that they like the 

color scheme and presentation of Humkinar frontend. 

Humkinar uses Nafees Nastaleeq Urdu font and 97.7% 

users liked its rendering style and readability. For Urdu 

typing, Humkinar provides three typing methods: 1) 

Automatic Urdu Typing 2) On-screen Urdu Keyboard 

3) Roman Urdu Typing. Figure 5 provides division of 

users based on the Urdu typing methods. For search 

results, an individual section was made to ask search 

result questions for different tabs of Humkinar. 59.8% 

users said that it is easy to find their required results 

using this platform, 26.4% selected the option of ”Very 

Easy”, and 13.8% of the users found it difficult to search 

Urdu content using Humkinar. 

Overall, the feedback was satisfying as majority of 

the responses were positive. We also got comments 

from each and every user at the end of questionnaire and 

many useful suggestions were given by them, e.g., add 

more sections like cooking, health, horoscope, currency 

rates, biography page for famous personalities etc. 

Some of them proposed that we should also add voice 

search option to find query results. We can conclude that 

the overall survey feedback was good enough to 

implement new functionalities in Humkinar for the ease 

of users and to make it more adaptable. 

 

7. Conclusion 

 
In this study, we analyzed Urdu Search Engine (USE) 

user behavior and obtained different statistics. For this 

purpose, we have used open-source solution “Matomo” 

and customized it according to our requirements. With 

this tool, we have analyzed last 35 months user search 

behavior on USE. For this interval, our findings show 

that USE is visited 23,022 times and total page views 

are 117,439. Total searched queries are 54,710, top 

query is “Pakistan” and most search queries are single 

word query (15,694). About 84.06% visitors belong to a 

single country, i.e., Pakistan and most of them used 

Chrome browser (55.89%) with Linux (24.4%) OS. 

While loading the USE website, total load time is only 

1.6403 seconds. By incorporating click information of 

visitor for search query, we updated ranking algorithm 

of search results. Further, we presented user survey 

results, total 87 participants, regarding USE design, 

content, and features. It was found that 65.5% users use 

Google to search Urdu content. 71.3% users liked the 

interface of USE. Overall feedback is agreeable and it is 

helpful for us to improve the quality of USE with respect 

to design, features, and content. In future, we plan to use 

“Matomo" stack personalization” to implement 

personalization feature in Humkinar for enriched user 

experience. 
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