
978-1-4673-8279-3/15/$31.00 ©2015 IEEE

DEVELOPMENT OF MULTIPLE AUTOMATIC SPEECH RECOGNITION SYSTEMS IN

THE GALAXY FRAMEWORK

Muhammad Qasim, Aneek Anwar, Tania Habib, Sarmad Hussain

Center for Language Engineering

KICS, UET

Lahore, Pakistan

firstname.lastname@kics.edu.pk

ABSTRACT

This paper discusses a spoken dialog system, Bus

Reservation System, which makes use of multiple automatic

speech recognition systems. A single Speech recognition

system for a large vocabulary results in high error rate. Using

separate speech recognition system for each dimension of

user input reduces the vocabulary size which may lead to

better performance. The system was built using open source

Galaxy framework and Olympus RavenClaw dialog

manager. The system supports multiple sessions and each

session’s state is maintained by using session ids. The voice

response to the user is generated by concatenating the pre-

recorded audio files. We learned through testing that

performance results for speech recognition are good enough

both in laboratory and field. Use of multiple speech

recognition systems leads to better performance in systems

with various dimensions of user input.

Index Terms— spoken dialog system, multiple

automatic speech recognition, galaxy, ravenclaw, HMM, bus

reservation system

1. INTRODUCTION

Spoken dialog systems provide speech interface to user in

order to access information. Most spoken dialog systems use

a single Automatic Speech Recognizer (ASR) to understand

the user's response. This paper presents a system that uses

multiple ASRs depending on the dimension of the user's

response. Currently, the state-of-the-art in speech recognition

is far from being perfect which results in high error rate in

case of large vocabulary. Therefore, it makes sense to use

separate ASRs for each dimension of user input as it reduces

the vocabulary size for each ASR which in turn can lead to

better performance. Also, it allows to divide the dialog in

such a way that system asks the user about each field

individually using a directed question which helps in limiting

the user response. Such a system assists user to decide what

its response should be.

The above mentioned method is implemented on a bus

reservation system where the user's response can consist of a

city name, time value or a number and a separate ASR is used

for each of these fields. The bus reservation system was built

to be used for travel reservation from Lahore city to 44 other

cities of Pakistan. It uses a form-filling approach and is based

on finite state machine model where each state is associated

with a question or prompt and user's response is used to

determine the next state of the system.

The rest of the paper is structured as follows: Section 2

presents the literature review, section 3 describes the system

architecture and major modules. Process flow of the system

is covered in section 4 and section 5 presents the results of

speech recognizer. Finally, Section 6 draws some conclusions

and outlines the future work.

2. LITERATURE REVIEW

An open-source framework, Galaxy, is used to develop

spoken dialog systems [1]. Galaxy consists of a centralized

structure where the Hub is a central module through which

the modules communicate. Several systems have been

developed using the Galaxy architecture. Jupiter, a system

developed by MIT Spoken Language Systems group based

on Galaxy, was a weather information system for telephone

users [2]. Jupiter can provide weather forecast information of

nearly 500 cities. Mercury is another Galaxy based flight

reservation system which facilitates a telephone caller in

planning air-travel to and from 226 cities across the world [3].

Carnegie Mellon Sphinx Group developed CMU

Communicator under Defense Advanced Research Projects

Agency (DARPA) [4]. It comprises of 10 modules and uses

Galaxy Hub for inter-module communication. Olympus, an

improved version of CMU Communicator, was designed to

be an open, modular, flexible and scalable framework [5].

Olympus uses RavenClaw framework for dialog

management. RavenClaw architecture separates dialog tasks

from the dialog engine which executes the dialog tasks, this

allows easy modification of individual modules [6].

Galaxy Hub and Spoke framework and Olympus dialog

system were selected to build the bus reservation system.

Olympus offers lot of extra features that bus reservation

system did not required, hence the RavenClaw dialog

management module was used as stand-alone application

together with Galaxy communicator.

3. SYSTEM ARCHITECTURE

Bus Reservation System is developed by utilizing two open

source elements; Galaxy framework and RavenClaw. The

communication protocols of Galaxy architecture are used but

all the individual modules have been developed from scratch.

The Hub controls the flow of communication using a Hub

program file, written in Hub specific scripting Language [7].

The modules transfer messages among each other using

Galaxy frames.

Figure 1 shows the high level architecture of bus

reservation system. Telephony framework enables

interfacing of human speech with the Spoken Dialog System.

The telephony framework in bus reservation system consists

of a telephone line, Linksys spa-3102 VOIP box and an

asterisk server running Trixbox Operating System. An

Ethernet cable connects VOIP box to the Asterisk Server. The

Asterisk server communicates with the Galaxy modules using

socket connection. The working of each individual module is

presented in the following sub sections.

3.1. Dialog Manager

RavenClaw dialog manager is used in the Olympus dialog

system developed for Microsoft Windows and based on

Galaxy framework. Details of the RavenClaw Dialog

Manager are discussed in Aneef et al, 2014 [8]. The entire

dialog is written as a tree in the dialog task tree file of

RavenClaw using RavenClaw Task Specification Language

(RCTSL) [9]. Figure 2 shows the dialog task tree for bus

reservation system. The dialog task tree is traversed from left

to right starting from the left most leaf node.

The bus reservation system engages the user in a

question-answer conversation to acquire the desired traveling

details that include destination city, departure day, departure

time and number of seats. It starts with the Welcome node

which greets the user and after its execution, the dialog moves

to next node. The Get User's Knowledge node asks the user

whether the user knows how to use this system or not. If the

user response is in affirmation, the system skips the

instructions and moves to next node. Otherwise, the system

plays the instructions to user and then moves to next node.

The Get Required Info node asks the user about the desired

destination, departure day and time and number of seats. The

Perform Query node checks the bus schedule database for

any available bus according to the specifications of user. If it

finds such a result the reservation is made and skips the Not

An Exact Match node. In case the system is unable to find any

available bus according to the exact specifications of the user,

it asks the user about any nearby available bus and makes the

reservation for that bus. If even no nearby bus is available,

the system informs the user that no bus is available and

terminates the call.

3.2. Session Manager

Multiple Galaxy Sessions can run concurrently which

demands that a separate Dialog Manager be used for each

Galaxy Session. Session Manager handles multiple Dialog

Managers and maintains their state. Whenever a new Galaxy

session starts, Session Manager locks a particular Dialog

Manager with that session. Each message to be sent to Dialog

Manager is sent to Session Manager which then forwards the

message to a particular Dialog Manager based on the Galaxy

session ID. On termination of a Galaxy session, Session

Manager closes the corresponding Dialog Manager. The

Session Manager can run 10 Dialog Managers concurrently

in Bus Reservation System.

3.3. Speech Recognizer

The Speech Recognizer module decodes the utterance spoken

by the user and sends the result back to Dialog Manager.

Speech recognition system works for isolated words and is

Figure 1 System Architecture Diagram

independent of the speaker. Several different Automatic

Speech Recognizers (ASRs) are developed; each ASR

decodes a user input in a specific domain, e.g. a separate ASR

for city names and a separate ASR for day of departure. There

are following seven different ASRs for bus reservation

system:

1) ASR for destination city name

2) ASR for departure day

3) ASR for departure time (part of day)

4) ASR for departure time (hour of day)

5) ASR for number of seats

6) ASR for affirmation

7) ASR for determining choice of bus

The above mentioned ASRs are trained on data recorded

from the speakers of Punjab province. Table 1 shows the

amount of training data and gender ratio.

TABLE 1: Training Data for All ASRs

Recorded data

duration

Number of Speakers

Male Female

18 hours 418 300

The data was recorded in office environment over the

telephone channel as the application was to be used through

telephones. The collected data was then cleaned to be used

for training of ASRs. ASRs are developed using an open

source HMM based toolkit Sphinx III [10].Using separate

ASRs for all dimensions of user input, the accuracy of speech

recognizer improves a lot. Asterisk server records the user's

input and sends it to Galaxy server which forwards it to the

Speech Recognizer module. Speech Recognizer calls a

specific ASR for decoding user's response depending on the

question asked from the user. After decoding, the Speech

Recognizer sends the decoded output to the Hub which then

forwards it to other modules for further processing.

3.4. Backend Module

The backend module populates the Database on its startup

and then looks up the query whenever it is called. Bus

schedule information is saved in a text file in the following

format:

Destination Departure

Day

Departure

Time

Number

of Seats

Available

Figure 2 Dialog Task Tree of Bus Reservation System

The system has reservation service for 44 destination

cities, 7 days of week and 96 (24 hours x 4) time slots for

each day. After the information from the user is collected, a

query is sent to the backend. If backed finds an entry in the

database according to the desired information of the user and

the attribute Number of Seats available is greater than or

equal to the requested number of seats for reservation, the

backend updates the database and returns a 4-digit booking

number. In case there is no entry in the database according to

the requested information or the Number of Seats available is

less than the requested number of seats, the backend server

returns two entries from the database; one bus available

before the user’s requested departure time and one after the

user’s requested departure where Destination and Departure

Day values are according to the user’s requirement.

3.5. Interactive Voice Response

This module is called to generate the voice response which is

to be played to the user. What needs to be played is

determined through the prompt_value sent by the Dialog

Manager. It performs two functions –find appropriate fixed

prompts and synthesize variable prompts. Fixed prompts are

just in the form of pre-defined sentences or questions and are

played to the user as it is when requested by the Dialog

Manager. Variable prompts depend on the information

provided by the user or the database through the Backend

server and these are generated by concatenating the

appropriate audio files. Galaxy session ID is appended at the

end of the filename of the generated audio file to make

distinction between different files during multiple sessions.

Interactive Voice Response (IVR) sends the generated audio

file to Asterisk to play it to user and waits for the confirmation

from the Asterisk server that voice response to the user has

been played.

3.6. Interaction Manager

Dialog Manager is based on the Olympus framework while

the rest of the modules are based on the Galaxy

Communicator framework, therefore an intermediate module

is required to pass messages between Dialog Manager and

other modules. The Interaction Manager (IM) serves like a

bridge between RavenClaw Dialog Manager and other

modules. The frame sent from Dialog Manager is parsed by

the Interaction Manager and a new frame is sent to other

modules including all the information required to be passed

from Dialog Manager to them. The logic is simple, the

prompt_type and prompt_value are extracted from the frame

received from Dialog Manager and based on their values, a

frame is sent to Backend or IVR. The only functionality of

Interaction Manager is to re-route the message of Dialog

Manager to either Backend or IVR module based on the

prompt type.

4. PROCESS FLOW

When a user calls, the asterisk server answers the call and

sends a session initiation signal to Galaxy Server which in

response starts a Galaxy session and sends a signal to Session

Manager to start a Dialog Manager session. The Session

Manager runs an instance of Dialog Manager. The Dialog

Manager starts the execution of its dialog task tree. First, it

sends a frame to the Interaction Manager containing the

message "inform welcome". The Interaction Manager parses

this message and sends a frame to the IVR module. The IVR

module sends the welcome audio file to the asterisk server to

be played and waits for the confirmation from the Asterisk

server. The asterisk server plays the received audio file and

sends a confirmation message to the Galaxy server which is

forwarded to Dialog Manager through Session Manager.

After the confirmation is received, the Dialog Manager

moves to the next node to ask the user whether the user knows

how to use this system or not by sending a frame to the

interaction Manager with a message of "request

ask_user_knowledge". The Interaction Manager parses this

message and sends a frame to IVR. IVR sends the appropriate

audio file to the Asterisk server and waits for confirmation.

But in this case, as the prompt type was request, after playing

the audio file the Asterisk server records the user response

and sends it to the Galaxy framework. Upon receiving the

recorded file, the Speech Recognizer module is called to

decode the user input. The Speech Recognizer module

decides to call the ASR for Confirmation on the basis of the

prompt key i.e., ask_user_knowledge. The decoded result is

sent to Dialog Manager which then executes rest of the nodes

of dialog task tree.

In the similar way, the system acquires all the

information from the user required for reservation.

Afterwards, the system performs a query on the bus schedule

database. If there is a bus available, the backend module

makes the reservation, generates a random 4-digit number

and sends it to the IVR module. IVR informs the user that

reservation is done and plays the 4-digit number to the user

as reservation number. In case the bus is not available

according to the user’s requirements, backend returns two

alternative buses and user is asked to choose one. Then

reservation is made in the user’s chosen bus and user is

informed about the reservation. Afterwards, a good bye

message is played and the call is terminated. A sample dialog

between a caller and the system can be viewed online [11].

5. RESULTS AND DISCUSSION

The ASRs developed for bus reservation system were tested

using the prerecorded audio files. Table 2 shows the accuracy

results of each of the ASR.

TABLE 2: Results of all Automatic Speech Recognizers

Type of ASR
Vocabul

ary size

Training

Utterances

Testing

Utterances

Correct

Decoded

Accuracy

(%age)

 Destinations

 ASR
44 1543 584 563 96.40

 Reservation

 Day ASR
23 805 307 291 94.78

 Reservation

 Time ASR

 (Part of Day)

5 170 31 29 93.54

 Reservation

 Time ASR

 (Hour)

19 659 219 204 93.15

 Number of

 Seats ASR
10 385 150 146 97.33

 ASR for

 choice

 of Bus

2 70 20 20 100

 Confirmation

 ASR
2 70 26 26 100

 Overall 86 3043 1118 1075 96.15

The accuracy results show that all ASRs are performing

well. After integrating the ASRs in the Dialog System, field

testing of the system was conducted to evaluate its

performance in the scenarios and places where the system is

intended to be used. Table 3 shows the results of field testing

of bus reservation system.

TABLE 3: Field Testing Results of ASRs
Testing

Utterances

Correct

Decoded

Incorrect

Decoded

Accuracy

(%age)

222 201 21 90.54054

The overall accuracy of 90.5% of the ASRs is

satisfactory enough. One of the challenges to spoken dialog

system is the misrecognition of ASRs. This misrecognition is

handled by using a keyword "غلط" (GALAT); this keyword

makes the dialog manager to go back to the previous question

asked. For instance, the user responds with MULTAN when

asked for destination and system misrecognizes it as

MARDAN. The system then plays the decoded response

along with the next question asked from the user; upon

hearing the user can correct the misrecognized input by

saying the keyword "غلط" (GALAT). The system will now

again ask for the desired destination city. Some other

challenges include the user's inappropriate response such as

the user speaks nothing or speaks multiple words or speaks

something out of the vocabulary. In all such cases the user is

asked to repeat the response. The system prompts the user to

repeat for at most three times and if still the response is not

recognized correctly, the call is terminated.

6. CONCLUSION AND FUTURE WORK

The system performs reasonably well in low noise. The use

of multiple ASRs has certainly improved the recognition of

user input and it can help to improve performance in systems

where user input consists of various dimensions. The error

handling capabilities of the system make it very user friendly.

But the user response is very restricted and selective which

makes it slightly hard to be used by a novice user. Interaction

between user and system can be modified to be more flexible.

The overall time of call for a successful reservation is more

than two minutes, it needs to be reduced by decreasing the

number of fields. Work is being done in this regard by

merging reservation time (part of day) and reservation time

(hour) fields. The system can be further improved by using a

keyword spotting technique where user can state the desired

reservation details in a continuous speech sentence and then

keywords regarding destination, day, time and seats can be

spotted.

ACKNOWLEDGMENT

This work has been conducted through Enabling Information

Access through Mobile Based Dialog Systems and Screen

Readers for Urdu project supported through a research grant

from National ICT RnD Fund, Pakistan.

REFERENCES

[1] S. Senef, E. Hurley, R. Lau, C. Pao, P. Schmid and V. Zue,

"GALAXY-II:A Reference Architecture For Conversational

System Development," in ISCA, Sydney, Australia, 1998.

[2] V. Zue, S. Senef, J. R. Glass, J. Polifroni, C. Pao, T. J.

Hazen and L. Hetherington, "JUPITER: A Telephone-

Based Conversational Interface," IEEE Trans. on Speech

and Audio Processing, vol. 8, no. 1, pp. 85-96, 2000.

[3] S. Seneff and J. Polifroni, "Dialogue Management in the

Mercury Flight Reservation System," in Satellite Dialogue

Workshop of the ANLP-NAACL Meeting, Seattle,

Washington, USA, 2000.

[4] A. Rudnicky and W. Xu, "An agenda-based dialog

management architecture for spoken language systems," in

IEEE Automatic Speech Recognition and Understanding

Workshop, 1999.

[5] D. Bohus, A. R. Carne, T. K. Harris, M. Eskenazi and A. I.

Rudnicky, "Olympus: an open-source framework for

conversational spoken language interface," in NAACL-HLT-

Dialog '07 Proceedings of the Workshop on Bridging the

Gap: Academic and Industrial Research in Dialog

Technologies, 2007.

[6] A. I. Rudnicky, C. Bennett, A. W. Black, A.

Chotomongcol, K. Lenzo, A. Oh and R. Singh, "Task and

Domain Specific Modelling in the Carnegie Mellon

Communicator System," in Interantional Conference on

Spoken Language Processing (ICLSP), 2000.

[7] "Galaxy Communicator Documentation: Communicator

Hub Programs," [Online]. Available:

http://communicator.sourceforge.net/sites/MITRE/distributi

ons/GalaxyCommunicator/docs/manual/reference/pgm.html

. [Accessed 10 April 2015].

[8] A. Izhar ul Haq, A. Anwar, A. Ahmad, T. Habib, S.

Hussain and Shafiq-ur-Rahman, "Spoken Dialog System:

Direction Guide for Lahore City," in Conference on

Language and Technology, Karachi, Pakistan, 2014.

[9] "RavenClaw Task Specification Language," [Online].

Available:

http://wiki.speech.cs.cmu.edu/olympus/index.php/Tutorial_

1#The_RavenClaw_Task_Specification_Language.

[Accessed 8 April 2015].

[10] "Robust Group's CMU Sphinx Tutorial," [Online].

Available:

http://www.speech.cs.cmu.edu/sphinx/tutorial.html.

[Accessed 13 March 2015].

[11] "Bus Reservation System's Vocabulary List," Center for

Language Engineering, [Online]. Available:

http://cle.org.pk/dialog/bus_reservation_system_vocab.pdf.

